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Abstract

Multi-class object categorization is an important line of research in Computer Vision
and Pattern Recognition fields. An artificial intelligent system is able to interact
with its environment if it is able to distinguish among a set of cases, instances,
situations, objects, etc. The World is inherently multi-class, and thus, the efficiency
of a system can be determined by its accuracy discriminating among a set of cases.
A recently applied procedure in the literature is the Bag-Of-Visual-Words (BOVW).
This methodology is based on the natural language processing theory, where a set of
sentences are defined based on word frequencies. Analogy, in the pattern recognition
domain, an object is described based on the frequency of its parts appearance.
However, a general drawback of this method is that the dictionary construction
does not take into account geometrical information about object parts. In order to
include parts relations in the BOVW model, we propose the Contextual BOVW
(C-BOVW), where the dictionary construction is guided by a geometricaly-based
merging procedure. As a result, objects are described as sentences where geometrical
information is implicitly considered.

In order to extend the proposed system to the multi-class case, we used the
Error-Correcting Output Codes framework (ECOC). State-of-the-art multi-class
techniques are frequently defined as an ensemble of binary classifiers. In this sense,
the ECOC framework, based on error-correcting principles, showed to be a powerful
tool, being able to classify a huge number of classes at the same time that corrects
classification errors produced by the individual learners.

In our case, the C-BOVW sentences are learnt by means of an ECOC configu-
ration, obtaining high discriminative power. Moreover, we used the ECOC outputs
obtained by the new methodology to rank classes. In some situations, more than
one label is required to work with multiple hypothesis and find similar cases, such
as in the well-known retrieval problems. In this sense, we also included contextual
and semantic information to modify the ECOC outputs and defined an ECOC-
rank methodology. Altering the ECOC output values by means of the adjacency of
classes based on features and classes relations based on ontologies, we also reported
a significant improvement in class-retrieval problems.
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Resum

La multi-classificació d’objectes és una important ĺınia de investigació a les àrees
de Visió Artificial i Reconeixement de Patrons. Un sistema intel·ligent és capaç de
interactuar amb el seu entorn si pot distingir entre un conjunt de casos, instàncies,
situacions, objectes, etc. El món és inherentment multi-classe. i per tant, la eficàcia
d’un sistema pot estar determinada por la seva robustesa discriminant entre un
conjunt de casos. Un mètode recent en aquest àmbit és el ”Bag-of-Visual-Words”
(BOVW). Aquesta metodologia es basa en el processament del llenguatge natural,
on un conjunt de sentències es defineixen en funció de la freqüència de les seves
paraules. De forma anàloga, en el domini del Reconeixement de Patrons, un objecte
és descrit a partir de la freqüència d’aparició de les parts que el composen. No
obstant, un dels principals problemes d’aquesta metodologia és que la construcció
del diccionari no té en compte la informació geomètrica entre les parts dels objectes.
Amb l’objectiu d’incloure informació relacional entre les parts dels objectes, en
aquest treball proposem el BOVW contextual (C-BOVW), on la construcció del
diccionari bé guiada per un procés de fusió. Com a resultat, els objectes són descrits
com sentències a on la informació geomètrica està impĺıcitament definida.

Amb l’objectiu d’estendre el sistema proposat al cas multi-classe, hem utilitzat
el marc dels ”Error-Correcting Output Codes” (ECOC). Les tècniques de multi-
classificació de l’estat de l’art freqüentment estan definides a partir de l’assemblatge
de classificadors binaris. En aquest sentit, el marc dels ECOC, basats en els principis
de la correcció d’errors, han demostrar ser una potent eina, essent capaços de clas-
sificar grans conjunts de classes a la vegada que corregeixen errors de classificació
prodüıts pels classificadors individuals.

En el nostre cas, les sentències C-BOVW són apreses per mitjà d’un disseny
ECOC. obtenint un alt poder discriminador. A més, hem considerat les sortides
dels ECOC amb l’objectiu d’ordenar i obtenir un ranking de les classes. En al-
gunes situacions, més d’una etiqueta és necessària amb l’objectiu de treballar amb
múltiples hipòtesis i trobar casos similars, com és el cas dels ben coneguts problemes
de ”retrieval”. En aquest sentit, hem inclòs informació contextual i semàntica per
modificar les sortides dels ECOC i definir la metodologia ECOC-Rank. Alterant les
sortides dels ECOC a partir de l’adjacència entre classes basada en valors de carac-
teŕıstiques i les relacions entre classes per mitjà d’ontologies, també hem obtingut
millores significatives en els problemes de ”retrieval” de classes.
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Resumen

La multi-clasificación de objetos en una importante ĺınea de investigación en las
áreas de Visión Artificial y Reconocimiento de Patrones. Un sistema inteligente
es capaz de interactuar con su entorno en la medida que pueda distinguir entre
un conjunto de casos, instancias, situaciones, objetos, etc. El mundo es inherente-
mente multi-clase, y por lo tanto, la eficacia de un sistema puede venir determinada
por su robustez discriminando entre un conjunto de casos. Un método reciente en
este ámbito ampliamente considerado en la literatura es el ”Bag-of-Visual-Words”
(BOVW). Esta metodoloǵıa se basa en el procesamiento del lenguaje natural, donde
un conjunto de frases se definen en función de la frecuencia de aparición de sus pal-
abras. De forma análoga, en el dominio del Reconocimiento de Patrones, un objeto es
descrito a partir de la frecuencia de aparición de las partes que lo componen. No ob-
stante, uno de los problemas principales de esta metodoloǵıa es que la construcción
del diccionario no tiene en cuenta la información geométrica entre las partes de los
objetos. Con el objetivo de incluir información relacional entre las partes de los
objetos, en este trabajo proponemos el BOVW contextual (C-BOVW), donde la
construcción del diccionario viene determinada por un proceso guiado de mezcla.
Como resultado, los objetos son descritos como sentencias donde la información
geométrica está impĺıcitamente definida.

Con el objetivo de extender el sistema propuesto al caso multi-clase, hemos us-
ado el marco de los ”Error-Correcting Output Codes” (ECOC). Las técnicas de
multi-clasificación del estado del arte frecuentemente vienen definidas a través del
ensamblaje de clasificadores binarios. En este sentido, el marco de los ECOC, basa-
dos en los principios de corrección de errores, han demostrado ser una potente
herramienta, siendo capaces de clasificar grandes conjuntos de clases a la vez que
corrijen errores de clasificación producidos por los clasificadores individuales.

En nuestro caso, las sentencias C-BOVW son aprendidas a través de un diseño
ECOC, obteniendo un alto poder de discriminación. Además, hemos considerado
las salidas de los ECOC con el objetivo de ordenar y obtener un ranking de las
clases. En algunas situaciones, más de una etiqueta es necesaria con el objetivo
de trabajar con múltiples hipótesis y encontrar casos similares o candidatos, como
en los bien conocidos problemas de ”retrieval”. En este sentido, hemos incluido
información contextual y semántica para modificar las salidas de los ECOC y definir
la metodoloǵıa ECOC-Rank. Alterando las salidas de los ECOC a través de la
adyacencia de clases basada en valores de caracteŕısticas y las relaciones entre clases
basándonos en ontoloǵıas, también hemos obtenido mejoras significativas en los
problemas de ”retrieval” de clases.

Key words: Multi-class classification, Bag-Of-Visual Words, Error-Correcting
Output Codes, Retrieval, Ranking.
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1 Introduction

We, humans from our first days of life learn to group our observations into
meaningful and abstract categories. We can learn new categories from just
few instances, and have the ability to recognize any new instance easily. As a
matter of fact, categorization is the most fundamental cognitive ability, which
helps us get through daily life.

For computers, images are just array of data, and machine has no knowledge
about its semantic meaning. Categorization is one of the most challenging
tasks in computer vision, which could have plenty of applications.

The task of object categorization in computer vision usually is split in two
main stages: object description, where discriminative features are extracted
from the object to represent, and object classification, where a set of extracted
features are labeled as a particular object given the output of a trained clas-
sifier. There are plenty of methods on feature extraction, which vary based
on the application, like localizing and classifying single objects, texture, or
scenes. Recognition of real world scenes may be initiated from the global con-
figuration, ignoring most of the details and object information (Bidderman,
1988; Potter, 1976) [1], meanwhile in object recognition the main attention is
focused on the characteristic of individual instances. An example of an object
categorization task is shown in Figure 1. In the image, the Wall-E robot of
the Disney’s film categorizes new objects into a set of categories.

A general tendency in object recognition to deal with the object description
stage is to define a bottom-up procedure where initial features are obtained
by means of region detection techniques. These techniques are based on de-
termining relevant image key-points (i.e. using edge-based information [2]),
and then defining a support region around the key-point (i.e. looking for ex-
trema over scale-space [2]). Several alternatives for region detection have been
proposed in the literature [2]. Once a set of regions is defined, it should be
described using some kind of descriptor (i.e. SIFT descriptor [3]), and the
region-descriptions are related in some way to define a model of the object of
interest. Very few methods take into account relations of object parts when
defining the feature space, such as in the Shape Context descriptor [4], and
relations use to take place in the learning step, such as in graphical models as
Conditional Random Fields or Hidden Markov Models [5,6].

1.1 Contextual Bag-of-Visual-Words motivation

Based on the previous tendency, a recent technique to model visual objects is
by means of a Bag-Of-Visual-Words. The BOVW model is inspired by the text
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Fig. 1. Scene of the Disney’s Wall-e film. From top to down and left to right: The
robot classifies objects into different categories. For a new object, the robot considers
two classification options, fork and spoon. Finally, he classifies the new object in a
new Fork-Spoon category.

classification problem using a Bag-Of-Words. In Bag-Of-Words model each
document is represented by an unsorted set of contained words, regardless of
the grammar and word order, and assumes order of words has no significance.
Analogously, in object categorization problems, an image is represented by an
unsorted set of discrete visual words, which are obtained by the object local
descriptions.

Many promising results have been achieved with the BOVW systems in natu-
ral language processing, texture recognition, Hierarchical Bayesian models for
documents, object classification [7], object retrieval problems [8,9], or natural
scene categorization [10], just to mention a few. However, one of the main
drawbacks of the BOVW model is that dictionary construction does not take
into account the geometrical information among visual instances. Although
this issue can be beneficial in natural language analysis, its adaptation to
visual word description needs special attention. Note that based on the de-
scription strategy used to describe visual words, very close regions can have far
descriptors in the feature space, being grouped as different visual words. This
effect occurs for most of the state-of-the-art descriptors, even when coping
with different invariance, and thus, a grouping based on spatial information
of regions could be beneficial for the construction of the visual dictionary.

The first contribution of this work is a method for considering spatial in-
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formation of visual words in the dictionary construction step, which we call
Contextual Bag-Of-Visual-Words model. Objects interest regions are obtained
by means of the Harris-Affine detector and then described using the SIFT de-
scriptor. Afterward, a contextual-space and a feature-space are defined. The
first space codifies the contextual properties of regions meanwhile the second
space contains the region descriptions. A merging process is then used to fuse
feature words based on their proximity in the contextual-space. Moreover, the
new dictionary is learned using the Error Correcting Output Codes frame-
work [11] in order to perform multi-class object categorization. We compared
our approach to the standard BOVW design and validated over public multi-
class categorization data sets, considering different state-of-the-art classifiers
in the ECOC multi-classification procedure. Results show significant classi-
fication improvements when spatial information is taken into account in the
dictionary construction step.

On the other hand, we extended our methodology to deal with another chal-
lenging computer vision task. In many situations only one predicted label of
a multi-class problem is not enough, and we need to retrieve several possible
and ordered case. This is the case of the retrieval problem.

1.2 ECOC-Rank motivation

Information Retrieval deals with uncertainty and vagueness in information
systems (IR Specialist Group of German Informatics Society, 1991). This in-
formation could be in forms such as text, audio, or image. The science field
which deals with information retrieval in images which is called Content-based
image retrieval (CBIR). CBIR corresponds to any technology that for example
helps to organize digital picture archives by their visual content. By this defi-
nition, anything ranging from an image similarity function to a robust image
annotation engine falls under the purview of CBIR [12]. An example of a real
image retrieval system is shown in Figure 2, where a set of Tour Eiffel samples
are retrieved given an input sample using the Google retrieval engine.

In last decade, many research and work have been performed to describe color,
shape, and texture features, without considering image semantics. Eakins [13]
defines three levels of queries in CBIR.

Level 1: Retrieval by primitive features such as color, texture, shape, or the
spatial location of image elements. A typical query is for example ’find pictures
like this’.

Level 2: Retrieval of objects of a given type identified by derived features,
considering some degree of logical inference. For example ’find a picture of a
flower’.
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Level 3: Retrieval by abstract attributes, involving a significant amount of
high-level reasoning about the purpose of the objects or scenes depicted. This
includes retrieval of named events, pictures with emotional or religious signif-
icance, etc. A query example could be ’find pictures of a joyful crowd’.

Levels 2 and 3 together are referred to as semantic image retrieval, and the gap
between Levels 1 and 2 as the semantic gap [13]. Recently, some research has
focused to fill this gap. Some state-of-the-art techniques use object ontology to
define high-level concepts [14–17]. Other works use supervised or unsupervised
learning methods to associate low-level features with query concepts [18–22],
introduce Relevance feedback into retrieval loop for continuous learning of
users intention [23–25], generate Semantic Template to support high-level im-
age retrieval [26–28], or make use of both textual information obtained from
the Web and visual content of images for Web image retrieval [29,27,30]. Many
systems exploit one or more of the above techniques to implement high-level
semantic-based image retrieval [23,24,27,30,20,29,27,31].

Fig. 2. Example of the retrieval of similar images for a Eiffel tower sample using
the Google Similar Images engine (http://similar-images.googlelabs.com/). In this
case, the retrieval process is based on a graph of relations designed by means of
image features and web links.

Most of the works in the literature related to retrieval processes are based on
the retrieving of samples from a same category. However, in our case we based
on the class retrieval problem. Here, we define the class retrieval problem as
the problem of retrieving classes similar in some way (i.e. given a semantic
class distance) to the original class label of a given sample. Suppose we have
an image from a cat animal category. In that case, we want to retrieve similar
categories and not just samples from the same animal (i.e. tiger could be a
possible solution). In order to deal with this problem, we focus on the output
of multi-class classifiers to rank classes and then perform class retrieval.

Theoretical studies of machine learning have focused almost entirely on learn-
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ing binary functions [32,33], but in many real-world learning tasks, such as in
object classification, we need to deal with a discrete set of classes. Some of the
state-of-the-art binary classification methods have been extended to deal with
multi-class problems, such as decision trees, Adaboost, and Support Vector
Machines. However, this kind of extensions is not always trivial. In such cases,
the usual way to proceed is to reduce the complexity of the problem to a
set of simpler classifiers and to combine them. In this sense, Error-Correcting
output code (ECOC) is a general framework that combines binary problems
to address the multi-class problem. The ECOC technique can be broken into
two stages, encoding and decoding. Given a set of classes, the coding stage
designs a codeword for each class based on different binary problems. The
decoding stage makes a classification decision for a given test sample based on
the value of the output code. Based on error-correcting properties, the ECOC
framework has shown to be a powerful tool for combining binary classifiers,
outperforming classical voting procedures.

Up to now, the ECOC framework has been just applied to the multi-class
object recognition problem, where just one label was required. Then, based
on the ECOC framework and our C-BOVW proposal, our second contribution
consists on the extension of the ECOC framework to work on class retrieval
problems. Altering the ECOC output values by means of the adjacency of
classes based on features and classes relations based on ontology, we alter the
ECOC output to improve class ranking. An adjacency matrix is computed
by computing the mean distance among a set of class representant obtained
by the k-means clustering, and changing the distance value to a measure of
likelihood. The ontology matrix is computed by defining a new taxonomy dis-
tance using a semantic tree structure. The new ranking is used to look at the
first retrieved classes to perform class retrieval based on semantic relations of
classes. The results of the new ECOC-Rank approach show that performances
improvements are obtained when including contextual and semantic informa-
tion in the ranking class process. Moreover, using the proposed C-BOVW
feature space also shown to outperform the classical BOVW approach in the
class-retrieval problem.

Summarizing, the contributions of this work are:

a) Contextual Bag-of-Visual-Words: by defining a feature and a con-
textual space we merge words and include geometrical information in the
design of the feature dictionary, improving posterior classification.

b) ECOC-Rank: We alter the output rank of the Error-Correcting Output
Codes technique to improve results in class retrieval problem. We define
an adjacency matrix by looking the feature space and a ontology matrix
defining a tree of class taxonomies. Both matrices are used to alter the
ECOC output rank and perform class retrieval.

11



The rest of this work is organized as follows: Section 2 presents our Contex-
tual Bag-Of-Visual-Words. Section 3 overviews the ECOC framework used for
multi-class object recognition and ranking. Section 4 describes the ECOC-
Rank methodology and section 5 presents the results of the C-BOVW and
ECOC-Rank methodologies over different real and public multi-class data sets.
Finally, section 6 concludes the paper with a discussion of the presented ap-
proaches. At the end of the document, we show the publications regarding this
work and summarize the nomenclature of the whole paper.
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2 Contextual Bag-Of-Visual-Words

A simple approach for information retrieval in Natural-Language-Processing
is to consider each document as a bag of words. It assumes that the order of
words has no significance and considers a document as an unordered collection
of words. Using such a representation, methods such as probabilistic latent
semantic analysis (pLSA) [34] and latent dirichlet allocation (LDA) [35] are
able to extract coherent topics within document collections in an unsupervised
manner.

The same approach has been applied to the computer vision domain by treat-
ing images as a collection of regions, describing only their appearance and
ignoring their spatial structure [36,37]. In the previous approach, for each im-
age, a codebook is generated based on features. In this way, each patch in an
image is mapped to a certain word in the codebook. Then, an histogram can
be computed by counting the number of local feature vectors that fall within
each word, and each image is represented as an histogram. This histogram is
then used as a feature vector in the learning process [38].

One of the disadvantages of BOVW model is that it ignores spatial relation
between words. Some works tried to deal with this problem. S. Lazebnik and
her colleagues [39] split image into increasingly fine sub-regions and compute
histograms of local features found inside each sub-region. J.C. Niebles and
L.Fei-Fei [40] combine spatial information in a hierarchal way with features in
the BOVW model.

In this section, we reformulate the BOVW model so that geometrical informa-
tion can be taken into account in conjunction with the key-point descriptions
in the dictionary construction step.

The algorithm is split into four main stages: contextual and feature space
definition, merging, represent computation, and sentence construction.

Space definition: Given a set of samples for a n-multi-class problem, a set of
regions of interest are computed and described for each sample in the training
set. Then, k-means is applied over the descriptions and the spatial locations
of each region to obtain a K-cluster feature-space and a K-cluster contextual-
space, respectively. In our case, we use the Harris-affine region detector and
SIFT descriptor. The x and y coordinates of each region normalized by the
height and width of the image in conjunction with the ellipse parameters that
define the region are considered to design the contextual-space.

Merging: Lets define a contextual-feature relational matrix M , where the
position (i, j) of this matrix represents the percentage of points from the jth
visual word of the feature-space that match with the points of the ith visual
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word of the contextual-space. Then, from each row of M , the two maximums
are selected. These maximums correspond to the two words of the feature-
space which share more percentage of elements for a same contextual word.
In order to fuse relevant feature words, we select the contextual word which
maximizes the minimums of all pairs of selected maximums. It prevents un-
balanced feature words to be merged. Finally, the two feature words with
maximum percentage in M for that contextual word (which have not been
previously considered together) are labeled to be merged at the end of the
procedure, and the process is iterated while an evaluation metric is satisfied
or a maximum number of merging iterations is reached. Once the merging
loop finishes, the pairs of feature words labeled during the previous strategy
are merged and define the new visual words.

Representant computation: When the new C-BOVW dictionary is ob-
tained, a set of represent for each final word is computed. In order to obtain a
stratified number of represent related to the word densities, only one represent
is assigned to the word with the minimum number of elements. Then, a pro-
portional number of represent is computed for the rest of words by applying k-
means and computing the mean vector for each of the word sub-clusters. With
the final set of represent feature vectors, a normalized sentence of word occur-
rences is computed for each sample in the training set, defining its probability
density function of C-BOVW visual words. The whole C-BOVW procedure is
formally described in Algorithm 1. An example of a two-iteration C-BOVW
definition for a motorbike sample is shown in Figure 3. At the top of the figure,
the initial spaces are shown. In the second row, the shared elements from the
two spaces which maximize the percentage of matches for a given contextual
word are shown. The contextual-space just considers the x and y coordinates,
and the 128 SIFT feature-space is projected into a two-dimensional feature-
space using the two principal components. Note that the feature descriptions
for the two considered words are very close in the feature space though they
belong to different visual words before merging. On the right of the figure
the new merged feature cluster is shown within a dashed rectangle. The same
procedure is applied for the second iteration of the merging procedure in the
bottom row of the figure.

Sentence construction: After the definition of the new dictionary, a new
test sample can be simply described using the Bag-Of-Visual-Words without
the need of including geometrical information since it is implicitly considered
in the new visual words. The sentence for the new sample is then computed by
matching its descriptors to the visual words with the nearest represent. Finally,
the test sentence can be learned and classified using any kind of classification
strategy. In the next chapter, we explain the framework used to learn the
CBOVW feature space.

14



Algorithm 1 Contextual Bag-Of-Visual-Words algorithm.
Require: D = {(x1, l1), .., (xm, lm)}, where xi is an object sample of label

li ∈ [1, .., n] for a n-class problem, K clusters, and I merging steps.
Ensure: Representant R = {(r1, w1), .., (rv, wb)}, where rv is a representant for

word wi, i ∈ [1, ..b] for b words. Sentences S = {(s1, l1), .., (sm, lm)}, where si is
the sentence of sample xi.

1: for each sample xi ∈ D do
2: Detect regions of interest for sample xi:

Xi = {(x1, y1, ρ
1
1, ρ

2
1, ρ

3
1), .., (xj , yj , ρ

1
j , ρ

2
j , ρ

3
j )}, where x and y are spatial co-

ordinates normalized by the height and width of the image, and ρ1, ρ2, and
ρ3 are ellipse parameters for affine region detectors.

3: Compute region descriptors: Xr
i = {r1, .., rj}, where rj is the description of

the jth detected region of sample xi.
4: end for
5: Define a contextual-space C = {(c1, w

C
1 ), .., (cq, w

C
q )} using k-means to define

K contextual clusters, where wC
i is the ith word of the contextual-space.

6: Define a feature-space F = {(f1, w
F
1 ), .., (fq, w

F
q )} using k-means to define K

feature clusters, where wF
i is the ith word of the feature-space.

7: Initialize a contextual-feature relational matrix M : M(i, j) = 0, i, j ∈ [1, .., K]
8: Initialize W = ∅ the list of feature words to be merged
9: for I merging steps do

10: update M based on the contextual clusters and new feature clusters so that
M(i, j) = d(C,F,i,j)

|wF
j | , where d(C, F, i, j) returns the number of points from

contextual-space of word wC
i that belong to the feature-space jth word wF

j ,
and |wF

j | is the number of regions of the jth feature word.
11: Select the pair of positions with the maximum value for each row of M :

maxj,k M(i, ), j �= k, ∀i, where ′ ′ stands for all row positions.
12: W = W ∪ (wF

j , wF
k ): Select the contextual word wC

i and words wF
j and wF

k

from the feature-space based on maxi (min(M(i, j),M(i, k))) ,∀j, k
13: end for
14: for each pair (wF

j , wF
k ) in W do

15: update F so that wF
j ← wF

k , and rename feature words so that wF
i , i ∈ [1, .., p]

becomes wF
i , i ∈ [1, .., p − 1]

16: end for
17: Compute representant R = {(r1, w1), .., (rv, wb)} for the new F , where:

zi = round
(

wi
min |wj |∀j

)
is the number of representant for word wi, computed using zi-means, and
{r1, .., rzi} representant are computed as the mean value for each sub-cluster of
wi, obtaining a stratified number of representant respect the words densities.

18: Compute sentences S = {(s1, l1), .., (sm, lm)} for all training samples of all cat-
egories comparing with word representant of R.
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Fig. 3. Two iterations of C-BOVW algorithm over a motorbike sample.
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3 Error-Correcting Output Codes

In this section, we review the Error-Correcting Output Codes framework,
which is used to learn the previous C-BOVW sentences performing multi-class
categorization as well as to rank the retrieval process that will be explained
in the next section.

Given a set of N classes to be learnt in an ECOC framework, n different bi-
partitions (groups of classes) are formed, and n binary problems (dichotomiz-
ers) over the partitions are trained. As a result, a codeword of length n is
obtained for each class, where each position (bit) of the code corresponds to
a response of a given dichotomizer (coded by +1 or -1 according to their class
set membership). Arranging the codewords as rows of a matrix, we define a
coding matrix M , where M ∈ {−1, +1}N×n in the binary case. In fig. 4(a)
we show an example of a binary coding matrix M . The matrix is coded us-
ing 5 dichotomizers {h1, ..., h5} for a 4-class problem {c1, ..., c4} of respective
codewords {y1, ..., y4}. The hypotheses are trained by considering the labeled
training data samples {(ρ1, l(ρ1)), ..., (ρm, l(ρm))} for a set of m data samples.
The white regions of the coding matrix M are coded by +1 (considered as
one class for its respective dichotomizer hj), and the dark regions are coded
by -1 (considered as the other one). For example, the first classifier is trained
to discriminate c3 against c1, c2, and c4; the second one classifies c2 and c3

against c1 and c4, etc., as follows:

h1(x) =

⎧⎪⎨
⎪⎩

1 if x ∈ {c3}
−1 if x ∈ {c1, c2, c4}

, . . . , h5(x) =

⎧⎪⎨
⎪⎩

1 if x ∈ {c2, c4}
−1 if x ∈ {c1, c3}

(1)

(a) (b)

Fig. 4. (a) Binary ECOC design for a 4-class problem. An input test codeword x is
classified by class c2 using the Hamming or the Euclidean Decoding. (b) Example
of a ternary matrix M for a 4-class problem. A new test codeword x is classified by
class c1 using the Hamming and the Euclidean Decoding.

During the decoding process, applying the n binary classifiers, a code x is
obtained for each data sample ρ in the test set. This code is compared to the
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base codewords (yi, i ∈ [1, .., N ]) of each class defined in the matrix M . And the
data sample is assigned to the class with the closest codeword. In fig. 4(a), the
new code x is compared to the class codewords {y1, ..., y4} using the Hamming
[41] and the Euclidean Decoding [42]. The test sample is classified by class c2

in both cases, correcting one bit error.

In the ternary symbol-based ECOC, the coding matrix becomes M ∈ {−1, 0, +1}N×n.
In this case, the symbol zero means that a particular class is not considered
for a given classifier. A ternary coding design is shown in fig. 4(b). The matrix
is coded using 7 dichotomizers {h1, ..., h7} for a 4-class problem {c1, ..., c4} of
respective codewords {y1, ..., y4}. The white regions are coded by 1 (consid-
ered as one class by the respective dichotomizer hj), the dark regions by -1
(considered as the other class), and the gray regions correspond to the zero
symbol (classes that are not considered by the respective dichotomizer hj).
For example, the first classifier is trained to discriminate c3 against c1 and c2

without taking into account class c4, the second one classifies c2 against c1, c3,
and c4, etc. In this case, the Hamming and Euclidean Decoding classify the
test data sample by class c1. Note that a test codeword can not contain the
zero value since the output of each dichotomizer is hj ∈ {−1, +1}.

The analysis of the ECOC error evolution has demonstrated that ECOC cor-
rects errors caused by the bias and the variance of the learning algorithm
[43] 1 . The variance reduction is to be expected, since ensemble techniques
address this problem successfully and ECOC is a form of voting procedure.
On the other hand, the bias reduction must be interpreted as a property of the
decoding step. It follows that if a point ρ is misclassified by some of the learnt
dichotomies, it can still be classified correctly after being decoded due to the
correction ability of the ECOC algorithm. Non-local interaction between train-
ing examples leads to different bias errors. Initially, the experiments in [43]
show the bias and variance error reduction for algorithms with global behavior
(when the errors made at the output bits are not correlated). After that, new
analysis also shows that ECOC can improve performance of local classifiers
(e.g., the k-nearest neighbor, which yields correlated predictions across the
output bits) by extending the original algorithm or selecting different features
for each bit [44].

1 The bias term describes the component of the error that results from systematic
errors of the learning algorithm. The variance term describes the component of
the error that results from random variation and noise in the training samples and
random behavior of the learning algorithm. For more details, see [43].
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3.1 Coding designs

In this section, we review the state-of-the-art on coding designs. We divide
the designs based on their membership to the binary or the ternary ECOC
frameworks.

3.1.1 Binary coding

The standard binary coding designs are the one-versus-all [41] strategy and
the dense random strategy [42]. In one-versus-all, each dichotomizer is trained
to distinguish one class from the rest of classes. Given N classes, this technique
has a codeword length of N bits. An example of an one-versus-all ECOC design
for a 4-class problem is shown in fig. 5(a). The dense random strategy generates
a high number of random coding matrices M of length n, where the values
{+1,−1} have a certain probability to appear (usually P (1) = P (−1) = 0.5).
Studies on the performance of the dense random strategy suggested a length
of n = 10 log N [42]. For the set of generated dense random matrices, the
optimal one should maximize the Hamming Decoding measure between rows
and columns (also considering the opposites), taking into account that each
column of the matrix M must contain the two different symbols {−1, +1}.
An example of a dense random ECOC design for a 4-class problem and five
dichotomizers is shown in fig. 5(b). The complete coding approach was also
proposed in [42]. Nevertheless, it requires the complete set of classifiers to be
measured (2N−1 − 1), which usually is computationally unfeasible in practice.

(a) (b) (c)

(d) (e)

Fig. 5. Coding designs for a 4-class problem: (a) one-versus-all, (b) dense random,
(c) one-versus-one, (d) sparse random, and (e) DECOC.
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3.1.2 Ternary Coding

The standard ternary coding designs are the one-versus-one strategy [45] and
the sparse random strategy [42]. The one-versus-one strategy considers all

possible pairs of classes, thus, its codeword length is of N(N−1)
2

. An example
of an one-versus-one ECOC design for a 4-class problem is shown in fig. 5(c).
The sparse random strategy is similar to the dense random design, but it
includes the third symbol zero with another probability to appear, given by
P (0) = 1− P (−1)− P (1). Studies suggested a sparse code length of 15 log N
[42]. An example of a sparse ECOC design for a 4-class problem and five
dichotomizers is shown in fig. 5(d). In the ternary case, the complete coding
approach can also be defined.

Due to the huge number of bits involved in the traditional coding strate-
gies, new problem-dependent designs have been proposed [46][47][48]. The
new techniques are based on exploiting the problem domain by selecting the
representative binary problems that increase the generalization performance
while keeping the code length small. The Discriminant ECOC (DECOC) of
[48] is based on the embedding of discriminant tree structures derived from
the problem domain. The binary trees are built by looking for the sub-sets
of classes that maximizes the mutual information between the data and their
respective class labels. As a result, the length of the codeword is only (n− 1).
The algorithm is summarized in table 1. In fig. 6, a binary tree structure for
an 8-class problem is shown. Each node of the tree splits a sub-set of classes.
Each internal node is embedded in the ECOC matrix as a column, where the
white regions correspond to the classes on the left sub-sets of the tree, the
black regions to the classes on the right sub-sets of the tree, and the gray re-
gions correspond to the non-considered classes (set to zero). Another example
of a DECOC design for a 4-class problem obtained by embedding a balanced
tree is shown in fig. 5(e). 2

Fig. 6. Example of a binary tree structure and its DECOC codification.

2 For further information about more recent coding designs the reader is referred
to [49] and [50].
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Table 1
DECOC algorithm.

DECOC: Create the Column Code Binary Tree as follows:

Initialize L to L0 = {{c1, .., cN}}
while |Lk| > 0

1) Get Sk : Sk ∈ Lk, k ∈ [0, N − 2]
2) Find the optimal binary partition BP (Sk) that maximizes the
fast quadratic mutual information [48].

3) Assign to the column t of matrix M the code obtained by the
new partition BP (Sk) = {C1, C2}.

4) Update the sub-sets of classes Lk to be trained as follows:

L
′
k = Lk\Sk

Lk+1 = L
′
k ∪ Ci iff |Ci| > 1, i ∈ [1, 2]

3.2 Decoding designs

In this section, we review the state-of-the-art on decoding designs. The de-
coding strategies (independently of the rules they are based on) are divided
depending if they were designed to deal with the binary or the ternary ECOC
frameworks.

3.2.1 Binary decoding

The binary decoding designs most frequently applied are: Hamming Decoding
[41], Inverse Hamming Decoding [51], and Euclidean Decoding [42].

• Hamming Decoding

The initial proposal to decode is the Hamming Decoding measure. This mea-
sure is defined as follows:

HD(x, yi) =
n∑

j=1

(1 − sign(xjyj
i ))/2 (2)

This decoding strategy is based on the error correcting principles under the
assumption that the learning task can be modeled as a communication prob-
lem, in which class information is transmitted over a channel, and two possible
symbols can be found at each position of the sequence [11].
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• Inverse Hamming Decoding

The Inverse Hamming Decoding [51] is defined as follows: let Δ be the matrix
composed by the Hamming Decoding measures between the codewords of M .
Each position of Δ is defined by Δ(i1, i2) = HD(yi1 , yi2). Δ can be inverted
to find the vector containing the N individual class likelihood functions by
means of:

IHD(x, yi) = max(Δ−1DT ) (3)

where the values of Δ−1DT can be seen as the proportionality of each class
codeword in the test codeword, and D is the vector of Hamming Decoding
values of the test codeword x for each of the base codewords yi. The practi-
cal behavior of the IHD showed to be very close to the behavior of the HD
strategy [41].

• Euclidean Decoding

Another well-known decoding strategy is the Euclidean Decoding. This mea-
sure is defined as follows:

ED(x, yi) =

√√√√ n∑
j=1

(xj − yj
i )

2 (4)

3.2.2 Ternary decoding

Concerning the ternary decoding, the state-of-the-art strategies are: Loss-
based Decoding [42], and the Probabilistic Decoding [52].

• Loss-based Decoding

The Loss-based Decoding strategy [42] chooses the label �i that is most con-
sistent with the predictions f (where f is a real-valued function f : ρ → R),
in the sense that, if the data sample ρ was labeled �i, the total loss on example
(ρ, �i) would be minimized over choices of �i ∈ �, where � is the complete set
of labels. Formally, given a Loss-function model, the decoding measure is the
total loss on a proposed data sample (ρ, �i):

LB(ρ, yi) =
n∑

j=1

L(yj
i f

j(ρ)) (5)

where yj
i f

j(ρ) corresponds to the margin and L is a Loss-function that depends
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on the nature of the binary classifier. The two most common Loss-functions are
L(θ) = −θ (Linear Loss-based Decoding (LLB)) and L(θ) = e−θ (Exponen-
tial Loss-based Decoding (ELB)). The final decision is achieved by assigning
a label to example ρ according to the class ci which obtains the minimum score.

• Probabilistic Decoding

Recently, the authors of [52] proposed a probabilistic decoding strategy based
on the continuous output of the classifier to deal with the ternary decoding.
The decoding measure is given by:

PD(yi, F ) = −log

⎛
⎝ ∏

j∈[1,...,n]:M(i,j) �=0

P (xj = M(i, j)|f j) + K

⎞
⎠ (6)

where K is a constant factor that collects the probability mass dispersed on
the invalid codes, and the probability P (xj = M(i, j)|f j) is estimated by
means of:

P (xj = yj
i |f j) =

1

1 + eyj
i (υjfj+ωj)

(7)

where vectors υ and ω are obtained by solving an optimization problem [52]

• Loss-Weighted Decoding

The main objective of the Loss-Weighted decoding is to find a weighting matrix
MW that weights a loss function to adjust the decisions of the classifiers, either
in the binary and in the ternary ECOC frameworks. To obtain the weighting
matrix MW , we assign to each position (i, j) of the matrix of hypothesis H a
continuous value that corresponds to the accuracy of the dichotomy hj classi-
fying the samples of class i (8). We make H to have zero probability at those
positions corresponding to unconsidered classes (9), since these positions do
not have representative information. The next step is to normalize each row of
the matrix H so that MW can be considered as a discrete probability density
function (10). This step is very important since we assume that the probability
of considering each class for the final classification is the same (independently
of number of zero symbols) in the case of not having a priori information
(P (c1) = ... = P (cNc)). In fig. 7 a weighting matrix MW for a 3-class problem
with four hypothesis is estimated. Figure 7(a) shows the coding matrix M .
The matrix H of fig. 7(b) represents the accuracy of the hypothesis classify-
ing the instances of the training set. The normalization of H results in the
weighting matrix MW of fig. 7(c). 3

3 Note that the presented Weighting Matrix MW can also be applied over any
decoding strategy.
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Given a coding matrix M ,

1) Calculate the matrix of hypothesis H:

H(i, j) =
1

mi

mi∑
k=1

γ(hj(℘i
k), i, j) (8)

based on γ(xj , i, j) =

⎧⎨
⎩ 1, if xj = M(i, j)

0, otherwise.
(9)

2) Normalize H so that
∑n

j=1 MW (i, j) = 1,∀i = 1, ..., Nc:

MW (i, j) =
H(i, j)∑n

j=1 H(i, j)
,

∀i ∈ [1, ..., Nc], ∀j ∈ [1, ..., n]

Given a test input ℘, decode based on:

d(℘, i) =
n∑

j=1

MW (i, j)L(M(i, j) · f(℘, j)) (10)

Table 2
Loss-Weighted algorithm.

(a) (b) (c)

Fig. 7. (a) Coding matrix M of four hypotheses for a 3-class problem. (b) Matrix
H of hypothesis accuracy. (c) Weighting matrix MW .

The Loss-weighted algorithm is shown in table 2. As commented before, the
loss functions applied in equation (10) can be for example the linear or the ex-
ponential ones. The linear function is defined by L(θ) = θ, and the exponential
loss function by L(θ) = e−θ, where in our case θ corresponds to M(i, j) ·f j(℘).
Function f j(℘) may return either the binary label or the confidence value of
applying the jth ECOC classifier to the sample ℘. 4

4 For further information about more recent decoding designs the reader is referred
to [53].
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4 ECOC-Rank

Retrieval systems retrieve huge amount of data for each query. Thus, sorting
the results from most to less relevant cases is required. Based on the framework
and application there exist different ways for ranking the results based on the
associated criteria.

In the decoding process of the ECOC framework, a ”distance” associated to
each class is computed. This ”distance” could be then interpreted as a ranking
measure. But this ranking is the most trivial way for sorting the results. More-
over, the output of the ECOC system does not take into account any semantic
relationship among classes, which may be beneficial in retrieval applications.
As an example of an image retrieval system, suppose the query of ”Dog”. In
the feature space, it is possible that there exists high similarity between ”Dog”
and ”Bike”, so based on features, the ranking will be higher for ”Bike” than
for some other class which can be semantically more similar to ”Dog”, such as
”Cat”. On the other hand, it is easy to see that similarity based on features
also is important, and thus, a tradeoff based on appearance and semantics is
required. Thus, our goal is to embed class semantics and contextual informa-
tion in the ranking process. For this purpose, we define two matrices that will
be used to vote the ranking process: one based on adjacency and another one
based on ontology. These matrices are n×n matrices for n number of classes,
where each entry represents the similarity between two classes. By multiplying
the ranking vector of the ECOC output by these matrices, we can improve
the retrieval results. In the rest of this section we describe the design of the
adjacency matrix, ontology matrix, and their use to modify the output ECOC
ranking.

4.1 Adjacency Matrix MA

As we discussed, our goal is to enhance the primarily ranking based on ECOC
output. First, we use class similarities in feature space and define an adjacency
matrix.

There are different approaches in literature for measuring the similarity be-
tween two classes, Support Vector Machines margins and the distance between
cluster centroid are two common approaches. Here, we follow a method similar
to the second approach. However, just considering the cluster centroid would
not be an accurate criteria for non-Gaussian data distributions. Instead, we
re-cluster each class data into a few number of clusters and measure the mean
distance of centroid of the new set of representant.

Since the objective is to alter the ranking, the defined adjacency matrix should
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be converted to a measure of likelihood, which means that the more two classes
are similar, the more the new measure among them should be higher. Thus,
we compute the inverse of the distance for each element and normalize each
column of the matrix to one to give the same relevance to each of the classes
similarities. The details of this procedure are described in algorithm 3.

Table 3
Adjacency Matrix MA computation.

Given the class set c = {c1, c2, .., cn} and their associated data
W = {Wc1 , ..,Wcn} for n classes

For each ci

1) Run k-means on Wci set and compute the cluster centroids for
class ci as mi = {mi1, .., mik}

Construct distance matrix MD as follows:

For each pair of classes cp and cq

1) MD(p, q) =
∑k

i=1

∑k

j=1
δ(mpi,mqj)

k2 , being δ a similarity function

Convert distance matrix MD to adjacency matrix MA as follows:

For each pair of classes cp and cq

1) MA(p, q) = 1
MD(p,q)

Normalize each column p of MA as follows:

1) MA(p, q) = MA(p,q)∑n

i=1
MA(i,p)

Look at the toy problem of Figure 8. In the example, for each class three
representant are computed using k-means. Then the distance among all pairs
of representant are computed for a pair of classes, obtaining an adjacency
distance for that two classes as MD(1, 3) = 8+10+9+7+9+8+7.5+9.5+8.5

9
= 8.5.

After that, the remaining positions of MD are obtained in the same way,
obtaining the following distance matrix MD:

MD =

⎛
⎜⎜⎜⎜⎜⎝

1 4 8.5

4 1 10

8.5 10 1

⎞
⎟⎟⎟⎟⎟⎠

Finally, the adjacency matrix is computed changing the distance to a value
of likelihood and normalizing each column of the matrix. Then we obtain the
final adjacency matrix MA for the toy problem as:
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MLikelihood
A =

⎛
⎜⎜⎜⎜⎜⎝

1 0.25 0.12

0.25 1 0.1

0.12 0.1 1

⎞
⎟⎟⎟⎟⎟⎠ , MA =

⎛
⎜⎜⎜⎜⎜⎝

0.73 0.18 0.08

0.19 0.74 0.07

0.09 0.08 0.81

⎞
⎟⎟⎟⎟⎟⎠

Fig. 8. Toy problem for a 3-class classification problem. For each class, three repre-
sentant are computed using k-means. Then the distance among all pairs of repre-
sentant are computed for a pair of classes. This distance is used in next steps to fill
the adjacency matrix MA values.

4.2 Ontology Matrix MO

The process up to here considered the relationship between classes by means of
computational methods. However, some times no matter how good the system
is, it needs the human knowledge. Here, we try to ”inject” human knowledge
of semantic similarity between classes into the system.

Taxonomy based on ontology is a tree or hierarchical classification which is
organized by subtype-supertype relationships or in another word parent-child
relationship. For example, Dog is a subtype of Animal. The authors of Cal-
tech256 data set compiled a taxonomy for all the categories included in their
data set. Based on this taxonomy, we also defined a similar one for the MSR-
CORID data set, which will be used to validate our methodology in the results
section. Both taxonomies are shown in Figures 10 and 11, respectively.

Here we try to construct a similarity matrix like we did for the adjacency ma-
trix, but now the similarity of classes is computed by means of the taxonomy
tree.
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Fig. 9. Example of the ontology distance computation of vertex v1 to the rest of
vertices. The steps of the distance computation are sorted and showed in red. The
final ranking is shown in the last step of the distance computation. This final ranking
is then normalized and used as a ontology likelihood.

In order to compute the distance among classes based on the taxonomy, we
look for common ancestor of nodes within the tree. Each category is repre-
sented as a leaf, and the non-leaf vertices correspond to abstract objects or
super-categories. The less distance of the two leafs to their common ancestor,
the less is their distance. We construct the similarity matrix by crawling the
tree from a leaf and rank all other leaves based on their distance. When we
start from each leaf and crawl up the tree, at each step the current node is
being explored based on depth-first search algorithm. In this search, the less
depth leaves get higher rank.

Finally, like in the case of the adjacency matrix, we need to convert distances
into a measure of likelihood by inverting the values, and normalizing each col-
umn of the ontology matrix MO to give the same importance for the taxonomy
of all the classes. The whole process of computing the taxonomy distance and
the ontology matrix is explained in algorithm 4 by means of recursive func-
tions. Figure 9 shows an example of an ontology distance computation for the
previous toy problem shown in Figure 8.

The final ontology matrix MO obtaining after computing all ranking from
ontology distance and likelihood computation are the followings:
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Table 4
Ontology Matrix MO computation.

Given the class set c = {c1, c2, .., cn} and the taxonomy graph G

For each leaf vertex vi in G, i ∈ [1, .., n], where n is the number of
classes

1) Visiting vertex vj = vi, Up Level l = 0, Depth d = 0
Position list for each vertex vp: MP (vp) = [Lvp , Dvp ]
where Lvp is the level of vp and Dvp is the depth of vp

2) Do while there are unvisited vertices
1) V isitV ertice(vj)
Function VisitVertice(vp):
If vp is not visited

visitChild(vp)
if ∃ parent(vp)

l = l + 1
M(vp) = [l, d]
V isitV ertice(parent(vp))

Function VisitChild(vp):
for each child vc

p of vp:
if vc

p has not been visited:
if child(vc

p) ! = ∅

VisitChild(vp)
else

d = d + 1
M(vp) = [l, d]

3) Filling the ranks
r = 0
for ν = [1, ..,max(l)]

for ω = [1, ..,max(d)]
if vq|MP (vq) = [ν, ω] is a leaf vertex of G

MO(i, q) = r
r = r + 1

Convert distance matrix MD to ontology matrix MO as follows:

For each pair of classes cp and cq

1) MO(p, q) = 1
MO(p,q)

Normalize each column p of MO as follows:

1) MO(p, q) = MO(p,q)∑n

i=1
MO(i,p)

MRanking
O =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6

2 1 3 4 5 6

4 3 1 2 5 6

4 3 2 1 5 6

5 2 3 4 1 6

6 3 4 5 2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, MLikelihood
O =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.0000 0.5000 0.3333 0.2500 0.2000 0.1667

0.5000 1.0000 0.3333 0.2500 0.2000 0.1667

0.2500 0.3333 1.0000 0.5000 0.2000 0.1667

0.2500 0.3333 0.5000 1.0000 0.2000 0.1667

0.2000 0.5000 0.3333 0.2500 1.0000 0.1667

0.1667 0.3333 0.2500 0.2000 0.5000 1.0000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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MO =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.4082 0.2041 0.1361 0.1020 0.0816 0.0680

0.2041 0.4082 0.1361 0.1020 0.0816 0.0680

0.1020 0.1361 0.4082 0.2041 0.0816 0.0680

0.1020 0.1361 0.2041 0.4082 0.0816 0.0680

0.0816 0.2041 0.1361 0.1020 0.4082 0.0680

0.0680 0.1361 0.1020 0.0816 0.2041 0.4082

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

4.3 Altering ECOC output rank using MA and MO

Given the output vector D = {d1, .., dn} of the ECOC design, where di repre-
sents the distance of a test sample to codeword i of the coding matrix, first,
we convert the vector D to a measure of likelihood by inverting each position
of D and normalizing the vector as follows:

DL =
1∑n

i=1
1
di

{
1

d1

, ..,
1

dn

}
(11)

Then, using the previous MA and MO matrices, the new altered rank R is
obtained by means of a simple multiplication, as shown in eq.(12).

R = DL · MA · MO (12)
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Fig. 10. A taxonomy of Caltech 256 categories created by hand. At the top level
these are divided into animate and inanimate objects. Green categories contain
images that were borrowed from Caltech 101. A category is colores red if it overlaps
with some other category (such as ’dog’ and ’greyhound’).
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Fig. 11. Taxonomy of object categories of the MSRCORID data set.
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5 Results

We divide the results into two types, validating the C-BOVW methodology
and validating the ECOC-Rank methodology.

5.1 Contextual Bag-Of-Visual Words

Before the presentation of the results of the C-BOVW methodology, first, we
discuss the data, methods, software details, and validation protocol of the
experiments.

Data: The data used in the experiments consist of 15 categories from public
Caltech 101 [54] and Caltech 256 [55] repository data sets. One sample for
each category is shown in Figure 12. For each category, 50 samples were used,
10 samples to define the BOW and another 40 images to define new test
sentences.

Fig. 12. Considered categories from the Caltech 101 and Caltech 256 repositories.

Methods: We compare the C-BOVW with the classical BOVW model. For
both methods, the same initial set of regions is considered in order to compare
both strategies at the same conditions. About 200±20 object regions are found
by image using the Harris-Affine detector [56] and described using the SIFT
descriptor [3]. The visual words are obtained using the public open source k-
means software from [57]. After computing the final words and representant,
multi-class classification is performed using an one-versus-one ECOC method-
ology with different base classifiers: Mean Nearest Neighbor (NMC), Fisher
Discriminant Analysis with a previous 99% of PCA (FLDA), Gentle Adaboost
with 50 iterations of decision stumps (G-ADA), Linear Support Vector Ma-
chines with the regularization parameter C = 1 (Linear SVM), and Support
Vector Machines with RBF Kernel with C and γ parameters set to 1 (RBF
SVM) 5 . Finally, we use the Linear Loss-weighted decoding to obtain the class
label [58].

5 We decided to keep the parameter fixed for the sake of simplicity and easiness of replication of the
experiments, though we are aware that this parameter might not be optimal for all data sets.
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Software details: The project was implemented in Python and the data
were stored in MySQL data set. For the multi-class classification we used the
Error-Correcting Output Codes library implemented in Matlab/Octave 6 .

Validation protocol: We used the sentences obtained by the 50 samples of
each category and performed stratified ten-fold cross-validation evaluation.

5.1.1 Caltech 101 and 256 classification

In this experiment, we started classifying from three Caltech categories in-
creasing by 2 up to 15. For each step, different number of visual words are com-
puted: 30, 40, and 50. These numbers are obtained by performing ten iterations
of the merging procedure (experimentally tested). In order to compare the
BOVW and C-BOVW methods at the same conditions, the same detected re-
gions and descriptions are used for all the experiments. The order in which the
categories are considered is the following: (1-3) airplane, motor-bike, watch,
(4-5) tripod, face, (6-7) ketch, diamond-ring, (8-9) teddy-bear, t-shirt, (10-
11) desk-globe, backpack, (12-13) hourglass, teapot, (14-15) cowboy-hat, and
umbrella. The obtained results applying ten-fold cross-validation are graphi-
cally shown in Figure 13 for the different ECOC base classifiers. Note that the
classification error significantly varies depending on the ECOC classifier. In
particular, Gentle Adaboost obtains the best results, with a classification error
inferior to 0.2 in all the tests when using 30 C-BOVW words. Independently of
the ECOC classifier, in most of the experiments the C-BOVW model obtains
errors inferiors to those obtained by the classical BOVW. BOVW only obtains
slightly better results in the case of Gentle Adaboost for eleven classes and 50
visual words.

An important remark of the C-BOVW model is about the selection of the
number of merging iterations. This parameter has a decisive impact over the
generalization capability of the new visual dictionary. First iterations of the
merging procedure use to fuse very close feature-words which belong to differ-
ent visual words whereas final merging iterations fuse more far regions of the
feature-space. Thus, a large number of iterations could be detrimental since the
new merged words could be too general for discriminating among sentences of
different object categories. Thus, this parameter should be estimated for each
particular problem domain (i.e. applying cross-validation over a training and
a validation subset). In the previous experiment we checked that ten merging
iterations obtains significant performance improvements, though we are aware
that this parameter could be not optimal for all the data sets.

6 http://ecoclib.sourceforge.net/
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NMC FLDA

G-ADA Linear SVM

RBF SVM

Fig. 13. Classification results for the Caltech categories using BOVW and C-BOVW
dictionaries for different number of visual words and ECOC base classifiers.
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5.2 Ranking ECOC output

Before the presentation of the results of the ECOC-Rank methodology, first,
we discuss the data, methods and parameters, software details, and validation
protocol of the experiments.

Data: The data used in our experiments consist on two public data sets: Cal-
tech 256 [55] and ’Microsoft Research Cambridge Object Recognition Image
data set’ (MRCORID) [59].

Methods and parameters: We use the same methods and parameters for
computing BOVW and CBOVW than at the previous experiments for the Cal-
tech 256 [55] data set and ’Microsoft Research Cambridge Object Recognition
Image data set data set’ [59]. For the ECOC classification, One-versus-one
method with Gentle Adaboost with 50 decision stumps and RBF SVM clas-
sifiers has been used. We use the Linear Loss-weighted decoding to obtain
the class label [58]. For the adjacency matrix construction, the k parameter
of k-means has been experimentally set to 3. For ranking the hist count we
looked for one to seven matches at the first 15 positions using vector ontology
and semantic distances of 0.001 and 0.0001.

Software details: The project was implemented in Python and the data was
stored in MySQL data set. Error-Correcting Output Codes and Ranking code
were implemented in Matlab.

Validation measurements: In order to analyze the retrieval efficiency, we
defined an ontology distance based on taxonomy trees to look for the retrieved
classes at the first positions of the ranking process based on the confusion
matrix.

As explained in the previous section, the ranking result R is a sorted set of
classes, where the first items have the highest rank.

In retrieval problems, we are looking for an interval of positions to look for the
target objects. In our case, retrieving classes, we need to define a validation
measure among classes. For this purpose, we define an ontology distance m
based on the taxonomy tree and adjacency matrices. Each class ci in R is
accepted if its ontology distance di compared to the true label class is less than
m. The accepted results at the end of the list R are not desired, so another
parameter k (positions) is used to analyze the results of the first positions
of the ranking. If there are more than N (accepted count) accepted
classes based on the value of m at the first positions defined by k,
then we achieve a test hit. In order to perform a realistic analysis, we
included this validation procedure in a stratified 10-fold evaluation procedure.
The algorithm that summarizes the retrieval validation is shown in table 5.
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Table 5
ECOC-Rank evaluation.

Given the sorted list of classes based on their rank R = {r1, .., rn}
For each item ri in the top k positions of R

acceptedCount = 0

1) d = OntologyDistance(ri, T rueLabel)
2) if d < m then acceptedCount+ = 1

1) If acceptedCount > N then Hit

We also apply statistical Friedman and Nemenyi test to look for statistical
significance among the obtained performances [60].
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5.2.1 Caltech 256 retrieval evaluation

Some samples of the Caltech 256 data set are shown in Figure 14. The ontology
matrix MO computed for this data set and BOVW features are shown in
Figure 15. In this case, we defined an ontology distance of 0.001 and 0.0001
for Adaboost ECOC base classifier based on the ontology tree of Figure 10
and the ontology distance defined in previous chapters. For both distances
we computed the CBOVW and BOVW features for this data set for different
values of the k first positions and number of hits. The results are shown in the
performance surfaces of Figure 16 and 17, respectively. The performances
are also shown in Table 6 estimated as the mean performance surface
for each experiment. We have used this performance evaluation since it is
more general than the classical ROC curve.

Fig. 14. Caltech 256 samples.
Table 6
Performances of Caltech 256 data set for different methods and parameters using
Gentle Adaboost ECOC base classifier and ontology distance evaluation.

Problem Adjacency Ontology Adjacency & Ontology ECOC-raw

m=0.001 CBOVW 0.4635 0.6902 0.4974 0.5604

m=0.001 BOVW 0.4394 0.6901 0.4389 0.5530

m=0.0001 CBOVW 0.0843 0.1485 0.0829 0.0809

m=0.0001 BOVW 0.0718 0.1479 0.0719 0.0785

Comparing CBOVW and BOVW methods for all the previous experiments
and both classifiers, we compute the mean rank for both strategies. The rank-
ings are obtained estimating each particular ranking rj

i for each problem i
and each method j, and computing the mean ranking R for each method as
Rj = 1

N

∑
i r

j
i , where N is the total number of problems. We obtained a rank-

ing for CBOVW of 1.00 and a ranking for BOVW of 2.00. This means that
though the improvement of CBOVW is of small difference in most of the ex-
periments, it achieves always the best performance, and CBOVW is preferred
as the first choice for this particular data set using Adaboost base classifier.
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Fig. 15. Ontology matrix MO computed for the Caltech data set and CBOVW.

Now we compare if any of the four variants of ranking strategies is preferred
against the rest. For this purpose, considering all previous experiment, we
compute the mean rank of each strategy as explained before. The obtained
ranks are shown in Table 7.

Table 7
Ranking of Caltech 256 data set for the different ECOC-Rank configurations con-
sidering all experiments with ontology distance evaluation.

Adjacency Ontology Adjacency & Ontology ECOC-raw

3.2500 1.0000 3.3750 2.5000

In order to analyze if the difference between methods ranks are statistically
significant, we apply the Friedman and Nemenyi tests. In order to reject the
null hypothesis that the measured ranks differ from the mean rank, and that
the ranks are affected by randomness in the results, we use the Friedman test.
The Friedman statistic value is computed as follows:

X2
F =

12N

k(k + 1)

⎡
⎣∑

j

R2
j −

k(k + 1)2

4

⎤
⎦ (13)

In our case, with k = 4 ranking designs to compare and N = 4 experiments,
X2

F = 10.08. Since this value has shown to be undesirable conservative [60],
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Original ECOC vs Adjacency

Original ECOC vs Ontology

Original ECOC vs Adjacency and Ontology

Fig. 16. Results on Caltech 256 data set for ontology distance m=0.0001 and Gentle
Adaboost ECOC base classifier. Left column using BOVW and right column using
CBOVW.

Iman and Davenport proposed a corrected statistic:

FF =
(N − 1)X2

F

N(k − 1) − X2
F

(14)

Applying this correction we obtain FF = 15.82. With four methods and four
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Original ECOC vs Adjacency

Original ECOC vs Ontology

Original ECOC vs Adjacency and Ontology

Fig. 17. Results on Caltech 256 data set for ontology distance m=0.001 and Gentle
Adaboost ECOC base classifier. Left column using BOVW and right column using
CBOVW.

experiments, FF is distributed according to the F distribution with ((k −
1), (k − 1)(N − 1)) degrees of freedom (3 and 9 in our case). The critical
value of F (3, 9) for 0.05 is 3.86. As the value of FF is higher than 3.86 we can
reject the null hypothesis. One we have checked for the non-randomness of the
results, we can perform a post hoc test to check if one of the techniques can
be singled out. For this purpose we use the Nemenyi test - two techniques are
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significantly different if the corresponding average ranks differ by at least the
critical difference value (CD):

CD = qα

√
k(k + 1)

6N
(15)

where qα is based on the Studentized range statistic divided by
√

2. In our case,
when comparing four methods with a confidence value α = 0.10, q0.10 = 1.53.
Substituting in eq.15, we obtain a critical difference value of 1.39. Since the dif-
ference of any technique rank with the Ontology alteration of the ECOC-Rank
is higher than the CD, we can infer that the Ontology alteration approach
is significantly better than the rest with a confidence of 90% in the present
experiments.
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5.2.2 Microsoft Research Cambridge Object Recognition Image data set re-
trieval evaluation

One sample for each category of this data set is shown in Figure 18. The
ontology matrix MO computed for this data set and BOVW features are
shown in Figure 19. In this case, we have defined an ontology distance of
0.001 and 0.0001 for Adaboost ECOC base classifier based on the ontology
tree of Figure 11 and the ontology distance defined in previous chapters. For
both distances we computed the CBOVW and BOVW features for this data
set for different values of the k first positions and number of hits. The results
are shown in the performance surfaces of Figure 20 and 21, respectively. The
performances are also shown in Table 8 estimated as the mean performance
surface for each experiment.

Fig. 18. One representant for each category of the Microsoft Research Cambridge
Object Recognition Image data set.
Table 8
Performances of Microsoft Research Cambridge Object Recognition Image data set
for different methods and parameters using Gentle Adaboost ECOC base classifier
and ontology distance evaluation.

Problem Adjacency Ontology Adjacency & Ontology ECOC-raw

m=0.001 CBOVW 0.3154 0.1764 0.2997 0.1572

m=0.001 BOVW 0.3154 0.1744 0.2996 0.1568

m=0.0001 CBOVW 0.1777 0.0671 0.1576 0.0665

m=0.0001 BOVW 0.1777 0.0659 0.1576 0.0667

The same analysis is shown in Figure 22, Figure 23 and Table 9 for RBF SVM
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Fig. 19. Ontology matrix MO computed for the Microsoft Research Cambridge Ob-
ject Recognition Image data set and CBOVW.

ECOC base classifier, respectively.

Table 9
Performances of Microsoft Research Cambridge Object Recognition Image data set
for different methods and parameters using RBF SVM ECOC base classifier and
ontology distance evaluation.

Problem Adjacency Ontology Adjacency & Ontology ECOC-raw

m=0.001 CBOVW 0.3156 0.1777 0.2995 0.2019

m=0.001 BOVW 0.3714 0.1798 0.3001 0.2038

m=0.0001 CBOVW 0.1777 0.0688 0.1583 0.1004

m=0.0001 BOVW 0.2511 0.0676 0.1577 0.0950

Comparing CBOVW and BOVW methods for all the previous experiments
and both classifiers, we compute the mean rank for both strategies as explained
in the previous section. We obtained a ranking for CBOVW of 1.3750 and a
ranking for BOVW of 1.4375. Although the difference is not high, COBW if
preferred as the first choice. Note that also the improvements in the case of
Adaboost base classifiers are more significant for CBOVW than when using
SVM for this particular data set.

Now we compare if any of the four variants of ranking strategies is preferred
against the rest. For this purpose, considering all previous experiment, we
compute the mean rank of each strategy as explained before. The obtained
ranks are shown in Table 10.

44



Original ECOC vs Adjacency

Original ECOC vs Ontology

Original ECOC vs Adjacency and Ontology

Fig. 20. Results on Microsoft Research Cambridge Object Recognition Image data
set for ontology distance m=0.0001 and Gentle Adaboost ECOC base classifier. Left
column using BOVW and right column using CBOVW.
Table 10
Ranking of Microsoft Research Cambridge Object Recognition Image data set for
the different ECOC-Rank configurations considering all experiments with ontology
distance evaluation.

Adjacency Ontology Adjacency & Ontology ECOC-raw

1.0000 3.6250 2.0000 3.3750
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Original ECOC vs Adjacency

Original ECOC vs Ontology

Original ECOC vs Adjacency and Ontology

Fig. 21. Results on Microsoft Research Cambridge Object Recognition Image data
set for ontology distance m=0.001 and Gentle Adaboost ECOC base classifier. Left
column using BOVW and right column using CBOVW.

In order to analyze if the difference between methods ranks are statistically
significant, we apply the previous Friedman and Nemenyi tests. In our case,
with k = 4 ranking designs to compare and N = 8 experiments, X2

F = 21.75.
Applying the Iman and Davenport correction, we obtain FF = 67.66. With
four methods and eight experiments, FF is distributed according to the F
distribution with 3 and 21 degrees of freedom. The critical value of F (3, 21)
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Original ECOC vs Adjacency

Original ECOC vs Ontology

Original ECOC vs Adjacency and Ontology

Fig. 22. Results on Microsoft Research Cambridge Object Recognition Image data
set for ontology distance m=0.0001 and RBF SVM ECOC base classifier. Left col-
umn using BOVW and right column using CBOVW.

for 0.05 is 3.07. As the value of FF is higher than 3.07 we can reject the null
hypothesis. One we have checked for the for the non-randomness of the results,
we apply the Nemenyi test. In our case, when comparing four methods with
a confidence value α = 0.10, q0.10 = 1.53. Substituting in eq.15, we obtain
a critical difference value of 0.98. Since the difference of any technique rank
with the Adjacency alteration of the ECOC-Rank is higher than the CD, we
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Original ECOC vs Adjacency

Original ECOC vs Ontology

Original ECOC vs Adjacency and Ontology

Fig. 23. Results on Microsoft Research Cambridge Object Recognition Image data
set for ontology distance m=0.001 and RBF SVM ECOC base classifier. Left column
using BOVW and right column using CBOVW.

can infer that the Adjacency alteration approach is significantly better than
the rest with a confidence of 90% in the present experiments.
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6 Conclusion

In this work we re-formulated the bag-of-visual-words model so that geometri-
cal information of significant object region descriptions are taken into account
in the dictionary construction step. In this sense, regions which have slightly
different descriptors because of small displacements in the region detection
process can be merged together in a same visual word. The method is based
on the definition of a contextual-space and a feature-space. The first space
codifies the geometrical properties of regions meanwhile the second space con-
tains the region descriptions. A merging process is then used to fuse feature
words based on their proximity in the contextual-space. The new dictionary
is learnt in an Error-Correcting Output Codes design to perform multi-class
object categorization. The results when spatial information is taken into ac-
count showed significant performance improvements compared to the classical
approach for different number of object categories and visual words.

Moreover, we also applied the proposed contextual bag-of-visual-words to deal
with class retrieval problems. The original output ECOC vector is used as a
measure of ranking for retrieval purposes. In order to include contextual and
semantic information in a retrieval system we defined two matrices that alter
the output ECOC vector to improve ranking and retrieval. The contextual in-
formation in included by the definition of an adjacency matrix which positions
store a value of likelihood based on the inverse distance of classes analyzing
class representant in feature space. The semantic information is included in the
retrieval process by defining an ontology matrix by means of a taxonomy tree
and a new ontology distance procedure. Finally, both adjacency and ontology
matrices multiply the initial ECOC output to obtain a more realistic class
ranking and perform class retrieval. The new ECOC-Rank procedure showed
to outperform classical ECOC output values when retrieving classes based on
semantic information. Furthermore, using the contextual bag-of-visual-words
in the ECOC-Rank procedure also showed to obtain significant performance
improvements compared to classical approaches.

As future lines, we plan to test alternatives for the definition of adjacency
and ontology matrices of the ECOC-Rank methodology. We also want to test
for on-line methods which can analyze adjacency/taxonomy definitions over
different types of data to look for the best combination of matrices that will
improve class retrieval in a problem dependent way.
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CBOVW nomenclature

Table 11
CBOVW nomenclature

C = {(c1, w
C
1 ), .., (cq, w

C
q )} - Contextual space, where wC

i is the ith word of
the contextual-space

D = {(x1, l1), .., (xm, lm)} - xi is an object sample of label li ∈ [1, .., n] for
a n-class problem

F = {(f1, w
F
1 ), .., (fq, w

F
q )} - Feature space, where wF

i is the ith word of the
feature-space

I - merging steps

K - number of clusters

M - Contextual-feature relational matrix

ρ - Region parameter

R = {(r1, w1), .., (rv, wb)} - Representant set, where rv is a representant for
word wi, i ∈ [1, ..b] for b words

S = {(s1, l1), .., (sm, lm)} - Word sentences, where si is the sentence of sample
xi

W - list of feature words to be merged

Xi = {(x1, y1, ρ
1
1, ρ

2
1, ρ

3
1), .., (xj , yj , ρ

1
j , ρ

2
j , ρ

3
j )} - Set of detected regions

Xr
i = {r1, .., rj} - Region descriptors, where rj is the description of the jth

detected region of sample xi.

x - x coordinate

y - y coordinate

zi - Number of representant for word wi
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Error-Correcting Output Codes nomenclature

Table 12
Error-Correcting Output Codes nomenclature

Δ - Matrix composed by the Hamming distances between the codewords of M

ρj - jth feature of the object (data sample) ρ

C - Set of classes

ci - Class i

d(yi1 , yi1 ) - Decoding measure between codewords of classes ci1 and ci2

d - Distance

{f1, ..., fn} - Set of continuous hypotheses, fj ∈ R

H - Matrix of accuracy of hypotheses

{h1, ..., hn} - Discrete hypotheses set, hj ∈ {+1,−1}

� = {�1, .., �N} - Set of labels

L(θ) - Loss-based function of parameter θ

L - Sets of classes labels

l(ρ) = �i - Label function of data sample ρ is �i

MW - Matrix of weights

M ∈ {−1, +1}N×n - Binary coding matrix

M ∈ {−1, 0, +1}N×n - Ternary coding matrix

m - Number of objects

N - Number of classes

n - Number of binary problems

P (X) - Probability of item X

P - Prior

υ, ω - Optimization parameters

W - Set of weighting values

w - Weight

X - Set of objects

x - Test codeword

yi - Codeword of class ci
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ECOC-Rank nomenclature

Table 13
ECOC-Rank nomenclature

c = {c1, c2, .., cn} - Class set

Δ - Matrix composed by the Hamming

Dvp - Depth of vp

D = {d1, .., dn} - Output ECOC vector

DL - Likelihood output ECOC vector

di - Distance of a test sample to codeword i of the coding matrix

d - Distance

G - Taxonomy graph

Lvp - Level of vp

MA - Adjacency matrix

MD - Distance matrix

MO - Ontology matrix

MP (vp) - Position list of vertex vp

mi = {mi1, .., mik} - Centroid of class ci

n - Number of classes

R - Altered ECOC ranking

vi - Vertex of G

W = {Wc1 , .., Wcn} - Data of classes
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