

10th International Workshop on

Multiple Classifier Systems

Naples, Italy, June 15-17, 2011

Introducing the Separability Matrix for ECOC coding

Miguel Angel Bautista, Sergio Escalera, Xavier Baró & Oriol Pujol

Outline

- Classification problems and the ECOC framework.
- Motivation.
- The Separability Matrix.
- An application of the Separability Matrix for coding ECOCs.
 - The Confusion-Separability Extension Coding.
- Experiments and Results.
- Conclusions and Future Work.

Introduction to the ECOC framework

- Classification tasks are a well known type of supervised learning problem. The goal is to classify and object among a certain number of possible categories.
- The ECOC framework has proven to be a powerful tool to deal with multi-class classification problems.
- This framework is composed of two different steps :
 - Coding: Decompose a given N-class problem into a set of n binary problems.
 - Decoding: Given a test sample s, determine its category.

Introduction to the ECOC framewo

• At the coding step a decomposition of the *N*-class problem into *n* binary problems is build and represented into a matrix.

$$M_{N\times n} \in \{-1, +1, 0\}$$

- The columns of the matrix represent the binary problems.
- The rows of the matrix represent the codes of the N classes.

Introduction to the ECOC framework

- At the decoding step a new sample s is classified by comparing the binary responses to the rows of M by means of a decoding measure δ .
- Different types of decoding based on the distance used (i.e. Hamming Decoding, Euclidean Decoding, etc.)

 $\operatorname{arg\,min}_{i} \delta(x^{s}, y^{i})$

Motivation

- Standard predefined or random strategies may not be suitable for a given problem.
- Find an optimum coding matrix *M* for a given problem was proved to be an *NP-Complete* problem [1].
- In [2] we show how reduced codes can perform has well as standard designs with far less number of dichotomizers.
- Those reduced codes can be extended in a problemdependent way to benefit from error-correcting principles.

The

Separability

Matrix

- The Separability matrix s contains the **pairwise distance** δ between the codewords in s.
- With this matrix we can analyze the correction capability ρ of \emph{M} since,

$$\rho = \frac{\min(S) - 1}{2}$$

Standard ECOC designs shown constant Separability matrices.

	h_1	h_2	h_3	h_4	<i>h</i> ₅
\nearrow					
\Diamond					

	**	\Diamond			
$\not\searrow$	0	2	2	2	2
\Diamond	2	0	2	2	2
	2	2	0	2	2
\bigcirc	2	2	2	0	2
	2	2	2	2	0

An application of the Separability Matrix for coding ECOCs

• In [2] we show how reduced codes can perform has well as standard designs with far less number of dichotomizers.

• Identify those classes that need an increment of distance in order to benefit from error-correcting principles.

	\Rightarrow	\Diamond			
$\stackrel{\wedge}{\sim}$	0	1	1	3	2
\Diamond	1	0	2	2	3
	1	2	0	2	1
0	3	2	2	0	1
	2	3	1	1	0

The Confusion-Separability Extension coding (CSE Coding)

- Use the Confusion matrix over a validation subset to find the most confused classes.
- Use the **Separability matrix** to find the classes that need at increment of distance in order to benefit from error-correcting principles.
- Compute and Extension Matrix of a Binary Compact ECOC matrix which is focused on the classes that show both high confusion and low separation.
- Extend the coding matrix until a maximum length of N dichotomies.

The CSE Coding Algorithm

- 1 Find the most confused classes : $\arg \max_{c^i,c^j} (C_{i,j} + C_{j,i})$
- 2 Compute and Extension matrix E which increments $\delta(y^i, y^j) \geq \varrho$
- \bigcirc Fill the empty Extension codes taking into account the confusion of c^i,c^j with the rest of the classes.
- 4 Update Confusion and Separability matrices.

10

Experiments:

Data

 We tested the novel methodology on several public datasets from the UCI Machine Learning Repository.

Problem	#Training samples	#Features	#Classes
Dermathology	366	34	6
Ecoli	336	8	8
Vehicle	846	18	4
Segmentation	2310	19	7
Glass	214	9	7
Vowel	990	10	11
Yeast	1484	8	10

- In addition we perform experiments with 3 public Computer Vision problems.
 - The ARFace dataset with 20 classes.
 - The Traffic Sign dataset with 36 classes.
 - The MPEG dataset with 70 classes.

Experiments: Methods and Settings

- •We compare the One vs. All and Dense Random with the CSE coding with $\varrho \in \{3,5\}$
- Classification results are the average over a Stratified 10 fold CV.
- •We use the SVM-RBF and AdaBoost as our base classifier.
- An optimization process is carried out to tune the parameters of the SVMs.
- •SVM-RBF classifiers have 2 parameters to optimize (C & Y).

Experiments

and

Results

• Results for UCI and Computer Vision experiments with SVM as the base classifier.

	One vs. All ECOC		CSE ECOC $\varrho = 3$		CSE ECOC $\varrho = 5$		Dense Random ECOC	
Data set	Perf.	Classif.	Perf.	Classif.	Perf.	Classif.	Perf.	Classif.
Vowel	$ 55.0\pm10.5 $	11	66.9 ± 7.8	9.2	$69.8 {\pm} 6.3$	10.6	67.9 ± 8.3	11
Yeast	41.0 ± 7.3	10	54.7 ± 11.8	5.7	53.0 ± 9.3	9.5	54.9 ± 6.4	10
Ecoli	78.9±3.5	8	76.4 ± 4.4	7	78.6 ± 3.9	7.4	$72.1 {\pm} 2.7$	8
Glass	51.6 ± 10.2	7	55.5 ± 7.6	6	52.7 ± 8.4	3	42.8 ± 11.02	7
Segment	97.3±0.7	7	96.9 ± 0.8	6.6	96.6 ± 1.0	6.2	$96.6{\pm}1.3$	7
Derma	97.1 ± 1.2	6	97.1±0.9	5.2	$95.9{\pm}1.2$	3	95.7 ± 0.8	6
Vehicle	$80.1{\pm}4.0$	4	81.1 ± 3.5	3	70.6 ± 3.4	3	81.1±3.6	4
MPEG7	83.2 ± 5.1	70	88.5±4.5	15	89.6 ± 4.9	20.4	$90.0{\pm}6.4$	70
ARFaces	76.0 ± 7.22	50	80.7±5.2	13.8	84.6 ± 5.3	20.2	$85.0 {\pm} 6.3$	50
Traffic	91.3±1.1	36	95.7 ± 0.92	12.2	96.6 ± 0.8	19	$93.3{\pm}1.0$	36
Rank & #	3.0	20.8	2.2	8.8	2.3	10.3	2.5	20.8

Experiments

and

Results

• Results for UCI and Computer Vision experiments with AdaBoost as the base classifier.

	One vs. Al	l ECOC	CSE ECO	$C \varrho = 3$	CSE ECO	$C \varrho = 5$	Dense Ran	dom ECOC
Data set	Perf.	Classif.	Perf.	Classif.	Perf.	Classif.	Perf.	Classif.
Vowel	40.6±1.3	11	44.7 ± 0.8	10	46.5±1.2	10.6	$ 47.0 \pm 1.2 $	11
Yeast	36.8 ± 1.1	10	45.6 ± 0.4	9.6	$42.9{\pm}1.0$	9.5	40.8±1.3	10
Ecoli	71.5 ± 10.9	8	68.1 ± 8.3	7.4	63.3 ± 9.2	7.4	75.0±7.8	8
Glass	53.8 ± 12.1	7	52.8 ± 13.5	6	44.5 ± 10.8	6	49.5±10.9	7
Segment	96.4 ± 0.7	7	95.0 ± 0.3	6.8	94.8 ± 0.9	6.2	$95.3{\pm}1.0$	7
Derma	$89.3 {\pm} 4.9$	6	77.6 ± 6.3	5.4	76.0 ± 5.3	3	76.7 ± 5.3	6
Vehicle	73.6±1.3	4	72.7 ± 1.9	4	$62.9{\pm}1.4$	3	$72.7{\pm}1.5$	4
MPEG7	54.4 ± 7.2	70	65.5 ± 9.5	15	73.7±8.3	24.3	86.5 ± 6.4	70
ARFaces	36.3 ± 7.2	50	53.8 ± 5.2	13.8	62.8 ± 8.3	20.4	81.5±6.3	50
Traffic	80.6±6.2	36	81.3±8.1	12.2	87.4±7.9	20.6	91.2 ± 5.3	36
Rank & #	2.6	20.8	2.4	9.16	3.0	10.89	1.9	20.8

Conclusions and Future Work

- The **Separability Matrix** is introduced as a novel tool to analyze and enhance ECOC coding designs.
- The **Extension Algorithm** proposed can be applied to any existing ECOC scheme.
- A new coding design based on the Separability matrix is introduced obtaining significant performance improvements over state-of-the-art ECOC designs.
- The proposed methodology reduces the number of base classifiers needed in comparison with state-of-the-art designs.
- A possible improvement will be to optimize the initial Compact ECOC coding matrix.

10th International Workshop on

Multiple Classifier Systems

Naples, Italy, June 15-17, 2011

Thank you!