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Abstract. The Quantitative Coronary Angiography (QCA) is a methodology
used to evaluate the arterial diseases and, in particular, the degree of stenosis. In
this paper we propose AQCA, a fully automatic method for vessel segmentation
based on graph cut theory. Vesselness, geodesic paths and a new multi-scale ed-
geness map are used to compute a globally optimal artery segmentation. We eval-
uate the method performance in a rigorous numerical way on two datasets. The
method can detect an artery with precision92.9± 5% and sensitivity94.2± 6%.
The average absolute distance error between detected and ground truth centerline
is 1.13 ± 0.11 pixels (about0.27 ± 0.025mm) and the absolute relative error in
the vessel caliber estimation is 2.93% with almost no bias. Moreover, the method
can discriminate between arteries and catheter with an accuracy of96.4%.

Keywords: Vessel segmentation, centerline extraction, QCA, GraphCut.

1 Introduction

The enhancement and segmentation of tubular structures and/or vessel-like structures is
a prolific topic in the medical imaging research; many methods, exploiting photometric
and structural properties of tubular structures have been proposed (seee.g. a complete
review of recent methodologies for CTA segmentation in [11,1]). Nonetheless, in the
case of vessel segmentation in angiography sequences, the problem is still very hard;
highly reliable, fully automatic methods are not established yet [5]. Finally, accurate
segmentation is still a hot topic and far from being solved, as demonstrated by the
excellent scale selection method proposed in [10]. An extensive overview of different
methods for vessel extraction is provided in [7]. Recently,an interesting approach to
vessel segmentation has been proposed in [12], which fuses local features with local di-
rectional information; unfortunately, authors do not provide a quantitative evaluation of
their method. Nonetheless, most works are based on local image analysis to extract ves-
sels or employ an a-priori model to help vessel extraction. In contrast, graph cut (GC)
technique is an optimal segmentation tool that combines local and contextual image
information analysis by modeling relations between neighboring pixels. The GC algo-
rithm [2, 8] has been used in many computer vision problems and, in particular, it can
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be applied to binary-segmentation of images, obtaining a solution which corresponds
to the global minimum of an energy function. The goodness of the solution depends on
the suitability of the energy terms and their reliable computation.

In this paper, we use GC theory to obtain a globally optimal segmentation of the
coronary tree in angiography images. Differently than other methods, we are interested
in accurate detection of both the centerline and the vessel borders. To this aim, we pro-
pose a novel energy function tailored to the artery segmentation problem. The energy
takes into account (1) the vessel local appearance, using any vesselness measure, (2)
the local connectivity to other vessel regions, using geodesic paths and, (3) a measure
of edgeness based on a novel multi-scale version of the adaptive Canny detector [4].
Moreover, we propose a machine learning based approach to automatically detect the
catheter; providing a methodology that is far more general than the one in [12]. Finally,
we propose two datasets, which allow the quantitative evaluation of the method in terms
of ability to detect the artery (Precision and Sensitivity), errors in the centerline detec-
tion and caliber estimation, and ability to discriminate between arteries and catheters1.
To the best of our knowledge, there is no such dataset available in the literature. In next
section, we provide a brief introduction to GC, then detail our contributions.

2 Method

2.1 Graph Cut

Let us defineX = (x1, ...,xi, ...,x|P|) the set of pixels for a given angiography gray-
scale imageI; P = (1, ..., i, ..., |P|) the set of indexes ofI; N the set of un-
ordered pairs{i, j} of neighboring pixels ofP under a 4-(8-) neighborhood system,
andL = (L1, ..., Li, ..., L|P|) a binary vector whose componentsLi specify assign-
ments to pixelsi ∈ P . EachLi can be either “vess” or “back” indicating if it belongs to
vessel or background, respectively. GC formulation [2] defines the cost functionE(L),
which describes soft constraints imposed on boundary and region properties ofL as
E(L) = U(L) + λB(L). The unary term is denoted withU(L) =

∑

i∈P Ui(Li), the
boundary term withB(L) =

∑

{i,j}∈N B{i,j} Ω(Li = Lj), where the characteristic
functionΩ(Li = Lj) is 0 if Li 6= Lj and 1, otherwise. The unary termU(L) is de-
fined assuming that individual penalties for assigning pixel i to “vess” and “back”, (i.e.
Ui(“vess”) andUi(“back”)) are given by vessel and background models. The term
B(L) comprises the boundary properties of segmentationL. Any B{i,j} ≥ 0 should
be interpreted as a penalty for a discontinuity betweeni andj. Finally, the coefficient
λ ∈ R

+, λ ≥ 0 specifies the relative importance of the boundary term against the unary
term. GC algorithm imposes hard constrains on the segmentation result by means of
the definition of seed points where labels are predefined and can not be modified. The
subsetsV ⊂ P ,B ⊂ P ,V ∩B = ∅ denote the subsets of vessel and background seeds,
respectively.

Boykov et al. [2] show how to efficiently compute the global minimum of E(L)
among all segmentationsL satisfying the hard constraints∀i ∈ V , Li = “vess”, ∀i ∈
B, Li = “back”, using a minimum cut algorithm on a certain graph defined by nodes

1 The datasets and the evaluation methodology will be provided under request.
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Fig. 1. AQCA approach: (a) Input image, (b) Unary potential: Vesselness, (c) Vessel-Background
seeds (in white and black), (d) Boundary potential: Multi-scale edgeness map, (e) Final segmen-
tation, centerline estimation, and catheter detection (ingreen, white, and red).

and edges being image pixels and pixel relations, respectively. We use the algorithm
presented in [3] for computing the minimum cut.

2.2 Vessel Segmentation Algorithm

In this section, we describe in detail the seed initialization and the definition of unary
and boundary potentials.

Seed initialization. In order to achieve a fully automatic methodology, we exploit
the inherent structure of vessels to define vessel seeds based on valleys, and background
seeds based on low probabilities of the vesselness image [6]. In particular, vessel seeds
V correspond to those pixels corresponding to the highest responses on a multilocal
valley detector with structure tensor, namelySt, as described in [9],V = {i|St,i > Θv},
whereSt,i is the valley response at pixeli, andΘv is a sensitivity valley threshold. The
background seedsB are the pixels corresponding to low probabilities in the vesselness
imageV , B = {i|Vi ≤ Θb}, whereΘb is a sensitivity vesselness threshold and the
vesselness measure at pixeli, Vi, is computed as in [6]. Fig. 1(c) shows the selection of
V andB seeds for the input image in Fig. 1(a).

Unary term. We define the vessel and background models using the vesselness map
V . However, some vessel regions (especially those corresponding to bifurcations), can
contain low vessel probability. To avoid this problem, we introduce the computation
of geodesic paths among vessels seeds. We initialize the unary potentials at each pixel
i as Ui(“vess”) = −ln(p(Li = “vess”)), Ui(“back”) = −ln(p(Li = “back”)).
The probability of a pixel to be marked as “vess” is computed using the vesselness-
geodesic measureV G, p(Li = “vess”) = V G(xi) and the opposite probability as
p(Li = “back”) = 1− p(Li = “vess”). In particular, the mapV G is computed for



4 Authors Suppressed Due to Excessive Length

pixel i as the maximum between the vesselness value and the inverse of the geodesic
distance,

V Gi = max

(

Vo,i,

1
Di+µ(D)

max( 1
Di+µ(D) )

)

,

whereD andµ(D) correspond to the geodesic distance map and its mean, respectively.
D is computed as explained in the following subsection.

Geodesic map. Given an arbitrary parameterized discrete pathΓ = {i, ..., j}
defined by|Γ | = R pixels, we define the geodesic distanceD of Γ as,

D(Γ ) = m(||∇I(Γ )||2)

(

R−1
∑

i=1

||∇Ii||
2

R

)

, (1)

where the quantity||∇Ii|| is a finite difference approximation of the image gradient
between points(xi,xi+1), and the functionm(z) represents the maximum variance of
the R-dimensional vectorz, m(z) = maxi,j |zi − zj |, i, j ∈ Γ . The measure de-
fined in Eq.(1) is normalized by the length of the path, allowing any path length to
be considered. However, it is penalized by the maximum variance of image gradients
within the path. The selected geodesic path is given by,Γ ∗

{i,j} = argminΓ∈C{i,j}
D(Γ ),

and its distance measure isd(i, j) = minΓ∈C{i,j}
D(Γ ), beingC{i,j} the set of all

possible paths between pointsi andj using short-path algorithm. We proceed as fol-
lows: after computing the partial pathΓ ∗

{i,j}, in order to select the next path point
j∗ ∈ Gj , whereGj is the set of 8-neighbor ofj, we use the following criterion,
j∗ = argminℓ∈Gj

(d(i, j) + σ{j,ℓ}D(Γ{j,ℓ})), whereσ{j,ℓ} is the variance betweenj
andℓ. Once the next point has been selected, we continue the path only if d(i, j∗) < Θd,
whereΘd = 0.05 is an XRay-dependent empirically set threshold. Since different
geodesic maps can be found for different initialization pixelsj, the geodesic map, for
each pixeli, is computed asDi = minj∈Γ D(Γ{i,j}). These pixels are the centroids
of a k-means clustering over the vessel seeds. An example of theV G map is shown in
Fig. 1(b).

Boundary term. We propose an image-dependent multi-scale edgeness measure.
First, we run the canny edge detector algorithm on the observed image at different
threshold levels. Then, we compute the edge probability at each pixel by the linear aver-
age of the edge thresholds and for different scales as follows,J∗

i = minj
1
n

∑n
k=1 Jp,γk,σj

,
whereJp,γk,σj

is the binary edge map using the thresholdγk ∈ [0.02, 0.03, ..., 0.3] and
scaleσj ∈ [0.5, 1, ..., 5] for pixel i. If pixel i is labeled as an edge pixel for most of
the threshold levels at a significant scale, it has a high probability of being an edge
pixel. The final boundary potential over the multi-scale edgeness map is computed as
B{i,j} = J∗

i . An example is shown in Fig. 1(d).

2.3 Postprocessing

We perform a post-filtering step consisting in keeping only the biggest connected com-
ponent in the final segmentation. The main aim of this step is to get rid of possible false
positive (FP) regions that could be introduced by the seed initialization. An example of
the final segmentation is shown in green in Fig. 1(e).
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Fig. 2. Centerline evaluation results for DS1.

The centerline (CR) is extracted as follows: given the binary segmentationL(xi),
we compute its distance mapM(xi). Then, a non-maxima suppression is applied to
find local maxima and a classic ridge transversal method is applied to connect the local
maxima. The ridge transversal stops when it finds another centerline or it exits the
segmented area. Fig. 1(e) shows an example of an extracted centerline in white.

Vessel caliber is estimated by applying a local Laplacian ofGaussian (LoG) filtering
at CRs locations at different scales. The scale space computed usingσ2LoG(x, y; σ) has
a minimum atσ = w/2, wherew is the width of the ridge.

Catheter detection. By merely its appearance, the catheter is not easily distin-
guishable from arteries. This causes that the proposed segmentation method tends to
segment the catheter as an artery. In order to detect the catheter, from each point of
the centerline path we extract: (1) its positionx, (2) its curvatureK(x), (3) its angular
directionα(x), and (4) its caliberC(x). A classification is performed in a point wise
way using a Bayesian classifier. Beingc = {“cat”, “vess”} the catheter or artery class,
we modeled (1)p(x|c) using a Kernel Density Estimator withσKDE = 15pixels, (2)
p(log(ǫ + K(x))|c) using a Gaussian Mixture Model2 (10 Gaussians), (3-4)p(α(x)|c)
andp(C(x|c)) as two discrete histograms. In Fig. 1(e) an example of catheter detection
is shown in red.

The time complexity of the algorithm most expensive part isO(|P| + |N |
|P| log |P|).

3 Validation

Material. We defined two datasets: DS1 and DS2. DS1 is formed by 20 imagesac-
quired with a single plane Philips INTEGRIS Allura Flat Detector, of RCAs, where
three experts have blindly annotated the centerlines. The experts had to annotate the
centerlines with different labels: “vess”: the arteries that potentially can present a clin-
ical interest (with a caliber of, at least, 1mm); “don’t care”: all other arteries in the
image, and “cat”: the catheter guide. DS2 is formed by 31 images from 27 patients,
acquired with a SIEMENS Artis zee, of 10 RCAs, 10 LADs, and 11 Cxs. Two experts
blindly segmented a total of 41 lesions (12 LADs, 13 Cxs and 16RCAs) assisted by a
semi-automatic method (QCA-CMS Version 6.0, MEVIS). The experts were asked to
manually correct unsatisfactory segmentations.
Methods. We compare our proposed method (AQCA) against a classic ridge transversal
centerline extraction method (RT), and the state of the art GC method. Furthermore, we

2 The curvature distribution was far from being Gaussian, so we applied the logarithm to “Gaus-
sianize” it.
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also compare the obtained results with the inter-observer (IO) variability of the experts
ground truth (GT). In the case of AQCA and GC, parametersΘv, Θb, andλ are tuned
via cross-validation over DS1. GivenN patients, the tuning is performed using a Leave
One Patient Out (LOPO) methodology by maximizing0.5P + 0.5S in order to provide
a balance between precision (P ) and sensitivity (S).

Validation protocol. For the evaluation of centerline detection, we computeP , S,
localization error (EL) on DS1. Additionally we evaluate the caliber estimation onDS2,
measuring the mean signed relative error and mean absolute relative error. Finally, the
catheter detection is evaluated in terms ofP , S, and accuracy.

Centerline evaluation: To evaluate the CR detection, we computedP , S, andEL

consideringΘc, which defines the maximal distance between the GT and the detected
CR. To compute theS, we check for every CR point in the GT if there exists a detected
CR point in a distance smaller thanΘc; if this happens, this point is considered as a
True Positive (TP). Similarly,P is computed by checking the detected points instead
than the ones in the GT.Θc has been set to 5 pixels to allow largeEL errors.

Caliber evaluation: Vessel caliber evaluation was performed over DS2. We approx-
imated two cubic splines to the borders annotated by the experts. Using these splines,
we determined the CR and extracted the caliber for each point[10]. For each point
in the GT CR, we localized the nearest point in the detected CRand evaluated the
caliber estimation error using the Euclidean distance. We computed the signed error
∆Dc = Dc − D∗

c , whereD∗
c is the ground truth caliber, in millimeters. Finally, we

defined the average absolute and signed relative errors|∆Dc|
D∗

c
and ∆Dc

D∗
c

, respectively.

4 Results

Figure 2 showsS, P , andEL for the IO variability, the RT, GC, and AQCA for the
dataset DS13. The RT method has the lowestS and a very lowP , while theEL is very
low; this confirms that the vesselness measure is well suitedto accurately detect the CR,
but it has the disadvantage to produce many FPs as confirmed bythe lowP . A basic
GC approach increases bothS andP while EL is increased due to inaccurate border
detection using a gray-level based boundary term. Our proposed method shows the
highestS andP , and aEL that is very close to RT, while actually detecting more vessel
pixels than both RT and GC (higherS, less false negatives). It is also interesting to note
that the proposed method has a lowerP than the IO variability but higherS: this means
that the proposed method still produces some FPs but tends todetect clinically relevant
arteries in a way that is the “average” of the observers. Figure 3 shows scatter plots of
the caliber estimation on dataset DS2 for the IO variability, the basic GC, and AQCA,
respectively. The gray dashed curve shows the density of points w.r.t. the caliber. It can
be noticed that the two experts show a very high correlation.This is due to the fact that
the segmentation has been performed thanks to a computer assisted method: if there is
a bias in the measurement, it is equal for both experts. The basic GC method performs
badly, as confirmed by the large average relative error of6.04%, while the proposed

3 The results for both datasets are available atwww.cvc.uab.es/ ˜ ahernandez/AQCA.
zip .
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Fig. 3. GT and estimated calibers in scatter plots for (a) IO variability, (b) GC, and (c) AQCA.
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method performs much better having an average relative error of 2.93%. It has to be
noted that, while GC present a bias of−1.6%, our method presents almost no bias
(−0.035%). Moreover, for the calibers which are more frequent in X-Ray angiography,
our proposed method has a very high correlation with the ground truth data. Figure
4 shows an example of AQCA result: the estimated caliber fromproximal to distal
positions accurately follows the GT. At proximal position the method correctly detects
two clinically irrelevant caliber variations (I1 and I2). Then, at the bifurcation B1, our
method estimates the bifurcation “caliber” that is obviously not relevant, and can be
easily detected as an outlier. Just after the bifurcation, the proposed method accurately
measures the vessel caliber at the stenosis S1 and S2. Finally, we collected ground truth
data (56406 samples) from DS1 and evaluated the catheter detection methodology on a
leave-one-patient-out methodology, obtaining an averageS of 70.9%, P of 90.1% and
accuracy of96.4%.

5 Conclusion

We presented AQCA, a novel segmentation method for X-Ray angiography images
that takes into account vessel appearance, artery tree continuity, and borders appear-
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ance within the graph-cut theory. The algorithm has been tested on two new data sets.
Despite it has been tuned on DS1, it provided excellent results on DS2, showing the
inherent robustness of the approach. While being applied onaccurate QCA, the method
could be profitably used as preprocessing for non-rigid multimodal registration algo-
rithms. Moreover, it can be easily adapted to detect tubularstructures in other kind of
images. Future lines of research encompass the use of an highorder potential to deal
with irregularity at bifurcations and crossings; a supervised method to optimize the seed
selection; an intelligent procedure to semantically tag the artery in order to obtain an
automated QCA report for all relevant branches.
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