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Abstract. The Quantitative Coronary Angiography (QCA) is a methodglo
used to evaluate the arterial diseases and, in partichadegree of stenosis. In
this paper we propose AQCA, a fully automatic method for gesegmentation
based on graph cut theory. Vesselness, geodesic paths amdrauiti-scale ed-
geness map are used to compute a globally optimal arteryesggtion. We eval-
uate the method performance in a rigorous numerical way ond@tasets. The
method can detect an artery with precisiitn9 4+ 5% and sensitivityd4.2 + 6%.
The average absolute distance error between detected @ambgrruth centerline
is 1.13 + 0.11 pixels (abou®.27 £ 0.025mm) and the absolute relative error in
the vessel caliber estimation is 2.93% with almost no biawddver, the method
can discriminate between arteries and catheter with arracgof96.4%.
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1 Introduction

The enhancement and segmentation of tubular structurésraressel-like structures is
a prolific topic in the medical imaging research; many meghedploiting photometric
and structural properties of tubular structures have beepgsed (see.g. a complete
review of recent methodologies for CTA segmentation in [I1L,Nonetheless, in the
case of vessel segmentation in angiography sequencesabiem is still very hard,;
highly reliable, fully automatic methods are not estatdislyet [5]. Finally, accurate
segmentation is still a hot topic and far from being solvesidamonstrated by the
excellent scale selection method proposed in [10]. An estteroverview of different
methods for vessel extraction is provided in [7]. Recerdly,interesting approach to
vessel segmentation has been proposed in [12], which fasakfeatures with local di-
rectional information; unfortunately, authors do not pdava quantitative evaluation of
their method. Nonetheless, most works are based on locgkimaalysis to extract ves-
sels or employ an a-priori model to help vessel extractinrtadntrast, graph cut (GC)
technique is an optimal segmentation tool that combineal land contextual image
information analysis by modeling relations between neighiy pixels. The GC algo-
rithm [2, 8] has been used in many computer vision problends enparticular, it can
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be applied to binary-segmentation of images, obtaininglaisa which corresponds
to the global minimum of an energy function. The goodnesh®fblution depends on
the suitability of the energy terms and their reliable cotagan.

In this paper, we use GC theory to obtain a globally optimghsentation of the
coronary tree in angiography images. Differently than othethods, we are interested
in accurate detection of both the centerline and the vessdes. To this aim, we pro-
pose a novel energy function tailored to the artery segntientproblem. The energy
takes into account (1) the vessel local appearance, usingesselness measure, (2)
the local connectivity to other vessel regions, using gemdeaths and, (3) a measure
of edgeness based on a novel multi-scale version of the isdapanny detector [4].
Moreover, we propose a machine learning based approachdmatically detect the
catheter; providing a methodology that is far more genéiai the one in [12]. Finally,
we propose two datasets, which allow the quantitative et@ln of the method in terms
of ability to detect the artery (Precision and Sensitivisfyors in the centerline detec-
tion and caliber estimation, and ability to discriminatévieeen arteries and cathetérs
To the best of our knowledge, there is no such dataset alailathe literature. In next
section, we provide a brief introduction to GC, then detail contributions.

2 Method

2.1 Graph Cut

Let us definet’ = (x1, ..., x4, ..., x|p|) the set of pixels for a given angiography gray-
scale imagel; P = (1,...,4,...,|P|) the set of indexes of; N the set of un-
ordered pairgi, j} of neighboring pixels ofP under a 4-(8-) neighborhood system,
andL = (Li,..., L;,..., Ljp|) a binary vector whose componerts specify assign-
ments to pixelg € P. EachL,; can be either “vess” or “back” indicating if it belongs to
vessel or background, respectively. GC formulation [2]rdefithe cost functioR' (L),
which describes soft constraints imposed on boundary agioneroperties ofl. as
E(L) = U(L) + AB(L). The unary term is denoted witti(L) = ., U;(L;), the
boundary term withB(L) = ¢, en Byijy £2(Li = Lj), where the characteristic
function2(L; = L;)is0if L, # L, and 1, otherwise. The unary tefth(L) is de-
fined assuming that individual penalties for assigning Ipixe “vess” and “back”, (i.e.
U;(“vess”) and U;(“back”)) are given by vessel and background models. The term
B(L) comprises the boundary properties of segmentatioAny By; ;; > 0 should
be interpreted as a penalty for a discontinuity betweand j. Finally, the coefficient
A € RT, X > 0 specifies the relative importance of the boundary term agéie unary
term. GC algorithm imposes hard constrains on the segniemtagsult by means of
the definition of seed points where labels are predefined anchot be modified. The
subsety ¢ P,B c P,VNB = () denote the subsets of vessel and background seeds,
respectively.

Boykov et al. [2] show how to efficiently compute the globainimium of E(L)
among all segmentatiors satisfying the hard constraints € V, L; = “vess”, Vi €
B, L; = “back”, using a minimum cut algorithm on a certain graph defined ljeso

! The datasets and the evaluation methodology will be provigeler request.
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Fig. 1. AQCA approach: (a) Input image, (b) Unary potential: Vessss, (c) Vessel-Background
seeds (in white and black), (d) Boundary potential: Muttide edgeness map, (e) Final segmen-
tation, centerline estimation, and catheter detectiogr@en, white, and red).

and edges being image pixels and pixel relations, respdgtiWe use the algorithm
presented in [3] for computing the minimum cut.

2.2 Vessel Segmentation Algorithm

In this section, we describe in detail the seed initialmatand the definition of unary
and boundary potentials.

Seed initialization. In order to achieve a fully automatic methodology, we exploi
the inherent structure of vessels to define vessel seedd basalleys, and background
seeds based on low probabilities of the vesselness image [rticular, vessel seeds
V correspond to those pixels corresponding to the highepbress on a multilocal
valley detector with structure tensor, namélyas described in [9) = {i|S;; > O, },
whereS; ; is the valley response at pixeland©,, is a sensitivity valley threshold. The
background seeds are the pixels corresponding to low probabilities in thesedsess
imageV, B = {i|V; < 6,}, where®, is a sensitivity vesselness threshold and the
vesselness measure at pixel;, is computed as in [6]. Fig. 1(c) shows the selection of
V andB seeds for the input image in Fig. 1(a).

Unary term. We define the vessel and background models using the vessafrag
V. However, some vessel regions (especially those correlépgto bifurcations), can
contain low vessel probability. To avoid this problem, wé&aduce the computation
of geodesic paths among vessels seeds. We initialize thrg potentials at each pixel
i asU;(“vess”) = —In(p(L; = “vess”)), U;(“back”) = —In(p(L; = “back”)).
The probability of a pixel to be marked as “vess” is computsthg the vesselness-
geodesic measuféd, p(L; = “vess”) = V(G(x;) and the opposite probability as
p(Li = “back”) = 1—p(L; = “vess”). In particular, the mafy’ G is computed for
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pixel i as the maximum between the vesselness value and the indatsegeodesic

distance, .
VG; = max <Voi [)i+—m>

max(5:55)
whereD andu(D) correspond to the geodesic distance map and its mean, teshec
D is computed as explained in the following subsection.
Geodesic map. Given an arbitrary parameterized discrete path={i,...,j}
defined by|I"| = R pixels, we define the geodesic distade®f I” as,

D) = m(|VI(T (Z”W”> 1)

where the quantity|VI;|| is a finite difference approximation of the image gradient
between point$x;, x;11), and the functionn(z) represents the maximum variance of
the R-dimensional vectog, m(z) = max; ; |z; — z;|,4,j € I. The measure de-
fined in Eq.(1) is normalized by the length of the path, allegveny path length to
be considered. However, it is penalized by the maximum wadaf image gradients
within the path. The selected geodesic path is giverﬂ?lyj} = argminpec,, D(I),
and its distance measuredgi, j) = minrec, , D(I"), beingCy; ;; the set of all
possible paths between pointandj using short-path algorithm. We proceed as fol-
lows: after computing the partial path; hy in order to select the next path point
Jj* € G;, whereg; is the set of 8- ne|ghb0r of, we use the following criterion,
J* = argmingeg (d(i,j) + o, D(I'ey)), Whereoy; »y is the variance between
and{. Once the next point has been selected, we continue the pligthi d(i, j*) < O4,
where®@,; = 0.05 is an XRay-dependent empirically set threshold. Sinceccbffit
geodesic maps can be found for different initializationgtéy, the geodesic map, for
each pixeli, is computed a); = minjer D(I7; ;3). These pixels are the centroids
of a k-means clustering over the vessel seeds. An example of thenap is shown in
Fig. 1(b).

Boundary term. We propose an image-dependent multi-scale edgeness raeasur
First, we run the canny edge detector algorithm on the olseiwmage at different
threshold levels. Then, we compute the edge probabilitgeh @ixel by the linear aver-
age of the edge thresholds and for different scales as feJlfiv= min; £ >/ Jp.+, 0,
whereJ,, ., o, is the binary edge map using the threshglds [0.02,0.03, ...,0.3] and
scales; € [0.5,1, ..., 5] for pixel i. If pixel i is labeled as an edge pixel for most of
the threshold levels at a significant scale, it has a highatiiby of being an edge
pixel. The final boundary potential over the multi-scale extigss map is computed as
By; ;v = Ji. An example is shown in Fig. 1(d).

2.3 Postprocessing

We perform a post-filtering step consisting in keeping ohbylbhiggest connected com-
ponent in the final segmentation. The main aim of this step gt rid of possible false
positive (FP) regions that could be introduced by the seiéidlimation. An example of
the final segmentation is shown in green in Fig. 1(e).
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Fig. 2. Centerline evaluation results for DS1.

The centerline (CR) is extracted as follows: given the hirsagmentatiorl(x;),
we compute its distance may (x;). Then, a non-maxima suppression is applied to
find local maxima and a classic ridge transversal methodpBeapto connect the local
maxima. The ridge transversal stops when it finds anothetedere or it exits the
segmented area. Fig. 1(e) shows an example of an extracteatloge in white.

Vessel caliber is estimated by applying a local Laplacia@adfissian (LoG) filtering
at CRs locations at different scales. The scale space ceupsing->LoG(x, y; o) has
a minimum atv = w/2, wherew is the width of the ridge.

Catheter detection. By merely its appearance, the catheter is not easily distin-
guishable from arteries. This causes that the proposedesggtion method tends to
segment the catheter as an artery. In order to detect theteatfrom each point of
the centerline path we extract: (1) its position(2) its curvature (x), (3) its angular
directiona(x), and (4) its calibeC'(x). A classification is performed in a point wise
way using a Bayesian classifier. Being= {“cat”, “vess’} the catheter or artery class,
we modeled (1p(x|c) using a Kernel Density Estimator withkpr = 15pixels, (2)
p(log(e + K (x))|c) using a Gaussian Mixture Mode(10 Gaussians), (3-4) a(x)|c)
andp(C(x|c)) as two discrete histograms. In Fig. 1(e) an example of catluetection
is shown in red.

The time complexity of the algorithm most expensive pa®{$P| + % log |P|).

3 Validation

Material. We defined two datasets: DS1 and DS2. DS1 is formed by 20 images
quired with a single plane Philips INTEGRIS Allura Flat Detier, of RCAs, where
three experts have blindly annotated the centerlines. Xperts had to annotate the
centerlines with different labels: “vess”: the arterieatthotentially can present a clin-
ical interest (with a caliber of, at least, 1mm); “don’t carall other arteries in the
image, and “cat”: the catheter guide. DS2 is formed by 31 iesaigom 27 patients,
acquired with a SIEMENS Artis zee, of 10 RCAs, 10 LADs, and Xs.CTwo experts
blindly segmented a total of 41 lesions (12 LADs, 13 Cxs andRO&\s) assisted by a
semi-automatic method (QCA-CMS Version 6.0, MEVIS). Theexts were asked to
manually correct unsatisfactory segmentations.

M ethods. We compare our proposed method (AQCA) against a classie tidgsversal
centerline extraction method (RT), and the state of the @rtii@thod. Furthermore, we

2 The curvature distribution was far from being Gaussian, sapplied the logarithm to “Gaus-
sianize” it.
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also compare the obtained results with the inter-obser@nariability of the experts
ground truth (GT). In the case of AQCA and GC, parametrso©,, and\ are tuned
via cross-validation over DS1. Give¥ patients, the tuning is performed using a Leave
One Patient Out (LOPO) methodology by maximizingP + 0.5.5 in order to provide

a balance between precisioR)and sensitivity §).

Validation protocol. For the evaluation of centerline detection, we compgite,
localization error £;) on DS1. Additionally we evaluate the caliber estimatiorD82,
measuring the mean signed relative error and mean abselat&e error. Finally, the
catheter detection is evaluated in termd%fS, and accuracy.

Centerline evaluation: To evaluate the CR detection, we compufeds, and&,
considering?., which defines the maximal distance between the GT and tleetet
CR. To compute thé&, we check for every CR point in the GT if there exists a detécte
CR point in a distance smaller th&; if this happens, this point is considered as a
True Positive (TP). SimilarlyP is computed by checking the detected points instead
than the ones in the G®. has been set to 5 pixels to allow lar§ig errors.

Caliber evaluation: Vessel caliber evaluation was performed over DS2. We approx
imated two cubic splines to the borders annotated by therexpdsing these splines,
we determined the CR and extracted the caliber for each pb@jt For each point
in the GT CR, we localized the nearest point in the detecteda@eR evaluated the
caliber estimation error using the Euclidean distance. Weputed the signed error
AD. = D, — D}, whereD? is the ground truth caliber, in millimeters. Finally, we

defined the average absolute and signed relative e‘i%% and ADIZC , respectively.

4 Results

Figure 2 showsS, P, and&;, for the 10 variability, the RT, GC, and AQCA for the
dataset DS The RT method has the loweStand a very lowP, while the&y, is very
low; this confirms that the vesselness measure is well stotadcurately detect the CR,
but it has the disadvantage to produce many FPs as confirmétebdgw P. A basic
GC approach increases bathand P while &, is increased due to inaccurate border
detection using a gray-level based boundary term. Our megpanethod shows the
highestS and P, and &, that is very close to RT, while actually detecting more vesse
pixels than both RT and GC (high8r less false negatives). It is also interesting to note
that the proposed method has a lovi#than the 10 variability but highe$': this means
that the proposed method still produces some FPs but teru#deot clinically relevant
arteries in a way that is the “average” of the observers.fei@ushows scatter plots of
the caliber estimation on dataset DS2 for the 10 variabilitg basic GC, and AQCA,
respectively. The gray dashed curve shows the density afpwir.t. the caliber. It can
be noticed that the two experts show a very high correlafibis is due to the fact that
the segmentation has been performed thanks to a compuitgedssethod: if there is

a bias in the measurement, it is equal for both experts. Thie BC method performs
badly, as confirmed by the large average relative errdt.@f%, while the proposed

3 The results for both datasets are availablematv.cvc.uab.es/  ~ahernandez/AQCA.
zip .
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Fig. 4. Extracted centerline and GT and estimated caliber alongittracted centerline.

method performs much better having an average relative efr».93%. It has to be
noted that, while GC present a bias 6f..6%, our method presents almost no bias
(—0.035%). Moreover, for the calibers which are more frequent in X¢Ragiography,
our proposed method has a very high correlation with the mgtaeuth data. Figure
4 shows an example of AQCA result: the estimated caliber fppoximal to distal
positions accurately follows the GT. At proximal positidretmethod correctly detects
two clinically irrelevant caliber variations (11 and 12)h&n, at the bifurcation B1, our
method estimates the bifurcation “caliber” that is obvigusot relevant, and can be
easily detected as an outlier. Just after the bifurcatlomproposed method accurately
measures the vessel caliber at the stenosis S1 and S2yRieltollected ground truth
data (56406 samples) from DS1 and evaluated the cathetatidet methodology on a
leave-one-patient-out methodology, obtaining an avefage70.9%, P of 90.1% and
accuracy 006.4%.

5 Conclusion

We presented AQCA, a novel segmentation method for X-Rayogngphy images
that takes into account vessel appearance, artery tremgibptand borders appear-
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ance within the graph-cut theory. The algorithm has bedaedesn two new data sets.
Despite it has been tuned on DS1, it provided excellent tesul DS2, showing the
inherent robustness of the approach. While being appliextonrate QCA, the method
could be profitably used as preprocessing for non-rigid imoltlal registration algo-
rithms. Moreover, it can be easily adapted to detect tulstfaictures in other kind of
images. Future lines of research encompass the use of amitdghpotential to deal
with irregularity at bifurcations and crossings; a supsedimethod to optimize the seed
selection; an intelligent procedure to semantically tagaftery in order to obtain an
automated QCA report for all relevant branches.
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