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Abstract 

 
Robust human pose recovery and automatic behavior analysis has applications including 

gaming, human-computer interaction, security, telepresence, and health-care, just to 

mention a few. In this work, we present a generic framework for human posture analysis 

and gesture recognition using RGB-D representation. It encompasses the process we 

have undertaken to analyze human postural configurations reliability and robustness. 

The work ranges from the process of image acquisition, beginning in geometric models of 

image representation, in order to understand the power and the use of RGB-D spaces. 

Having described this technology, the main focus of this work is based on the location 

and description of human models which can represent and describe the human pose with 

high accuracy. We defined an accurate pose descriptor, and defined a generic framework 

for automatic multi-class behavior analysis. Several applications of the proposed 

methodology are also presented and discussed.  
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Chapter 1 

Introduction 

 
uman motion capture is an essential acquisition technology with many applications in 

computer vision. However, detecting humans in images or videos is a challenging 

problem due the high variety of possible configurations of the scenario, such as 

changes in the point of view, different illumination, and background complexity. There are 

many recent methodologies from an extensive research on this topic [1, 2, 3, 4]. Most of these 

works focus on the extraction and analysis of visual features. These methods have made a 

breakthrough in the treatment of human motion capture, achieving high performance despite 

having to deal with the similarities between the foreground and the background in case of 

possible changes in light or view. In order to treat human pose in uncontrolled scenarios, there 

is recent work using range image for object recognition or modeling [5]. This new approach 

introduced a solution to the problem of intensity and view changes in RGB images through the 

representation of 3D structures. At its inception, development and advancement of these new 

methods came slowly since data acquisition devices were expensive and bulky, with 

cumbersome communication interfaces when conducting experiments. However, Microsoft 

has recently launched the Kinect, a cheap multisensor device based on structured light 

technology, capable of capturing visual depth information (RGBD technology, from Red, Green, 

Blue, and Depth, respectively). The device is so compact and portable that can be easily 

installed in any environment to analyze scenarios where humans are present. In recent years, 

researchers have also used different methodologies and techniques for constructing 3D 

structures, such as stereoscopic images [9,10]. However, in this case the problems of different 

lighting conditions and calibration still exist. Some of the research has focused on the use of 

time-of-flight range cameras (TOF) to use in human parts detection and pose estimation [8,9, 

10], combining depth and RGB data [11].  

 

Following the high popularity of Kinect and its depth capturing abilities, there exist a research 

interest for improving the current methods for human pose and hand gesture recognition. 

While this could be achieved by interframe feature tracking and matching against predefined 

gesture models, there are scenarios where a robust segmentation of the hand and arm regions 

are needed, e.g. for observing upper limb anomalies or distinguishing between finger 

configurations while performing a gesture. In that respect, depth information appears quite 

handy by reducing ambiguities due to illumination, color and texture diversity. Many 

researchers have obtained their first results in the field of human motion capture using this 

technology. In particular, Shotton et al. [12] present one of the greatest advances in the 

extraction of the human body pose from depth images that also form the core of the Kinect 

human recognition framework. These major advances have been the reference and starting 

point of this work. 

 

H 
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1.1. Motivation 

 
In the Computer Vision field, Human Action/Gesture recognition is a challenging area of 

research that deals with the problem of recognizing people in images, detecting and describing 

body parts, inferring their spatial configuration, and performing action/gesture recognition 

from still images or image sequences. Because of huge space of human configurations, body 

pose recovery is a difficult problem that involves dealing with several distortions: illumination 

changes, partial occlusions, changes in the point of view, rigid and elastic deformations, or high 

inter and intra-class variability, just to mention a few. An example of application is the World 

Challenge in Human Layout analysis of the PASCAL VOC challenge. In 2010, the best groups of 

research in the area, in a set of near 400 people images of uncontrolled environments 

achieved accuracy about 70% for face detection, 10% in hand detection, and 2% in foot 

detection. Even with the high difficulty of the problem, modern Computer Vision techniques 

and new tendencies deserve further attention, and promising results are expected in the next 

years. Moreover, several subareas have been recently defined, such as Affective Computing, 

Social Signal Processing, Human Behavior Analysis, or Social Robotics. The effort involved in 

this area of research will be compensated by its potential applications: TV production, home 

entertainment (multimedia content analysis), education purposes, sociology research, 

surveillance and security, improved quality live by means of monitoring or automatic artificial 

assistance, etc.   

 

1.2 Outline 

 
This dissertation deals with the vision-based analysis of scenes involving humans. The general 

approach has been to make extensive use of prior knowledge, in terms of generic 3-D human 

models, in order recover 3-D shape and pose information from a the RGB-D space. 

 

The dissertation is divided in eight chapters. The strategy of explanation of our methodology is 

an evolutionary order. Chapter 2 relates about the state of the art. Chapter 3 begins by 

describing the model as an image acquisition by a regular camera, describing the pin-hole 

model. This chapter is essentially theoretical, aimed to give the author the basics such as the 

procurement process for the images to have knowledge of how images are represented, and 

as world coordinates are adapted to be represented and coded in the systems digital for 

further processing. In Chapter 4, we delve into the representation of images through the pin-

hole model. In this chapter discusses the various distortions in standard cameras and 

calibration processes that allow us to do translations between camera coordinates and world 

coordinates. This chapter is vital to provide robustness and reliability of the data that will be 

discussed throughout the thesis, will be essential especially in the developed application 

Adibas posture, where reliability and accuracy of the data is very important for the purpose of 

the application. In Chapter 5 we enter the world of an existing technology a decade ago, but 

now exploding due to the entry of inexpensive and accurate devices available to all RGB-D 

technology. This chapter will detail the complex process of aligning the RGB space with their 
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respective depth efficiently. Chapter 6 refers to the skeletal models make up the different 

postural configurations that a subject can perform and the system must be able to describe. 

The chapter is mainly divided into two methodologies. A first approach is based on the 

placement of physical markers on which the system must know reconstruct the skeletal model 

consistently and automatically. The second part of the chapter describes a technique for 

obtaining a skeletal model consists of 15 joints automatically, i.e. without placing markers only 

by analyzing the RGB-D space. The purpose of this chapter is to provide a vector of 

characteristics that indicate the body pose or configuration of a subject at a certain instant. 

From this array of features developed, in Chapter 7 we describe a novel methodology to 

estimate a gesture or movement by an actor. Finally in Chapter 8 describes different 

applications on which we have tested and validated the methodologies that are cited in this 

work. 
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Chapter 2 

State of the art 
 

2.1 Technical background in Computer Vision 

 
From a Computer Vision point of view, Human Behavior analysis for Human Action/Gesture 

recognition can be split in two main stages: 1) Pose recovery and 2) Action/gesture 

recognition. Although plenty of literature can be found in both lines of research, next, we join 

them in a common taxonomy and briefly describe their goals. 

 

1) Pose recovery: There exist several studies for pose recovery. Following the standard 

Pattern Recognition pipeline, most of them perform the following tasks: a) Image 

measurements and b) Body parts learning. 

 

a. Image measurements: Image measurements contain the steps of image pre-

processing (i.e. illumination normalization or noise filtering), feature detection 

(i.e. detection of salient points), and feature description. The main challenges 

of this step are focused on the feature detection and description 

methodologies. Depending if the action/recognition is computed from single 

images of video sequences, different feature detection and description 

methods can be applied. Feature detection if often performed as the detection 

of image salient points or by detection of prior landmarks, which are inferred 

by means of template matching or template learning. A detailed list of key 

point detectors can be found in [13] for the case of still images. Since one of 

the main reasons that reduce repeatability in key point detection is due to 

changes in appearance, new techniques tend to deal with the problem of 

feature inter/intra-class variability. For instance, in the work of [14], GroupLets 

are introduced as general features that allow for feature variability tolerance 

by inferring logical operators among feature relation measurements.  

Regarding feature description, several approaches for still images have been 

proposed based on color representation, contour/shape analysis, or pixel 

orientation distribution, just to mention a few (see [15] for more details). In 

the case of image sequences, similar approaches have been proposed, some of 

them taking benefit from the temporal dimension. For instance, the 

description approach of [16] combines the Histogram of Oriented gradients 

description with an Histogram of Oriented Flow vectors descriptors, looking 

for both spatial and temporal coherence of 3D region descriptions. In order to 

achieve higher tolerance to 3D key point distortions, the authors of [17] 

include an extra description to 3D patches so that codify trajectory coherence 

within the video sequence. 
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b. Body parts learning: Once we have defined a feature detection/description 

procedure, in order to perform pose recovery, body parts use to be detected. 

This step is particularly challenging because of the huge inter/intra-limb 

feature variability in both still images and image sequences. Because of this 

reason, most of the state-of-the-art approaches for pose recovery are based 

on limb detection from a pre-defined set of possible human views, applied to a 

particular set of applications, and with a reduced number of poses. In order to 

reduce the confusion and false positive detections that body limbs introduce, 

spatial coherence of body parts is also taken into account. For instance, in the 

approach of [18], PoseLets are defined as a two level pose inference 

procedure. At the first stage, HOG descriptors of body parts are learned using 

SVM classifiers. At a second procedure, the classifier answers are ranked, and 

a second classifier codifying a weighted spatial coherence is trained [19-20]. 

This approach has shown robust results, reducing dramatically the 

performance when introducing new poses with high changes in the body point 

of view. Other works are used on performing inference of Graphical Models 

including appearance and/or spatial relations of body parts and performing 

inference in order save probabilities for those more likely limb relations given 

a particular training set [21-22]. For the cases where the space of poses is large 

and it is difficult to perform inference for a unique statistical models, the 

authors of [19-20] propose the AND-OR Graph. In this case, each possible path 

from the root to a leave of the structure represents a pose, and each internal 

node can have logical operators in order to allow for different configurations 

of body parts. 

 

2) Action/gesture recognition: This step of the process is usually defined as an association 

of the inferred body parts with a prior action/gesture knowledge (i.e. coming from 

deformable models, 2D & 3D models, or motion priors). For summary purposes, we 

divide the state-of-the-art methods in four groups: 

Temporal templates: a patch is used to find correspondences (i.e. using normalized 

cross-correlation) in the whole image/sequence (see Figure 1(a)). These methods are 

simple and fast but are very sensitive to segmentation errors. A common procedure in 

this case is to define a Bag-of-Visual-Words model, where the frequency of appearance 

of each body part is computed in an histogram, which can come from single or a 

sequence of images. After template matching, different learning approaches can be 

performed to perform action/gesture recognition. 

Active Shape models: Allows for shape regularization, but are sensitive to initialization 

and tracking failures (see Figure 2.1(b)). One of the benefits of these methods is that 

they involve a matching cost which can be directly used as an action/gesture 

classification threshold [25]. 

Tracking with motion priors: These methods take benefit of the pose information 

linked to the tracking process to perform simultaneous action recognition. However, 
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these methods are also sensitive to initialization and tracking failures (see Figure 

2.1(c)). 

Motion-based recognition: These methods are useful for generic descriptors and less 

dependent on appearance. On the other hand, they are sensitive to localization and 

tracking errors (see Figure 2.1(d)). 

 

 
Figure 2.1 Examples of (a) Temporal templates, (b) Active Shape models, (c) Tracking with motion priors, and (d) 

Motion-based recognition. 

 

Independently of the family a particular action/gesture strategy belongs to, once pose vector 

descriptors are obtained for a particular image sequence, general Pattern Recognition and 

Machine Learning Strategies that involves spatial or temporal relations can be applied to 

perform final action/gesture recognition. Examples of common strategies are Neural 

Networks, Stacked Sequential Learning, of different kind of Bayesian Networks, such as 

Conditional Random Fields or Hidden Markov Models. Another common strategy used to 

match temporal series for gesture recognition is Dynamic Time Warping. The method comes 

from Dynamic Programming discipline of algorithmic, and has been extended to allow 

temporal and spatial deformation of gestures to include invariance to gesture speed and 

person physical characteristics.   

 

2.2 Technical background in Multimodal Computer Vision 

 
Previous Computer Vision approaches do not require working alone. The different visual 

descriptors can be combined with other discriminative features coming from different sensors. 

In the same way, most previous approaches for final inference can be applied independently of 

the considered feature space. For instance, some actions/gestures can have similar visual 

representation but they can be split using audio features. In other cases, only visual 

information is discriminative enough but classification strategies do not generalize. In some of 

these cases, the combination with proper data features from different sensors can increase 

generalization capability of the system. 

Recently, with the arrival of the Kinect hardware/software to the market, the Depth map 

information has obtained much attention. The multi-sensor Kinect combines accelerometer, 

video information, with a Depth map, allowing for a new RGBD representation. The Depth map 

is computed from the Kinect infrarred sensor. The infrared sensor displays a set of points 
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though the environment. Then, each depth pixel is computed by sampling the derivative of the 

higher resolution infrared image taken by the infrared camera. This value would be inversely 

proportional to the radius of each Gaussian dot, which is linearly proportional to the actual 

depth. The authors of the main Kinect software have recently published their work for 

action/gesture recognition using Depth maps [12]. Basically, from a huge set of depth maps 

coming from real and virtual people, a supervised method describe different limb labels using 

simple depth relations from each described point in a 3D space and its neighborhood applying 

random offsets. These features are then learnt using a probabilistic Random Forest approach. 

Though the method produces noisy labeling segmentation, main limb densities are real time 

captured only applying pixel-wise classification, allowing for the computation of a 15-joint 

skeleton representation of the human pose. The main failures of this approach are produced 

when different people become closer in the 3D space or when objects appear next to the 

person cluster, since depth relations between person and background are altered. 
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Chapter 3 

Acquiring and processing depth data 
 

3.1 Introduction 
 

The use of video cameras in activities metrics has grown considerably in recent years due to 

the flexibility in the collection of images. It facilitates the acquisition process, since 

it is not necessary to control the shots, the time exposure, etc. In addition, scenes to be 

effectively used in processing can be reviewed and selected in the cabinet. 

This chapter describes the geometric model associated with the formation process a picture 

with the camera. The model is characterized by a number of parameters which characterize 

the intrinsic properties of the camera and its position in the world. From a geometric point of 

view the situation of a point in the image is the result of linear transformations and 

perspectives applied to the coordinates of the world. The geometric model is a projection 

matrix, which contains all these operations. If you do not change the intrinsic properties and 

the position of the camera is the same possible to know, using this projection matrix, the 

position of a point in the image knowing the same position in the world. Also, based on the 

camera model is possible to locate the camera in an environment from images obtained from 

the same and obtain the intrinsic characteristics of the camera. 

3.2 Formation of an image 
 

The process of forming an image consists of two parts to consider. The first part, mainly 

geometric, the position in the plane of the image, from the projection of a point in the scene. 

The second is the nature of light which determines the brightness of a point in the plane of the 

image based on properties surface and lighting. 

The most elementary form an image of a 3D scene on a surface 2D is a fully enclosed box. In 

this case using two sides faced which simulate two screens located in parallel. The first screen 

is a small very small hole through which only have to spend a photon of light. This hole allows 

the rays of light emitted or reflected by an object in the scene break through the first screen 

and form an inverted image in the second as shown in Figure 3.1. To collect the image is simply 

necessary to place a photosensitive element the second screen. Since in practice the small hole 

does not let enough light to excite the photosensitive element, is placed in the opening lenses 

to focus the ray bundle reaching a point in the scene to the corresponding point in the plane of 

the image. 
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Figure 3.1 Example formation an image in a camera 

The effect of the lenses is based on the principle of light refraction. A beam of light refracted 

when it encounters an obstacle transparent, and as a result, it undergoes a change in 

his career. This change of direction is determined by the angle of refraction, which depends on 

the angle of incidence and the wavelength of the light beam. Using the angle refraction is 

possible with a lens all the rays of light from a same point in the scene intersect at a single 

point behind the lens. This cutoff depends on the angle of incidence on the lens of the light 

rays. To get a clear picture of the scene, it is necessary that the image plane is located right in 

the distance court. This is called focal length of the vision system. The focal length of a lens is 

the separation between the lens and the cutoff of light rays from infinity. This is not has to 

coincide with the focal length of the vision system as the latter is set function of distance from 

the scene is to portray. 

 

3.3 Pin-hole model 
 

This is the simplest model which is used as the basis for all other models. 

It represents an ideal distortion-free camera. You can obtain the geometrical model of the 

camera from Figure 3.2. I is the image plane. F is the focal plane in which all 

points have zc = 0. The point o' is the optical center or center of projection, which is located 

focal length f of the origin of the coordinate system of the camera c (focal length vision 

system). The optical center is used to form the image of a point p in the plane image I. The 

image point p called a point q is obtained by the intersection of o'p straight to the image plane 

I. The optical axis is the line that passes through the optical center o' and is perpendicular to 

the plane I. Point c is the intersection of the optical axis with the plane of the image, also called 

the main point. For the pin-hole model of camera is to take this point as the origin of the 

image measures. The focal plane F is parallel to the plane of image and passes through the 

optical center o'. The points in the focal plane with no image the image plane I and that the 

line is parallel to the plane o'p image I. 
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Figure 3.2 Scheme of the pin-hole model 

From the viewpoint of projective geometry, this line intersects the plane of the image at 

infinity. It sets a 3D coordinate system for the stage (o {xw, yw, zw}), another 3D coordinate 

system for the camera (o', {xc, yc, zc}) and a 2D image plane (c, {u, v}). The optical axis is aligned 

with the axis Z of the reference system of the camera such as shown in Figure 3.2. The 

coordinates of the points of interest in space are referring to the stage coordinate system (or 

{xw, yw, zw}) and their corresponding image positions are referred to the system of coordinates 

of the same (c, {u, v}). 

To characterize the ideal camera model must take into account two transformations that 

perform the same. With these transformations we obtain the coordinates points in the image 

from their positions on the reference system stage. First, there is a transformation of the 

reference metric scenario, the metric reference system associated with the camera. Secondly, 

there is a perspective projection that transforms a point of interest on the Stage at a point 2D 

image. Given the coordinates of a point p on the reference system stage pw = (xw, yw, zw), the 

coordinates of this point p on the system camera reference pc = (xc, yc, zc) are:  
            

 

  

  

  
   

               
               
               

  

Equation 3.1 

R is a 3x3 orthonormal rotation matrix that relates both sets of reference t = (tx, ty, tz) are the 

coordinates of the center of projection o' to the origin of coordinates stage. The expression 

(3.1) represents the relationship between the coordinates of same point as the reference 

system of the stage or the reference system the camera. The matrix R and the vector t 

represent the correlation between the two reference systems. To obtain the coordinates of q 

with respect to the coordinate system image qc = (uc, vc) is performed perspective projection 

coordinates pc = (xc, yc, zc) respect to the coordinate system of the camera: 
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Equation 3.2 

     
  

  
    

  

  
  

  

  

Equation 3.3 

Being f the focal length of the vision system. In projective space, if zc = 0 indicates 

the point is in the focal plane of the camera. In this case the coordinates of the 

qc image = (uc, vc) are not defined and correspond to a point at infinity. 

There are other parameters, these relate the coordinate system of the stage and the system 

camera coordinates determine the position and orientation of the camera on stage. 

These are called extrinsic parameters. The camera features a focal length determined and is 

independent of the position of the same on stage. We will not deal in depth with these 

parameters, because our work is based on obtaining the world coordinate, without going into 

the analysis of the position of the camera and position of the stage. 

To study the behavior of the camera and be able to treat it as a box black performs a 

transformation of the coordinates of the projective space P2 to P3 space different models 

which fit more or less the actual behavior of the same. The basic model is the so-called pin-

hole from which others are built models. This basic model only transforms the coordinates of 

the points in the scene. This transformation gives the relation between the reference frame of 

the camera and the stage. Does not take into account the transformations that occur in the 

formation of the image. A model adjusted to the actual behavior of the camera adds to the 

pin-hole model linear transformations suffered by the coordinates of the points in the image. 

These are the scaling that allows the change of pixel units to millimeters, the location of the 

origin of measurements in the upper left corner of the image and the non-orthogonality of the 

axes of measures due to imperfections in the construction process. 

Interested in this project is to examine the world coordinate, for it will proceed with the 

reverse process we have developed in the pin-hole model (equation 3.3).  

   
          

  
      

          
  

  

Equation 3.4  

To obtain the world coordinates are necessary the focal length and the principal point. 

Therefore we perform a calibration method with which we can obtain the intrinsic values of 

the camera.  
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Chapter 4 

Distortions and calibration 
 

The calibration is necessary to adjust the model behavior of the camera which takes into 

account the distortions that occur in the vision system constructive imperfections of the 

lenses. These imperfections cause deviations in the path of the beam is assumed a priori that 

straight. In this chapter we are going to analyze how to reduce these imperfections in order to 

obtain very realistic image, and techniques about calibration, which it allows us to obtain 

quantitative data from the images. 

 

4.1 Lens distortion 
 

Imperfections in the shape of the lens causing lateral deviation of the beam light that passes 

through. The result is a point position in the image observed different from its actual position 

reflecting a point in space. The position deviation is respect to a radial center of distortion. In 

the case of imperfections [26] due to assembly lenses, are generated both radial and 

tangential distortions of the positions of points in the image. The consequences are geometric 

displacement of the points in the image. The visual effect is shown in Figure 4.1. 

 
Figure 4.1 Example of distortion by the lens 

The correct position in pixels of the point q in the image qp = (up, vp) is related to 

observed in the same position qd = (ud, vd). This relationship is expressed by the following 

expressions: 
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Equation 4.1 

According to the equation 4.1 the amount of error in each coordinate geometry point q 

depends of the position within the image itself. 

 

4.1.1 Radial distortion 
 

The radial distortion produces a shift in the position of the point along the line connecting the 

point with the center of radial distortion of the image. Normally, this is not coincides with the 

center of the image. This distortion is caused by defects that exist in curvature of the lens. A 

negative radial point of the image is also called barrel distortion. The effect produced is that 

the points in the edges of the image and scale approaching decline. If offset is positive is also 

known as pincushion distortion. In this case the edge points away from image and scale 

increases. This distortion [27] is symmetric about the optical axis of the camera. If assumes 

that the center of distortion is in the center of the image, the expression mathematics that 

represents this distortion is the next (Equation 4.2): 

                                    

                                    

Equation 4.2 

  is the distance of the pixel to the main point of the picture,                 

           . The radial distortion coefficients are         ,.... The distance   is 

calculated as follows: 

           

Equation 4.3 

 

Figure 4.2 Example image of radial distortion 
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4.1.2 Tangential or off-center distortion of the image: 
 

The optical systems are subject to various degrees of offset because the optical centers of the 

different lenses are not located in the same line. The defect results call offset a distortion of 

the image. This distortion has both components, radial and tangential, which can be described 

by the following expression [27]: 

               
                      

                         
           

Equation 4.4 

           are the coefficients which model the tangential distortion,   is the distance from 

the principal point to the pixel image. 

 

Figure 4.3 Example image of tangential distortion 

 

4.1.2 Prism Distortion: 

 

The prism is distorted [28] due to imperfections in the lens design, in manufacture and 

assembly. Mainly it is slight shift of some lenses resulting in a lack of perpendicularity to the 

optical axis of the camera. This distortion can be modeled by adding a small prism to the 

camera's optical system which causes a radial and tangential greater distortion. In this case the 

distortion is modeled as follows: 

                               

                               

Equation 4.5 

  is the distance to the main point of the pixel of the image and s1, s2, s3, ... are the coefficients 

to model this type of distortion. 
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4.2 Calibration 
 

The process of calibrating a camera is a necessary step to extract 3D information from 2D 

images. Much work has been performed in this field which is to estimate the intrinsic and 

extrinsic parameters of the same from one or more images obtained from a template. This 

chapter presents the state of the art both of the different calibration techniques, and the 

different aspects that affect the process of calibrating a camera. First named the currently 

existing methods for calibrating a camera, establishing different classifications according to 

techniques, results and elements necessary for calibration. 

Based on all existing methods have chosen a calibration process according to various studies 

by authors [29], [30], [31] is more interesting for calibration of a camera under certain 

conditions. The goal is to define the most comprehensive calibration method that allows 

solving the largest number of possible scenarios based on existing calibration techniques to 

date. Once the method of calibration intervals will be calculated on the results and optimize it 

using statistical techniques. 

 

4.2.1 Calibration methods: 
 

The calibration of a camera is the first step to solve applications where it is necessary to obtain 

quantitative data of the image. Although it is possible to obtain scene information from images 

taken with uncalibrated cameras [32], the calibration process is essential when trying to obtain 

measurements of the same. The accurate calibration of the camera allows for distances in the 

real world from images taken from the same [33]. For example, from a standpoint of location 

of objects, you can place them in the real world when you have a picture of them. This location 

can be absolute with respect to an origin of world coordinates or relative to other objects. This 

makes it possible to solve industrial parts assembly [34] or avoid obstacles in the navigation of 

a robot [39]. If instead we focus on 3D reconstruction of objects, each image point determines 

an optical beam passing through the optical center of camera at the scene. The management 

of multiple images of a scene in which there is no movement allows connecting the two optical 

beams for the 3D position of points in the scene [36], [37]. In this case it is necessary to solve 

the step of matching an object in different images [38]. To take several images of the scene 

can use a single moving camera, multiple cameras mounted on a stereo system or a source of 

structured light. Once you have able to perform 3D reconstruction of the object, it can be 

compared with a stored model to determine the result of imperfections in the same 

manufacturing process.  

The visual inspection is a useful tool for quality control, which lets you browse all the products 

automatically and comprehensively, which means a significant improvement over human 

inspection which requires statistical tools for its realization. Part of camera calibration is to 

estimate the intrinsic parameters of the model itself which the camera's internal geometry and 

optical characteristics the sensor. These parameters determine the coordinates of a point in 
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the image from the point position in the scene with respect to the coordinate system of the 

camera. It is also necessary to take into account the parameters that measure the distortion of 

the image produced by the constructive imperfections of the camera. These parameters are 

used to correct the position of the points in the image getting behavior of the camera ideal for 

the pin-hole model. Estimating the geometric relationship between the camera and the scene 

or between different cameras is also important in the calibration process.  

The extrinsic parameters measure the position and orientation of the camera about the 

coordinate system established for the world. These give the relation with respect to the 

coordinate system of the user instead of the coordinate system of the camera. 

Currently there are several methods for calibrating a camera. These methods can be classified 

according to different criteria. For example, considering the resolution method can be 

classified into linear versus nonlinear or iterative. The methods used methods of solving linear 

systems of equations based on least squares. These methods get a transformation matrix 

which relates 3D points in the world their 2D projections in the image. In this case no 

parameters are calculated to model the distortion of the camera so the results are quite 

approximate, yet are easy to implement and very fast to run [35]. If, however, requires a 

camera model more complex, which include the distortions produced by the camera is 

necessary to minimize nonlinear index iteratively. Minimize the index usually include the 

distance between measured points on the image and the projected points obtained with the 

model of the camera. The advantage of these iterative methods is that any model can also be 

calculated and the accuracy of it increases with the number of iterations until it converges. 

However, they are much slower and need from a good approximation of the parameters to 

ensure the convergence. It is for this reason we use the results obtained by linear methods to 

start the search nonlinear parameters. With linear methods are calculated part of the set of 

parameters and then using iterative methods are improved these parameters and estimate the 

rest. This calibration performed in two steps can greatly reduce the number of iterations also 

ensuring the convergence of the iterative search of the parameters. 

 Another classification of calibration methods can be based on the outcome of it. An explicit 

calibration parameters obtained directly from the camera model [39], while an implicit 

transformation matrices are obtained that contain the set of all parameters. Although no one 

knows the exact value of any of the parameters, the results can be used to perform 

measurements and generate 3D coordinates in the image. Implicit methods are not suitable 

for modeling the camera and the parameters obtained do not correspond with the actual 

camera. Based on the parameters that form the model of camera calibration methods can also 

be classified into intrinsic and extrinsic. The calibration methods only obtain intrinsic 

parameters physical and optical of the camera. By contrast, the calculated position and 

extrinsic orientation of the camera in the scene. 

Finally, considering the characteristics of the template used for calibration, there are methods 

that use templates 3D, 2D, 1D or do not use template. Methods using reference templates 

based calibration of the camera to establish a relationship between the known coordinates of 

the points in the template and the coordinates of these points in the image. For templates 

with a single 3D image of it is possible to calibrate. In this case the template is two or three 
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orthogonal planes between them. As the points where planes take avoiding measurement 

errors of the coordinates of points on the template as it is assumed the same for all points on 

the same plane. On the contrary, this type of calibration requires expensive processing. If you 

use templates 2D is necessary to take several pictures of it from various positions or change 

the position and orientation of the template. It is not necessary to know the positions from 

which images are taken [40]. This method is more versatile as the development of the 

template is easily accomplished. The calibration methods are based on templates 1D very 

useful in the case of calibrating multiple camera systems. In the case of template-based 

methods use 3D or 2D, as it is necessary that they all see different points of the calibration 

template at the same time, it is difficult to establish a position for it except that the template is 

transparent. It is for this reason that the calibration method based on a template 1D attractive 

when calibrating a system with multiple cameras [41]. In some cases, template-based methods 

need to know the relationship between the plans to set more restrictions on the calibration 

process and to achieve results more accurate. Also the use of geometric properties from the 

scene of such lines to infinity, or elements such as straight lines or circles within the same, 

allow calibration without take measurements of the coordinates of points on the template. On 

the other hand, techniques that do not use any calibration object can be considered as 

template 0D and you only need to relate to a point in different images. Only by moving the 

camera in a static scene, the rigidity of the scene causes in general two constraints within the 

camera intrinsic parameters [42], [43]. So with several images of the same scene taken with 

the same 

intrinsic parameters, correspondences between three images are sufficient to calculate both 

intrinsic and extrinsic parameters. This rule allows your time to perform 3D reconstruction of a 

structure from several images of the same. In these cases, although a template is not 

necessary, it is necessary to calculate a large number of parameters, resulting in a rather 

complex mathematical problem. Due to the difficulty to start searching for self-calibration 

methods tend to be unstable [10], [26]. Finally, the summary of the different methods that 

exist for the calibration of cameras, it is also necessary to consider the family of algorithms 

that calculate the parameters that model lens distortion in the image without the use of 

calibration objects and thus without knowing any 3D structure. These methods are based on a 

projection that in ideal perspective, the camera turns straight lines in 3D space in straight lines 

within the 2D space corresponding to the image. Thereby strengthening the linearity of the 

parts of the image are curved due to the distortion of camera lens, we can estimate the 

distortion it produces [44]. There are methods that use epipolar and trilinear constraints 

among pairs and triplets of images respectively to estimate the radial distortion. 

Based on the current state of calibration processes described so far, it is difficult to choose an 

efficient method to calibrate the camera in any situation. Tsai's method [45], is a classic 

calibration process based on measures the coordinates of points on a 3D template with 

respect to a fixed reference point. This method has been widely used in the last century. In 

comparison calibration methods developed between 1982 and 1998 by Salvi [46], Tsai's 

method shows better results in spite of that to get good results is an important qualification 

necessary data entry. By contrast, the method of Zhang [41], which is not included in the 

comparison of Salvi, represents a new era in the process of calibrating the camera. This 

method uses the coordinates of the points within a 2D flat template taking different pictures 
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of it from different positions and orientations. This will combine the benefits of calibration 

methods based on measures of the coordinates of the template with the advantages of self-

calibration which is not necessary to use template. This calibration mode is very flexible from 

the standpoint of both the camera and the template can be moved freely and it can take as 

many pictures as you want without having to perform measurements on the template. Sun 

[47] compared the method of Tsai to the method of Zhang. On the one hand the method of 

Tsai gets an accurate estimation of the parameters of the camera if the input data are 

contaminated with some noise. Given that it takes at least a hundred points in the template 

and the coordinates are to be referred to a fixed origin of coordinates is essential an 

appropriate template design calibration and a precise measurement of the coordinates of the 

points. Nevertheless, the possibility of errors in the measurements is high as confirmed by the 

experiments performed by Sun. By contrast, Zhang's calibration method based on 2D template 

that requires no special design of the template, nor as accurate measurement of the points of 

it. Sun performs experiments with a template made by hand and gets better results than the 

method of Tsai. Furthermore, the sensitivity of the calibration algorithm to errors in 

measurements can be improved by increasing the number of points in the template, simply 

printing a chessboard with more corners. The comparison results show the flexibility and 

adaptability of the calibration method of Zhang and can be performed at any scenario. 

 

4.2.1 Calibration template 2D based 
 

Zhang [105] proposed a calibration technique based on the observation of a flat template from 

various positions. This method is more versatile as the development of the template is easily 

accomplished. The camera can be shifted manually as it is not necessary to know the positions 

of the camera where the pictures were taken from the template. This makes it a very flexible 

technique as the previous method requires a more complicated design template in addition to 

knowing the exact positions of points within it. To calibrate the camera with this method is 

necessary to estimate the homographies of each of the images taken from the template. With 

estimadasse homographies calculated parameters of the camera. Before describing the 

method of camera calibration process is detailed estimate of the homographies. 

 

4.2.2 Computation of homographies 
 

In the previous section we discussed the estimation of the projection matrix from a staff of 

various levels so that contains points with coordinates in three dimensions. In case you want 

to estimate a homography from a 2-dimensional template, the reasoning is similar to that 

performed so far. The coordinates of a point            in the image is calculated from the 

corresponding position in the scene             and the elements that form the homography 

using the following expressions: 
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Equation 4.6 

Rearranging these two equations for each known position of a point on the template 

           and its corresponding in image           , is possible to obtain two equations 

with 9 unknowns, which correspond to the elements the homography: 

                                    

                                    

Equation 4.7 

If n points are available, we can obtain a linear system of 2 ° N equations with 9 unknowns as 

follows: 

 
 
 
 
 
                       

                       

                  
                       

                        
 
 
 
 

 

 
 
 
 
 
   

   

  
   

    
 
 
 
 

   

Equation 4.8 

The system of linear equations can be expressed in matrix form as: 

      

Equation 4.9 

In this case, the matrix of dimension (2 ° n) x 9 contains the coordinates of the points in the 

template and its corresponding 3D positions of the projections in the image, all known. h is a 

vector containing all the elements of the homography H placed in the vector: 

                               
  

Equation 4.10 

For the elements of the homography h, since the solution h = 0 has no interest, imposes the 

constraint | h | = 1. A vector h is solution of the equation 4.10, and any other vector k • h are 

equally valid, since h, is defined with a scale factor. 

Therefore, since no exact solution for solution for A • h = 0, we can minimize the norm |A • h| 

subject to the constraint | h | = 1. The solution h is the unit eigenvector matrix AT·A associated 
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with smaller eigenvalue. This vector could be obtained from the decomposition into 

eigenvalues of positive definite symmetric matrix AT·A. 

 

4.2.3 Calibration process with 2D templates 
 

The linear model of the camera to be estimated is described in the previous chapter, in which 

obtaining the coordinates of the image may be obtained by: 

                                

 

     

     

  

     

     

     

   
   

           
           
           

   

  

  

  
 

  

Equation 4.11 

λ is a scale factor and the points are expressed in homogeneous coordinates. R and t represent 

the extrinsic camera parameters being ri the columns of the rotation matrix R. K contains the 

intrinsic parameters, being αu and αv scale factors each of the axes of the image, u0 and v0 are 

the coordinates of main point of the image and   is the parameter that represents the loss of 

orthogonality of the coordinate axes in the image. 

If part of the calibration template is flat, we can assume that the points of the template are 

arranged so that its coordinate zw = 0. In this case the model is reduced by the following 

expression: 

                                

Equation 4.12 

Now the initial model is transformed into a homography H relating the coordinates of the 

template flat stage with their counterparts in the image: 

                        

Equation 4.13 

This homography can be calculated by the method described in the previous section. If you 

separate the columns of the homography is obtained that: 

                       

Equation 4.14 

Translation vector t is from world coordinate system zero point to optical center vector r1,r2 is 

the image plane two coordinate axes in the world coordinate system’s direction vector, 
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obviusly t will not be located at the r1,r2 plane, as a result of r1,r2 orthogonal, therefore 

               , also            , therefore            . The computation of H 

causes between the actual image coordinate          and the image coordinate      

according to type equation 4.13, calculates the diverse smallest process. The objective 

function is: 

             

 

 

Equation 4.15 

Figure 4.5 shows the iterative procedure to obtain the extrinsic and intrinsic parameters using 

a two-dimensional template. 

 

 

 

 

 

 

 

 

 

Figure 4.5. Algorithm to obtain intrinsic parameters 

 

4.2.2 Full automatic process of calibration 
 

In this section we discuss a widespread methodology to locate points of interest on a template 

calibration through image processing methods. Checkerboards with black-and-white squares 

are most widely used because the easy sub-pixel detection algorithm for X-corners with high 

precision [Luc00a]. Traditional algorithm for detecting X-corners first estimates their pixel 

locations by standard corner detectors (such as Harris [Har01a] and Noble [Nob00a]), then the 

sub-pixel positions can be determined by fitting quadratic functions to the local intensity 

profile around the corners and computing their extremal points. The main shortcoming of this 

algorithm is that the fitting of local intensity surface complicate the detection process. 

Lucchese [] proposed a new simplified algorithm finding the extremal points by a 

morphological shrinking operation on the local intensity profile. This algorithm requires a 

preliminary interpolation of intensity over the 2 × 2 -pixel neighborhood of the detected 

 Place the template on a horizontal solid wall; 

 Moves plane or camera to shot some template images 

from different angle; 

 Detects characteristic point of the image; 

 Obtains each image the unitary matrix H; 

 Computes camera’s internal parameter by using matrix H 

extracted in the premise of the distortion factor being 

zero; 

 Obtains a group of precision higher camera’s internal 

parameter, simultaneously calculating each distortion 

factor.  
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corners, which means that shortening the interpolation interval will improve the precision of 

detection. 

 

The more extended algorithm for detecting X-corners first finds their pixel positions by Harris 

detector based on a Hessian matrix looking for the auto-correlation matrix: 

 

  

 
 
 
 
  

  

  
 
 

   
  

  
 
  

  
   

 
  

  
 
  

  
    

  

  
 
 

  
 
 
 
 
 

 

Equation 4.16 

 
where w is a Gauss smoothing operator. Harris corner detector is expressed as: 

 

                       
Equation 4.17 

 

The X-corner is just the local peak point of R . Considering the local intensity around one X-

corner in the image which has been smoothed by a Gauss low pass filter, the 3D shape of the 

intensity profile is just like a saddle. The saddle point of this surface is just the X-corner to be 

detected. For each X-corner, a quadratic fitting of the local intensity profile can be obtained. 

The function can be expressed as: 

 

                           
Equation 4.18 

 

This function turns out to be a hyperbolic, so the position of the saddle point can be 

determined by calculating the intersection of the two lines as follows: 

 

 
          
          

  

Equation 4.19 

 

In general, this traditional algorithm allows for accuracies of the order of a few hundredths of a 

pixel [Luc00a], which can satisfy most applications of 3D machine vision. But the preliminary 

interpolation of intensity and the latter surface fitting aggravate the computation load of this 

algorithm, although this is not problem for us because the calibration process it is an off-line 

process, once time we have obtained a reliable set of intrinsic values this process is not used 

again. 
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Chapter 5 

RGB-D, Visual advantage 

 

RGB-D cameras are novel sensing systems that capture RGB images along with per-pixel depth 

information. In this chapter we introduce how such cameras can for our proposal, in the 

context building dense 3D maps, in order to rebuild human pose in indoor uncontrolled 

environments with actors. This novel technology has applications in robot navigation, 

manipulation, semantic mapping, and telepresence. We present RGB-D Mapping, a full 3D 

mapping system that utilizes a novel joint optimization algorithm combining visual features 

and shape-based alignment. Visual and depth information are also combined for view-based 

loop closure detection, followed by pose optimization to achieve globally consistent maps. One 

of the main problems in the field of computer vision is the variability of view to analyze any 

object. By introducing the depth values can reconstruct a three-dimensional map in which we 

can recognize the position of that object, and thus eliminate the possible error due to 

perspective. In this chapter we focus on the alignment procedure between the values of depth 

and the image captured by a camera RGB. Extended to analyze the methodology as well as 

their possible applications. In the next chapter will go into the section as a model the pose of a 

person based on the data set obtained through RGB-D. 

 

 

5.1 RGB-D technology 
 

Building rich 3D maps of environments is an important task for mobile robotics, with 

applications in navigation, manipulation, semantic mapping, and telepresence. Most 3D 

mapping systems contain three main components: first, the spatial alignment of consecutive 

data frames; second, the detection of loop closures; third, the globally consistent alignment of 

the complete data sequence. While 3D point clouds are extremely well suited for frame-to-

frame alignment and for dense 3D reconstruction, they ignore valuable information contained 

in images. Color cameras, on the other hand, capture rich visual information and are becoming 

more and more the sensor of choice for loop closure detection [48, 49, 50]. However, it is 

extremely hard to extract dense depth from camera data alone, especially in indoor 

environments with very dark or sparsely textured areas. 

 

RGB-D cameras are sensing systems that capture RGB images along with perpixel depth 

information. RGB-D cameras rely on either active stereo [51, 52] or time-of-flight sensing [53, 

54] to generate depth estimates at a large number of pixels. While sensor systems with these 

capabilities have been custom-built for years, only now are they being packaged in form 

factors that make them attractive for research outside specialized computer vision groups. In 
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fact, the key drivers for the most recent RGB-D camera systems are computer gaming and 

home entertainment applications. 

 

RGB-D cameras allow the capture of reasonably accurate mid-resolution depth and 

appearance information at high data rates. In our work we use a camera developed by 

PrimeSense, which captures 640x480 registered image and depth points at 30 frames per 

second. This camera is equivalent to the visual sensors in the recently available Microsoft 

Kinect [55]. Fig. 5.1 shows an example frame observed with this RGB-D camera. As can be 

seen, the sensor provides dense depth estimates. However, RGB-D cameras have some 

important drawbacks with respect to 3D mapping: they provide depth only up to a limited 

distance (typically less than 5m), their depth estimates are very noisy and their field of view 

(≈60°) is far more constrained than that of the specialized cameras and laser scanners 

commonly used for 3D mapping  ( ≈80°). 

 

 
Figure 5.1 Kinect Device 

 

 

RGB-D Mapping exploits the integration of shape and appearance information provided by 

these systems. Alignment between frames is computed by jointly optimizing over both 

appearance and shape matching.  

 

5.2 RGB-D alignment procedure 
 

The solution to the frame alignment problem strongly depends on the data being used. For 3D 

laser data, the iterated closest point (ICP) algorithm and variants thereof are popular 

techniques [56,57]. The ICP algorithm iterates between associating each point in one time 

frame to the closest point in the other frame and computing the rigid transformation that 

minimizes distance between the point pairs. The robustness of ICP in 3D has been improved 

by, e.g., incorporating point-toplane associations or point reflectance values [58]. 

 

Passive stereo systems can extract depth information for only a subset of feature points in 

each stereo pair. These feature points can then be aligned over consecutive frames using an 

optimization similar to a single iteration of ICP, with the additional advantage that appearance 

information can be used to solve the data association problem more robustly, typically via 

RANSAC [59]. Monocular SLAM and mapping based on unsorted image sets are similar to 

stereo SLAM in that sparse features are extracted from images to solve the correspondence 

problem. Projective geometry is used to define the spatial relationship between features [60], 

a much harder problem to solve than correspondence in ICP. 
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For the loop closure problem, most recent approaches to 3D mapping rely on fast image 

matching techniques [50]. Once a loop closure is detected, the new correspondence between 

data frames can be used as an additional constraint in the graph describing the spatial 

relationship between frames. Optimization of this pose graph results in a globally aligned set 

of frames . 

 

While RGB-D Mapping follows the overall structure of recent 3D mapping techniques, it differs 

from existing approaches in the way it performs frame-to-frame matching. While pure laser-

based ICP is extremely robust for the 3D point clouds collected by 3D laser scanning systems 

such as panning SICK scanners or 3D Velodyne scanners [61], RGB-D cameras provide depth 

and color information for a small field of view (60° in contrast to 180°) and with less depth 

precision (≈3cm at 3m depth). The limited field of view can cause problems due to a lack of 

spatial structure needed to constrain ICP alignments. There has been relatively little attention 

devoted to the problem of combining shape and visual information for scan alignment. While 

this approach provides excellent results, it is computationally expensive and does not scale to 

large 3D clouds.  

 

A common addition to ICP is to augment each point in the two point clouds with additional 

attributes. The correspondence selection step acts in this higherdimensional space. This 

approach has been applied to point color, geometric descriptors, and point-wise reflectance 

values. In comparison, our algorithm uses rich visual features along with RANSAC verification 

to add fixed data associations into the ICP optimization. Additionally, the RANSAC associations 

act as an initialization for ICP, which is a local optimizer. 

 

 

 
Figure 5.2 Block diagram of the alignment procedure 

 

 

5.2.1 RGB-D Mapping 
 

To align the current frame to the previous frame, the alignment step uses RGBDICP, our 

enhanced ICP algorithm that takes advantage of the combination of RGB and depth 

information. After this alignment step, the new frame is added to the dense 3D model. This 

step also updates the surfels used for visualization and occlusion reasoning. A parallel loop 

closure detection thread uses the sparse feature points to match the current frame against 

previous observations, taking spatial constraints into account. If a loop closure is detected, a 

constraint is added to the pose graph and a global alignment process is triggered. 
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In the Iterative Closest Point (ICP) algorithm [2], points in a source cloud Ps  is matched with 

their nearest neighboring points in a target cloud Pt and a rigid transformation is found by 

minimizing the n-D error between associated points. This transformation may change the 

nearest neighbors for points in Ps, so the two steps of association and optimization are 

alternated until convergence. ICP has been shown to be effective when the two clouds are 

already nearly aligned. Otherwise, the unknown data association between Ps and Pt can lead to 

convergence at an incorrect local minimum. Alignment of images, by contrast, is typically done 

using sparse feature-point matching. A key advantage of visual features is that they can 

provide alignments without requiring initialization. One widely used feature detector and 

descriptor is the Scale Invariant Feature Transform (SIFT) [62]. Though feature descriptors are 

very distinctive, they must be matched heuristically and there can be false matches selected. 

The RANSAC algorithm is often used to determine a subset of feature pairs corresponding to a 

consistent rigid transformation. However, in 2D this problem is not fully constrained due to the 

scale indeterminacy.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Algorithm of align RGB-D with ICP 

 

 

Since we have RGB-D frames, we can fuse these two approaches to exploit the advantages of 

each. It takes as input a source RGB-D frame, Ps, and a target frame, Pt. Steps 1 and 2 extract 

sparse visual features from the two frames and associate them with their corresponding depth 

values to generate feature points in 3D. These steps can be implemented with arbitrary visual 

features. Step 3 uses RANSAC to find the best rigid transformation, t*, between these feature 

sets. Perform RANSAC Alignment does this by first finding matching features between the two 

frames. It then repeatedly samples three pairs of feature points, determines the optimal 

transformation for this sample, and counts the number of inliers among the remaining 3D 

feature points. The function also returns a set of associations Af containing the feature pairs 

that generated the best transformation. 

 

Steps 4 through 6 perform the main ICP loop. Step 5 determines the associations Ad between 

the points in the dense point cloud. This is done by transforming the 3D points in the source 

cloud, Ps, using the current transformation t. In the first iteration, t is initialized by the visual 

RANSAC transformation, which allows RGBD-ICP to match frames without any knowledge of 

their relative pose (if enough visual features are present). For each point in Ps, Step 5 then 

RGBD-ICP (Ps,Pt):  

1. Fsource=Extract_RGB_features(Ps) 

2. Ftarget=Extract_RGB_features(Pt) 

3. (t*,Af) = Perform_RANSAC_Alignment(Fsource, Ftarget) 

4. repeat 

5.    Ad =Compute_Closest_Point(t*,Ps,Pt) 

6. until (Error_Change(t*)≤θ) or (maxIter reached) 

7. return t*  
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determines the nearest point in the target cloud Pt. While it is possible to compute 

associations between points based on a combination of Euclidean distance, color difference, 

and shape difference, we found Euclidean distance along with a fast kd-tree search to be 

sufficient in most cases. It minimizes the alignment error of both the visual feature 

associations and the dense point associations. The first part of the error function measures 

average distances for the visually associated feature points, and the second part compute a 

similar error term for the dense point associations. 

 

The loop exits after the error no longer decreases significantly or a maximum number of 

iterations is reached. Otherwise, the dense data associations are recomputed using the most 

recent transformation. Note that feature point data associations are not recomputed after the 

RANSAC procedure. This avoids that the dense ICP components might cause the point clouds 

to drift apart, which can happen in underconstrained cases such as large flat walls. 

 

 

5.2.1 Loop closure detection 
 

Alignment between successive frames is a good method for tracking the camera position over 

moderate distances. However, errors in alignment between a particular pair of frames, and 

noise and quantization in depth values, cause the estimation of camera position to drift over 

time, leading to inaccuracies in the map. This is most noticeable when the camera follows a 

long path, eventually returning to a location previously visited. The cumulative error in frame 

alignment results in a map that has two representations of the same region in different 

locations. This is known as the loop closure problem, and our solution to it has two parts. First, 

loop closure detection is needed to recognize when the camera has returned to a previously 

visited location. Second, the map must be corrected to merge duplicate regions. Our overall 

strategy is to represent constraints between frames with a graph structure, with edges 

between frames corresponding to geometric constraints. The relative transformations from 

the alignment of sequential frames give us some constraints, so without any loop closure, the 

graph consists of a linear chain. Loop closures are represented as constraints between frames 

that are not temporally adjacent. 

 

To keep the graph relatively sparse we define keyframes, which are a subset of the aligned 

frames. We determine keyframes based on visual overlap, adapting the density of keyframes 

to camera motion and local appearance. After we align a frame F, we reuse the SIFT features 

to find a rigid transformation with the most recent keyframe, using the same RANSAC 

procedure defined for frame-to-frame align [63]. 

 

Each time we create a new keyframe we attempt to detect a loop closure with each previous 

keyframe. A closure is detected if enough geometrically consistent 3D feature point matches 

are recovered by RANSAC, and if so, we add an edge to the graph representing this newly 

discovered constraint. For this stage we modify RGBD-ICP slightly to return no-matches if no 

RANSAC match is found with sufficient inliers, so that the same algorithm that performs frame-
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to-frame matching also performs loop closure detection and initializes pose-graph edges. We 

only perform the RANSAC check with keyframes that are within a small distance of our current 

position estimate. 

 

5.2.2 Surfel representation 
 

Considering that each frame from the RGB-D camera gives us roughly 250,000 points, it is 

necessary to create a more concise representation of the map. One option is to downsample 

the clouds. However, it is more appealing to incorporate all the information from each frame 

into a concise representation for visualization. One method for doing this is surfels [64,65]. A 

surfel consists of a location, a surface orientation, a patch size and a color. Surfels store a 

measure of confidence, which is increased through being seen from multiple angles over time. 

Surfels with low confidence are removed from the representation. Because surfels have a 

notion of size (obtained initially from the depth of the original point in the RGB-D frame), we 

can reason about occlusion, so if an existing surfel is seen through too often, it can be 

removed. Based on the estimated normals within each RGB-D frame, the surfel normal 

directions can be updated as well. We can also wait to add surfels until their normal is pointed 

(within some angle) towards the camera position, which leads to a more accurate recovery of 

the surfel size. The color of a surfel is determined from the RGB-D frame most aligned with the 

normal direction. 

 

 

Figure 5.4 Visualization of a RGB-D alignment and its 3D mapping 

 

 

 

 

 

 

 

 



34 
 

Chapter 6 

Modeling Human Pose 

 

In this chapter we will try to model the human pose consistently for at a later stage, 

performing recognition procedures. Visual analysis of human motion is currently one of the 

most active research topics in Computer Vision. Several segmentation techniques for body 

pose recovery have been recently presented, allowing for better generalization of gesture 

recognition systems. The evaluation of human behavior patterns in different environments has 

been a problem studied in social and cognitive sciences, but now it is raised as a challenging 

approach to computer science due to the complexity of data extraction and its analysis. From 

the point of view of data acquisition, many methodologies treat images captured by visible 

light cameras. Computer Vision is then used to detect, describe, and learn visual features [62]. 

The main difficulties of visual descriptors on RGB data is the discrimination of shapes, textures, 

background objects, changing in lighting conditions and viewpoint. On the other hand, depth 

information is invariant to color, texture and lighting objects, making it easier to differentiate 

between the background and the foreground object. The first systems for depth estimation 

were expensive and difficult to manage in practice. Earlier research used stereo cameras to 

estimate human poses or perform human tracking. In the past few years, some research has 

focused on the use of time-of-flight range cameras (TOF). 

Our proposal to create a representative model of the body pose is based on two aspects. Our 

first proposal is based on a traditional methodology to get the articulated model which 

represents the pose based on the manual placement of markers. The markers are arranged in 

a visual features where our system will be able to distinguish them and interpret the static 

pose that reflects the actor. The second proposal is based on creating a skeletal model based 

on 15 joints, which are performed automatically through obtaining approximate silhouette 

poses learned by examining the depth map. In this second proposal, the process is completely 

automatic and non-invasive and should not be placing any kind of marker to the actor. 

 

6.1 Getting the model articulated by landmarks 
 

In this part, is presented a fully-automatic system that is able to segment the human body as 

well as the markers distributed among the human body. The system is composed by two main 

modules. The first module requires the user to make and show an image with the color model 

of the markers and to calibrate the sensors in a simple way. Once the system is adapted, in the 

second module the user only needs to put the markers to the subject and make a photo. The 

system then automatically computes a depth map, segments human body and markers, and 
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processes the data so that it is automatically formatted and displayed to the physician in order 

to give objective support for pose analysis. 

 

The architecture of the system is shown in Figure 6.1. From a hardware point of view, the 

architecture uses a RBG video camera and infrared laser. The details of the sensors are 

described in the results section. From a software and usability point of view, the system can be 

split into two main modules: system adaptation and automatic analysis. Next, we describe 

each module in detail. 

 
Figure 6.1 System architecture 

 

In order to obtain a fully-automatic system able to segment the human body and detect 

markers, color learning and sensor calibration are first required (left part of Figure 6.1). The 

explanation of the calibration will be omitted, because we use the calibration template 

methodology explained in chapter two-dimensional calibration. 

 

6.1.1 Color learning 
 

In order to learn a color model, an interactive interface has been designed so that the user can 

load an image where a model of the target markers has been previously captured. The user 

can then click on a pixel   of the image with the desired color. Then, a region growing 

procedure [5] starting at     is applied in the following way: 

 

                             

Equation 6.1 

 

 

where    is the set containing all the neighbor pixels to pixels contained in V, function 

         measures the color difference in CIELAB color representation xj and xi of pixels j and i, 

respectively, and    is a sensitivity threshold parameter. Previous equation is iteratively 

performed until no updated is obtained over  . The sensitivity parameter is changed online by 

the user by means of an interactive toolbar. In this way, the user can observe the set of 

selected pixels   and include them to the color model, avoiding the inclusion of non-
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representative color pixels. The CIELAB color model of pixels   is then clustered into k clusters 

using k-means algorithm. The clustering is performed in the following way: 

 

  
             

          
                

Equation 6.2 

 

where   
  contains the pixels for cluster i at iteration t and   

  is the mean value of cluster i. 

After applying previous equations, new means (centroid) m are estimated as follows, 

 

  
    

 

   
  

   
    

 

 

Equation 6.3 

 

and the procedure is performed until no updated is obtained on S. The k centroid m obtained 

by running k-means correspond to our learned color model. 

 

Given the region of the image corresponding to the automatic body segmentation, the color 

model m is used within this region is order to look for color markers. This task is performed 

automatically by comparing each pixel value in CIELAB representation with the centroid 

obtained by k-means clustering using a sensitivity threshold   . Since the color segmentation is 

only performed within the body region, possible false positive detections are avoided. 

Moreover, we performed a postfiltering by means of mathematical morphology in order to 

remove noise pixels and join mark pixels [9]. From the estimated final blobs, its center of 

coordinates in then computed. Examples of automatically labeling of markers are shown in 

Figure 6.2(b) and (d) for input images (a) and (c), respectively. 

 

 
Figure 6.2 Example of marker recovery  

 

 

If a form is described by n points on a dimension d, represent the way to nd vector formed by 

the concatenation of the individual position of landmarks. For example, on a 2-D image we can 

represent n landmarks on the feature vector x as: 
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Equation 6.4 

 

 

6.1.1.1 Experimental results  

 

In order to test the reliability of the first prototype of the application, we captured a set of 

data corresponding to the following specifications: four different corporal configurations and 

ten different markers configurations. Since we used five subjects for the experiment, it 

represents a total of 200 analysis. Some samples are shown in Figure 3(a) and (c), respectively. 

For these experiments we used green markers of 8mm of diameter, and fixed the system 

sensors at a 2m of distance from the subject. From this initial configuration, we captured one 

image and used the calibration interface in order to obtain the sensor parameters and perform 

color region growing to learn the color model. Then, automatic analysis on the commented 

data is performed. In order to see the scalability of the application in different environments, 

we also slightly changed the illumination conditions of the inner environment where we 

performed the experiments. The output of the system is a formatted excel file where the angle 

among all possible triplets of markers and the distance among all pairs of markers are shown. 

 

The video data uses 8 bits VGA resolution at 15Hz, and we capture frames at 1280x1024 pixels. 

The infrared laser in combined with a monochrome CMOS sensor that captures the 3D data 

from the environment. We tested the laser sensitivity in a range between 1,2 and 3,5 meters, 

with successful results. The angular scope of the sensor is 57 and 43 degrees in horizontal and 

vertical, respectively. The software is implemented in C and uses OpenCV library [66]. 

 

 

Number of markers mm Degree 

76,3% 2,3±1,2 3,7±2,4 

Table 6.1 Results of experiments measured in percentage of detected markers, deviation to 

real distance, and deviation to real angle including confidence interval, respectively 

 

The percentage of successfully detected markers, mean deviation in mm and degrees as well 

as their confidence interval at 95% are shown in Table 6.1. One can see that though the high 

distance among the subject and the sensor and the low diameter of the markers, the system is 

able to automatically detect almost all the markers, and obtain very accurate estimations of 

angles and distance compared to the ground truth data. 

 

 

6.1.1.2 System enhancements 

 

Due to low system performance regarding the detection of markers, has decided to change the 

marker type. This poor performance is due to different lighting conditions, color and 

uniformity of the markers caused by shadows and lighting. The new proposal  each marker 
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consists of a rechargeable battery button IR2032 20 mm in diameter with a corresponding 

holder, a microswitch and a 3mm LED cool white, 6000-8000mcd, 3V and 20mW. This 

assembly enables high brightness lasts up to 2 hours. In order to avoid having to put up the 

stage lighting is incorporated into the multi-sensor system, externally, a digital infrared 850nm 

filter. This configuration allows the capture of LED markers instantly, because infrared light is 

highly distinguishable from the rest of stage. These system elements are shown in Figure 6.3. 

In the Figure 6.4 we can see a real test of the system with the improvement.  

 

 
Figure 6.3 Picture with LED markers and cut-off IR filter 

 

 

 
Figure 6.4 Example of LED marker recovery 

 

This section will not be commenting on the experiments and results with the improvement, 

because part of the chapter on applications, specifically the implementation ADIBAS posture. 

In this section details the experiments and results. 

 

6.1.2 Constitution of the skeletal model 
 

Once obtained the set of markers, we characterize these as a vector of characteristics and then 

to treat them and distinguish them. To do this we must develop and manage such markers to 

obtain a consistent set capable of representing any articulated model, ie the human pose. 

There are numerous configurations to characterize positional skeletal model, we will try to 

render the model shown in Figure 6.5. 
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Figure 6.5. Skeletal model formed by 15 joints 

 

The system described should make a reliable reconstruction of the vector of features obtained 

by the vector into the skeletal model. The system described should make a reliable 

reconstruction of the vector of features obtained by the vector into the skeletal model. This 

reconstruction of the feature vector formed by the position of the markers will be able to 

represent multiple combinations on which you can configure the human body pose. This 

ordering and indexing the vector of features will support the process of classifying the pose. 

For this purpose we have examined two algorithms capable of reconstructing the shape 

formed by the markers, they are Shape Context and Active Shape Models. 

 

6.1.2.1 Shape Context 

 

Shape context [68] is the term given by Serge Belongie and Jitendra Malik to the feature 

descriptor they first proposed in their paper "Matching with Shape Contexts" in 2000”.  The 

algorithm is mainly based on the following premises: 

 

- Solve the correspondence problem between the two shapes. In our context, the 

source shape is a vector obtained by the position of the feature vector regarding of the 

markers, and how destiny is a predetermined form in our database. In practical 

purposes we use a simple initial form, as a calibration phase. Once we have rebuilt our 

vector of features in a skeletal model, the detection of the markers is still running shot 

by shot, keeping the ratio of the skeletal model. 

- Use the correspondences to estimate an aligning transform. 

- Compute the distance between the two shapes as a sum of matching errors between 

corresponding points together with a term measuring the magnitude of the aligning 

transformation. 

 

The shape context is intended to be a way of describing shapes that allows for measuring 

shape similarity and the recovering of point correspondences. The basic idea is to pick n points 

on the joints of a shape. For each point pi on the shape, consider the n − 1 vectors obtained by 

connecting pi to all other points. The set of all these vectors is a rich description of the shape 
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localized at that point but is far too detailed. The key idea is that the distribution over relative 

positions is a robust, compact, and highly discriminative descriptor. So, for the point pi, the 

coarse histogram of the relative coordinates of the remaining n − 1 points is defined to be the 

shape context of pi. The bins are normally taken to be uniform in log-polar space. 

 

 

                               
Equation 6.5 

 

In order for a feature descriptor to be useful, it needs to have certain invariances. In particular 

it needs to be invariant to translation, scale, small perturbations, and depending on application 

rotation. Translational invariance come naturally to shape context. Scale invariance is obtained 

by normalizing all radial distances by the mean distance α between all the point pairs in the 

shape although the median distance can also be used. Shape contexts are empirically 

demonstrated to be robust to deformations, noise, and outliers using synthetic point set 

matching experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6 Shape context procedure 

6.1.2.2 Active Shape Models 

 

Active shape models [67] (ASMs) are statistical models of the shape of objects which iteratively 

deform to fit to an example of the object in a new image, developed by Tim Cootes and Chris 

Taylor in 1995. The shapes are constrained by the PDM (point distribution model). Statistical 

Shape Model to vary only in ways seen in a training set of labelled examples. The shape of an 

object is represented by a set of points (controlled by the shape model). The ASM algorithm 

aims to match the model to a new image. It works by alternating the following steps: 

Shape Context Methodology 

1. Randomly select a set of joints of a known silhouette and another set of joints on 

an unknown silhouette. 

2. Compute the shape context of each point found in step 1. 

3. Match each joint from the known silhouette to a point on an unknown silhouette. 

To minimize the cost of matching, first choose a transformation (e.g. affine, thin 

plate spline, etc) that warps the edges of the known shape to the unknown 

(essentially aligning the two shapes). Then select the point on the unknown shape 

that most closely corresponds to each warped point on the known shape. 

4. Calculate the "shape distance" between each pair of points on the two shapes. 

Use a weighted sum of the shape context distance, the image appearance 

distance, and the bending energy (a measure of how much transformation is 

required to bring the two shapes into alignment). 

5. To identify the unknown shape, use a nearest-neighbor classifier to compare its 

shape distance to shape distances of known objects. 
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 Look in the image around each point for a better position for that point. 

 Update the model parameters to best match to these new found positions. 

Given a set of s training images, generate s vectors xj (produced by Equation 6.4). Before 

statistical analysis of these vectors is very important that these forms, now represented by a 

vector, are all positioned on a same origin of coordinates. This process is called alignment. 

The technique to position all forms of the same origin of coordinates will be the Procrustes 

Analysis [ref 14 app_models.pdf]. This technique aligns each shape in order to minimize the 

amount of distance each way about how average: 

 

            

Equation 6.6 

 

Where    is the feature vector relating to the possession of origin or calibration, and    the 

target feature vector. The operations to be carried out during the alignment process of the 

form passed in its final distribution. Different approaches to alignment can produce different 

distributions of aligned forms. Our goal is to maintain a compact layout of forms, with minimal 

non-linearization. 

 

So far the model that we have vector contains a set of landmarks aligned. These vectors form a 

distribution on the nd dimensional space which is projected. If we design new forms on this 

site, and are positioned similarly to all learning, we can decide if the new examples are 

plausible or not. To examine the constitution of the form will look for a model to parameterize 

the form: 

       
Equation 6.7 

 

Where b is a vector with the model parameters. Different models produce different vectors, x. 

Creating a distribution of parameters in a model, p, would be able to limit the scope of the 

new objects. These projections could play a classification by examining the similarity of the 

training set with new items. 

 

To simplify the problem and improve the processing of the data, we reduce the dimensionality 

nd coming of vectors containing the landmarks. A very effective solution is to process the 

algorithm Principal Component Analysis (PCA) to the form of joint learning. Applying PCA on 

the data form a cloud of points projected information to each form on a space of reduced 

dimension. The above process is detailed in the following steps: 

 

1. Find the center of mass of the information in the learning set size 

s. 

   
 

 
   

 

   

 

Equation 6.8. 
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2. Calculating the covariance of the information in the training set. 

 

  
 

   
                
 

   

 

Equation 6.9 

 

3. Obtaining the eigenvectors,   and their corresponding eigenvalues λi. Reordering of 

eigenvalues in descending order, resulting in the reorganization of the eigenvectors. 

 

4. Choose the number of eigenvectors to be used according to the percentage of 

representation of the eigenvalues. It only uses the number of eigenvectors that 

represent 98% of the information through the eigenvalues. 

 

If   contains t eigenvectors corresponding to largest eigenvalues, then we can approximate 

the projection   of a new training set to    with the following expression: 

 

         
Equation 6.10 

 

Where b is a vector of t dimension given by: 

 

            
Equation 6.11 

 

The vector b defines a set of parameters that define a strain belonging to the model of 

learning. To determine whether a model is plausible when we design the shape of the new 

image on all forms of learning, we obtain a vector b with the parameters of the form. We will 

create      as an estimator of the distribution of all forms of learning. Decide whether this 

new form is plausible if        ,    be an average value of all distributions of learning 

chosen arbitrarily. 

 

Once we have projected the new image on the learned model, and therefore, we have 

obtained have obtained the vector b which form the parameters that correspond to the shape. 

Before, once the proposed new form, it appears plausible to consider the problem this way. 

 

We'll change the vector b by b', which will form the parameters of an image, x', plausible of 

training set close to x: 

              
Equation 6.12 

 

Once we have a first approximation of the form, so plausible, we initiated the process of 

convergence and thus adapt to new parts of the image. An example of the trained model is 
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described by the parameters of b, combined with transformations such as translation (Xt, Yt), 

rotation (θ) and scale (s). 

 

The position of points on the model image, x, is given by: 

 

                   

Equation 6.13 

 

If you wanted an example of the model converge to the point (x, y) we would: 

 

         
 
 
    

  

  
   

          
            

  
 
   

Equation 6.14 

 

If we want to find a correspondence between such a model learned on the set of points of the 

new shape, Y, we find an expression to be solved by minimizing: 

 

                     
 
 

Equation 6.15 
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Diagram of the training process: 
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Diagram of fitting 
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6.1.3 Experiments for the reconstruction of the skeleton 

 
In this section we are going to expose a experiment in order to analyze the skeletal model 

obtained by both methods. 

 

The video data uses 8 bits VGA resolution at 15Hz, and we capture frames at 640x480 pixels. 

The infrared laser in combined with a monochrome CMOS sensor that captures the 3D data 

from the environment. We tested the laser sensitivity in a range between 1,2 and 3,5 meters. 

The angular scope of the sensor is 57 and 43 degrees in horizontal and vertical, respectively. 

Had been implemented in C/C++ and uses OpenCV library [10]. 

 

 

 
Figure 6.7 Convergence example with Shape Context 

 

 
Figure 6.8 Convergence example with Active Shape Models 

       

As seen in the previous figures the results are sufficiently accurate to use this methodology as 

long as the pose is simple enough to compare. Another important feature to note is its low 

computational complexity, obtaining results in a time less than 300ms in the case of Active 

Shape and less than 1500ms in the case of Shape Context (shape formed by nine points). 

Shape Context, the high computational cost limits its usefulness, as they would be launching it 

frame by frame.  

 

 



47 
 

6.2 Getting the model articulated using depth maps 

 
In this section is presented a generic framework for object segmentation using depth maps 

based on Random Forest and Graph-cuts theory, and apply it to the segmentation of human 

limbs. First, from a set of random depth features, Random Forest is used to infer a set of label 

probabilities for each data sample. This vector of probabilities is used as unary term in α-

expansion Graph-cuts algorithm. Moreover, depth of neighbor data points are used as 

boundary potentials. Results on a new multi-label human depth data set show high 

performance in terms of segmentation overlapping of the novel methodology compared to 

classical approaches. 

 

Many researchers have obtained their first results in the field of human motion capture using 

this technology. In particular, Shotton et al. [12] present one of the greatest advances in the 

extraction of the human body pose from depth images, that also forms the core of the Kinect 

human recognition framework. The method is based on inferring pixel label probabilities 

through Random Forest (RF), using mean shift to estimate human joints, and representing the 

body in skeletal form. Other recent work uses the skeletal model in conjunction with computer 

vision techniques to detect complex poses in situations where there are many interacting 

actors [69]. 

 

In this paper we present a generic framework for object segmentation using depth maps based 

on RF and Graphcuts theory (GC), and apply it to the segmentation of human limbs. RF is used 

to infer a set of probabilities for each data sample, each one indicating the probability of a 

pixel to belong to a particular label. Then, this vector of probabilities is used as unary term in 

the α-expansion GC algorithm. Moreover, depth of neighbor data points are used as boundary 

potentials. As a result, we obtain a globally optimal segmentation of depth images based on 

the defined energy terms. The use of GC theory has been recently applied to the problem of 

image segmentation, obtaining successful results [70]. Our method is evaluated on a 3D data 

set designed in our lab, obtaining higher segmentation accuracy compared to classical RF 

approach. 

 

 

6.2.1 Framework description 

 
The depth-image based approach suggested in [12] interprets the complex pose estimation 

task as an object classification problem, by evaluating each depth pixel affiliation with a body 

part label, i.e. the probability for representing that body part. The pose recognition phase is 

addressed by re-projecting the pixel classification results and inferring the 3D positions of 

several skeletal joints using RF and mean-shift algorithms. The work of [12] shows a number of 

achievements and improvements over previous work, as the randomized decision forest 

classifier of T decision trees applied on simple and computationally efficient depth 

features. Our goal is to extend the work of [12] and combine it with a general segmentation 

optimization procedure to define a globally optimum segmentation of objects in depth images. 
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As a case of study, we segment pixels belonging to the following seven body parts1: 

LU/LW/RU/RW arm, L/R hand, and torso (from Left, Right, Upper, and lower, respectively). The 

pipeline of the segmentation framework is illustrated in Figure 6.9. 

 

 
Figure 6.9 

 

6.2.2 Random Forest 
 

Considering a priori segmented human body from the background in a training set, the 

procedure for training a randomized decision tree t is formulated over the definition of a depth 

comparison feature as follows: 

 

              
 

     
         

 

     
  

Equation 6.16 

 

where       is the depth at pixel x in image I,        , and     ∈ R2 is a pair of offsets. 

The offset normalization ensures depth invariance. The tree training over a set of ground truth 

images runs through the following steps: 

 

 

1. Random selection of a set of node splitting criteria ( , τ ) , where   = (u, v), and τ ⊂ R is 

a set of splitting thresholds for each θ. 
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2. Definition of a set of pixels Q = {(I, x)} over a unique set of training images (per tree) by 

random selection of a fixed number of uniformly distributed pixels for each image. Q 

constitutes the set of pixels at the root node of the tree. 

 

3.  Estimation of the best splitting criteria φ* at the current node such that the 

information gain of partitioning the original set of pixels Q into left and right subsets is 

maximum. The partitioning decision is taken per pixel so that: 

 

                              

                  

Equation 6.17 

 

4. Repetition of step 3 for Qleft (  *) and Qright (  *) recursively until some preset stop 

conditions are met: the tree reaches maximum depth; the information gain or the 

number of pixels in the node fall below a minimum. The node where the stop 

condition occurred is treated as a leaf node. 

 

5. Estimation of the probability distribution            for class    at each leaf node of the 

tree, calculated on the normalized histogram of body part labels c with each histogram 

bin being normalized over the total number of training pixels for that label in Q. 

 

In that manner each tree t of the randomized forest can serve as a per pixel classifier for a test 

image. To avoid misclassification due to tree overfitting, the inferred pixel probability 

distribution is averaged over all trees in the forest as follows: 

 

           
 

 
           

 

   

  

Equation 6.18 

 

 

6.2.3 Graph-Cuts segmentation 
 

GC [70] is an energy minimization framework which has been considerably applied in image 

segmentation –both binary and multi-label–, with highly successful results. In this work, we 

extend the GC theory to be used in depth images and optimize the results obtained from the 

RF approach in order to deal with automatic multi-label segmentation. 

 

Given                     the set of pixels of the depth image I, lets define   

             the set of indexes of I; N the set of unordered pairs {i, j} of neighboring pixels of 

  under a defined neighborhood system –typically 4- or 8-connectivity–, and   

               a vector whose components    specify the labels assigned to pixels i ∈  . 
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This framework defines an energy function E(L) which combines local and contextual 

information, and whose minimum value corresponds to the optimal solution of the problem –

in our case, the optimal segmentation: 

 

                 
Equation 6.19 

 

The first term of the energy function is called the “unary potential”. This potential encodes the 

local likelihood of the data by assigning individual penalties to each pixel for each one of the 

defined labels: 

 

              

 ∈ 

 

Equation 6.20 

 

 

The second term or “boundary potential” encodes contextual information by introducing 

penalties to each pair of neighboring pixels as follows: 

 

                     

     ∈ 

 

Equation 6.21 

 

 

being          a function that introduces prior costs between each possible pair of 

neighboring labels. Finally, λ ∈    is a weight that specifies the relative importance of the 

boundary term against the unary term. 

 

Once the energy function is defined, a graph is built following the neighborhood system used 

in the boundary potential     , and the energy function is transferred to this graph. In the 

case of binary segmentation, i.e.   ∈         ∈  , the min-cut algorithm [70] finds the 

minimum cut of this graph –which corresponds to the minimum energy– and thus, the optimal 

segmentation. When   ∈              , two main algorithms used to be applied in order 

to find not the minimum energy, but a suboptimal approximation of it: α-β-swap and α-

expansion [70]. While the first one is less restrictive and can be applied in a broader range of 

energy functions, the second one has been proved to obtain better results, as long as the 

energy function fulfills some conditions [70]. In our case, we based our segmentation 

methodology for depth maps on α-expansion GC. In the following subsections, the specific 

energy function potentials we designed for our problem are defined. 
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6.2.3.1 Unary potential 

 

The unary potential encodes local likelihood for each pixel belonging to each one of the labels 

Li of our problem. In our case, we have used the log-likelihood of the probabilities returned by 

the RF for the computation of the unary potential: 

 

                       
Equation 6.22 

 

obtaining a unary cost potential for each class    – corresponding to label    in GC. This step is 

shown at the top of Figure 6.9, where the output probabilities of the leafs of RF trees are used 

to compute the unary potentials        at the input edges of the GC graph. 

 

 

6.2.3.2 Boundary potential 

 

In the case of the boundary potential, we tested three different approaches, all of them based 

on the same formulation: 

 

       
 

         
          

 

 

Equation 6.23 

 

where             
 
     and dist(i, j) computes the Euclidean distance between the 

cartesian coordinates of pixels xi and xj . The difference among the three different approaches 

we tested remains in the information of the pixels xi and xj we use in the exponential function. 

Firstly, we just used RGB information, as in the standard GrabCut algorithm [71]. Secondly, we 

used only depth information, and, finally we tried both of them together. For this last 

approach, we normalized the depth information in the range [0...255], and concatenated it 

with the RGB information, resulting in a 4-D RGBD vector. 

 

Finally, we defined two different           functions in order to introduce some prior costs 

between different labels. On one hand, we considered the trivial case where all different labels 

have the same cost: 

 

           
             

            
   

Equation 6.24 

 

On the other hand, we introduced some spatial coherence between the different labels, taking 

into account kinematic constraints of the human body limbs: 
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Equation 6.25 

 

 

With this definition of the inter-label costs, we are making difficult for the optimization 

algorithm to find a segmentation in which there exists a frontier between whether the right 

and left upper-arms, right and left hands, or in lower measure, between left hand and right 

lower-arm, and viceversa. Therefore, we are assuming that poses in which the two hands are 

touching are not probable. This label coherence cost should be estimated for each particular 

problem domain. In our particular data set of poses, the values of 1, 5, and 10 were 

experimentally computed. 

 

 

6.2.4 Experiments and results 
 

Before the presentation of the results, we describe the data considered and the different 

methods, parameters, and validation protocol of the evaluation. 

 

Data: For the purposes of gathering ground truth data, we defined a new data set of different 

sessions where the actors are performing different gestures with his/her hands – only upper 

body is considered. Each frame size is 640×480 and contains 24 bit RGB image, 12 bit depth 

and human skeletal graph. The data set was defined in a semisupervised manner. From the 

human skeletal and the depth buffer an additional label buffer is roughly generated. The 

upper and lower arms are labeled by the pixels bounded by from the cylinders between the 

enclosing joints of shoulder, elbow and hand, while the palm is labeled by the pixels bounded 

by a sphere centered in the joint of the hand. The RGB, depth, and skeletal data are directly 

obtained via the OpenNI library [10]. As a final stage, each frame was manually edited to 

correct the automatically generated labels. The ground truth is composed by capturing 3 

actors in 3 sessions gathering 500 frames in total. It is important to mention that after the 

manual editing there still exist around 1% of false positive labels due to editor mistakes. An 

example of the developed interface for semi-automatic ground-truth generation is shown in 

Figure 6.9. 

 

We also defined an extra small test consisting of 63 images of hand regions with six labels per 

image. Inspired by the reported test parameters and accuracy results in [12], our experiments 

rest on the following setup: we perform a 5-fold cross validation over the available 500 frames 

by training random forest of three trees of depth 20, 130 unique training images per tree, 1000 

uniformly distributed pixels per image, 100 candidate features Q, and 20 thresholds τ per 

feature. Each test set consists of 100 images. Carrying a randomized test trial, we analyze the 

effect of the choice of test parameters on the classification accuracy and compare the results 
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with another set of features: a mixture of depth Equation 6.16 and gradient Equation 6.26 

features: 

 

 
Figure 6.9 Example of body parts segmentation 

 

                
 

     
         

 

     
   

Equation 6.26 

 
where       is the gradient vector at pixel x, and the feature         represents the angle 

between the two gradient vectors at offsets u and v from x. When applying GC, the λ 

parameter was set to 50 for all the performed experiments. 

 

 

6.2.4.1 Random forest results 

 

Table 6.2 shows the estimated average classification accuracy for each of the considered 

labels, using the maximum RF probabilities for each pixel. Without claiming exhaustiveness of 

our experiments, the results from Table 6.2 allow us to make the following analysis: The 

maximum offset Omax has the greatest impact on the accuracy results at the hands regions, 

which are with the smallest area in our body part definition. Doubling the size of      leads to 

an increase in the accuracy of 20% for the hands and 6% for the other body parts. In other 

words,      increases the feature diversity and the global ability to represent spatial detail. 

The number of candidate features Q would not have such a tremendous impact on the 

accuracy as the      parameter, though a higher number helps identifying the most 

discriminative features. A decrease from 100 to 80 features drops the hands accuracy with 1-

3%. We also tested the impact of the depth of the decision trees. Trimming the trees to depth 

15 has a very little impact, showing an improvement of 0.1% on the average accuracy that may 

weekly be attributed to better classification at the lower arm regions. Trimming to depth 10 

shows a 4% decrease in the accuracy at the hands, i.e. the tree is not trained well enough. Our 
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analysis indicates that we may be witnessing slight overfitting at tree depth of 20 due to the 

small amount of training images. Our final test includes comparison over combination of both 

features    and   . Since the depth data provided by Kinect is noisy, we apply a Gaussian 

smoothing filter before calculating the image gradients and the feature from Equation 6.26. 

We chose the gradient feature since it complements the relations of depth features with 

information about the orientation of local surfaces. However, in our test we did not found 

significant differences in the performance of the RF approach when including this kind of 

features. 

 

 
Table 6.2 Average per class accuracy in % calculated over the test samples in a 5-fold cross 

validation.     represents features of the depth comparison type from Equation 6.16, while    

- the gradient comparison feature from Equation 6.26.       indicates the maximum absolute 

value for the x; y coordinates of the offsets u and v. Parameter dt stands for tree depth 

 

In order to show the generalization capability of the proposed approach, we tested an extra 

case of study consisting of segmenting finger regions. For this test we only considered a 

manual annotated depth video of 63 frames. The results applying the same validation than in 

the previous case show the best performance for the following setup: 1 tree of depth 15, 500 

pixels per image, 100 candidate features Q, 20 thresholds τ per feature, and      = 45. The es- 

timated average per class accuracy was 58.5% mostly due to the small number of training 

images. Figure 6.10 displays a couple of test images comparing the ground truth and the 

inferred labels. The results are promising, showing the generality of the presented approach 

for general multi-class labeling in depth images. 
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Figure 6.10 Results from RF classification in the case of hands. First row shows the ground-

truth for two examples. Second row shows the RF classification results. Third row shows the 

final α-expansion GC segmentation results 

6.2.4.2 Graphs-cut results 

 

The results we obtained when applying GC over the probabilities returned by the RF are 

detailed in Table 6.3. We can see how these results improved the labelling obtained by the RF 

approach. If we take a closer look to the measurements, we can see that we obtain the best 

results when using only depth information for the computation of the boundary potential. In 

our case of study, adding RGB to the depth information reduce generalization of the boundary 

potential. In Figure 6.11 we can see some qualitative results of the segmentations. 

 

 

Table 6.3 Average per class accuracy in% obtained when applying the different GC approaches 

 

Another interesting result is the influence of the prior costs given by the different            

functions. Clearly, when introducing spatial coherence with             , we obtain better 

results, specially in the segmentation of the hands, which are the parts with more confusion 

between them. Figure 6.12 shows a qualitative example of both approaches. In the second 

experiment, labelling pixels from hands, we achieve an average per class accuracy of 70.9%, 

which supposes even a greater improvement than in the case of human limbs segmentation. 

Figure 6.10 also shows some qualitative results of the GC approach, where we can appreciate 

that regions are more consistent and are better defined than in the case of just using RF 

probabilities. It is worth mentioning that for this experiment, we used           as the cost 

function between labels, and yet we obtained consistent results. 
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Figure 6.11 From left to right: Depth map Ground Truth and labels, RF inferred results, and GC 

result over RF output probabilities, respectively 

 

 
Figure 6.12 Comparison of results without (a) and with (b) spatially consistent labels 
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Chapter 7 

Gesture Recognition 
 

In this chapter, we use data collected from a Kinect sensor, described by vectors of features 

that form the skeletal pattern ordered in time, to explore the feasibility of gesture recognition 

on a small case of study.  We attempt to identify simple gestures that a person might perform 

with his or her full body (e.g. waving, jumping). To do this, we use the vector of features 

obtained from the skeletal model described in the previous chapter, to first identify the 

location and pose of a person’s body, and from there, recognize patterns in the body’s 

movement over time. We compare and propose novel adaptations to two state-of-the-art 

approaches for gesture recognition: Dynamic Time Warping and Hidden Markov Models. 

 

7.1 Gesture recognition with an improved DTW 

 
Our proposal is focused within the Dynamic Time Warping framework (DTW) [72]. Dynamic 

Time Warping allows to align two temporal sequences taking into account that sequences may 

vary in time based on the subject that performs the gesture. The alignment cost can be then 

used as a gesture appearance indicator. 

 

The main contribution of our methodology is the introduction of a new method based on DTW 

for gesture recognition using depth data. We propose a Feature Weighting approach within 

the DTW framework to improve gesture/action recognition. First, we estimate a temporal 

feature vector of subjects based on the 3D spatial coordinates of fifteen skeletal human joints. 

From a set of different ground truth behaviors of different length, DTW is used to compute the 

inter-class and intra-class gesture joint variability. These weights are used in the DTW cost 

function in order to improve gesture recognition performance. We test our approach on 

several human behavior sequences captured by the Kinect sensor. We show the robustness of 

the novel approach recognizing multiple gestures, identifying beginning and end of gestures in 

long term sequences, and showing performance improvements compared with classical DTW 

framework. 

 

The articulated human model is defined by the set of 15 reference points shown in Figure 6.5. 

This model has the advantage of being highly deformable, and thus, able to fit to complex 

human poses. 

 

In order to subsequently make comparisons and analyze the different extracted skeletal 

models, we need to normalize them. In this sense, we use the neck joint of the skeletal model 

as the origin or coordinates (OC). Then, the neck is not used in the frame descriptor, and the 

remaining 14 joints are using in the frame descriptor computing their 3D coordinates with 
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respect to the OC. This transformation allows us to relate pose models that are at different 

depths, being invariant to translation, scale, and tolerant to corporal differences of subjects. 

Thus, the final feature vector    at frame   that defines the human pose is described by 42 

elements (14 joints x three spatial coordinates): 

 

         
      

      
          

       
       

   
Equation 7.1 

 
The original DTW algorithm [73] was defined to match temporal distortions between two 

models, finding an alignment warping path between the two time series             and 

           . In order to align these two sequences, a      matrix is designed, where the 

position       of the matrix contains the distance between    and   . The Euclidean distance is 

the most frequently applied. Then, a warping path: 

 

                             
Equation 7.2 

 

is defined as a set of “contiguous” matrix elements that defines a mapping between C and Q. 

This warping path is typically subjected to several constraints: 

 

Boundary conditions:          and         . 

Continuity: Given             , then         ,        and       . 

Monoticity: Given             , then         ,        and       , this forces the 

points in W to be monotically spaced in time. 

We are generally interested in the final warping path that satisfying these conditions 

minimizes the warping cost: 

 

             

 
 

  

 
    

 

   
 
 

 
 

Equation 7.3 

 

where T compensates the different lengths of the warping paths. This path can be found very 

efficiently using dynamic programming to evaluate the following recurrence which defines the 

cumulative distance        as the distance        found in the current cell and the minimum of 

the cumulative distance of the adjacent elements: 

 

                                                   
Equation 7.4 

 

Given the nature of our system to work in uncontrolled environments, we continuously review 

the stage for possible actions or gestures. In this case, our input feature vector Q is of “infinite” 

length, and may contain segments related to gesture C at any part. Next, we describe our 

algorithm for begin-end of gesture recognition and the Feature Weighting proposal within the 



59 
 

DTW framework. 

 

7.1.1 Begin-end of gesture detection 

 
In order to detect a begin-end of gesture             in a maybe infinite sequence 

           , a      matrix is designed, where the position       of the matrix contains 

the distance between    and   , quantifying its value by the Euclidean distance, as comment 

before. Finally, our warping path is defined by             as in the standard DTW 

approach. Our aim is focused on finding segments of Q sufficiently similar to the sequence C. 

The system considers that there is correspondence between the current block k in Q and a 

gesture if satisfying the following condition: 

 

           ∈          
Equation 7.5 

 

for a given cost threshold μ. This threshold value is estimated in advance for each of the 

categories of actions or gestures using leave-one-out cross-validation strategy. This involves 

using a single observation from the original sample as the validation data, and the remaining 

observations as the training data. This is repeated such that each observation in the sample is 

used once as the validation data. At each iteration, we evaluate the similarity value between 

the candidate and the rest of the training set. Finally we choose the threshold value which is 

associated with the largest number of hits within a category. 

 

Once detected a possible end of pattern of gesture or action, the working path W can be found 

through backtracking of the minimum path from        to       , , being z the instant of 

time in Q where the gesture begins. The algorithm for begin-end of gesture detection for a 

particular gesture C in a large sequence Q using DTW is summarized in Table 7.1. Note that 

        is the cost function which measures the difference among our descriptors    and   . An 

example of a begin-end gesture recognition for a model and infinite sequence together with 

the working path estimation is shown in Figure 7.1. 
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Figure 7.1 Begin-end of gesture recognition of a model C in an infinite sequence Q 

 

 

7.1.2 Feature Weighting in DTW 

 
In this section, we propose a Feature Weighting approach to improve the cost distance 

computation      of previous begin-end DTW algorithm.  

 

In standard DTW algorithm, cost distances among feature vectors    and    (3D coordinates of 

the skeletal models in our case) are computed equally for each feature of the descriptors. 

However, it is intuitive that not all skeletal elements of the model participate equally for 

discriminating the performed gesture. For instance, the movement of the legs when 

performing hand shaking should not have influence, and thus, computing their deviation to a 

correspondence model of the gesture adds noise to the cost similarity function. In this sense, 

our proposal is based on associating a discriminatory weight to each joint of the skeletal model 

depending on its participation in a particular gesture. In order to automatically compute this 

weight per each joint, we propose an inter-intra gesture similarity algorithm. 

 

 
Table 7.1 DTW begin-end of gesture recognition algorithm 

 

 

First, we perform a weight training algorithm based on a ground truth data of gestures. Given 

the data composed by           gesture categories described using skeletal descriptors, the 

objective is to obtain the inter-intra coefficient of the joints for the data set. This estimation is 
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performed per each joint using a symmetric cost matrix     . Each matrix element         for 

the matrix of joint p contains the mean DTW cost between all pairs of samples          ∈

       ∈    only considering the features of the descriptor related to the p-th joint, where    

and    represent the set of samples for gesture categories i and j of the data set. 

 

The mean DTW value at each position of the matrix    represents the variability of joint p 

between a pair of gestures. Note that the diagonal of   represents the intragesture variability 

per joint for all the gesture categories, meanwhile the rest of the elements compare the 

variability of joint p for two different gesture categories, codifying the inter-gesture variability. 

Since gestures, as any other object recognition system, will be more discriminative when 

increasing inter-distance and reducing intra-distance, a discriminative weight is defined as 

shown in Table 7.2, which assigns high cost to joints high high intra-inter difference values and 

low cost otherwise. Moreover, the assigned weight is normalized in the same range to be 

comparable for all joints. Note that at the end of this procedure we have a final global weight 

vector            , with a weight value    for the p-th joint, which is included in the re-

definition of the begin-end DTW algorithm cost function      to improve gesture recognition 

performance as follows: 

               
 
   

 
      

    

   

  

Equation 7.6 

 

where      is the length of the feature vector   . The Feature Weighting algorithm for 

computing the weight vector             is summarized in Equation 7.3. 

 

 
Table 7.2 Feature Weighting in DTW cost measure 
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7.1.3 Experiments and results 

 
We designed a new data set of gestures using the Kinect device consisting of five different 

categories: jumping, bendding, clapping, greeting, and noting with the hand. It has been 

considered 10 different actors, 10 different backgrounds, and 100 sequences per subject for 

recording the data set. Thus, the data set contains the high variability from uncontrolled 

environments. The resolution of the video depth sequences is 340x280 at 30 FPS. The data set 

contains a total of 1000 gesture samples considering all the categories. The ground-truth of 

each sequence is performed manually by examining and noting the position in the video when 

some actor begin-ends a gesture. Some samples of the captured gestures for different 

categories are shown in Figure 7.2.  

 

For the implementation of the system we used C/C++, efficiently using dynamic 

programming to evaluate the recurrence which defines the cumulative distance between 

vectors of features on each frame. The people detection system used is provided by the public 

library OpenNI [74]. This library has a high accuracy in people detection, allowing multiple 

detection even in cases of partial occlusions. The detection is accurate as people remain at a 

minimum of 60cm from the camera and up to 4m, but can reach up to 6m but with less robust 

and reliable detection.  

 

For the validation our approach and classical DTW algorithm, we compute the Feature 

Weighting vector   and gesture cost threshold μ over a leave-one-out validation. The 

validation sequences may have different length size since they can be aligned using DTW 

algorithm and trained for the different estimated values of μ. We validate the begin-end of 

gesture DTW approach and compare with the Feature Weighting methodology within the 

same framework. As a validation measurement we compute the confusion matrix for each test 

sample of the leaveout-out strategy. This methodology allows us to perform an exhaustive 

analysis of the methods and data set. Adding all test confusion matrices in a performance 

matrix   , final accuracy A is computed using the following formula: 

 

      
         

             
   

 
   

 

Equation 7.7 
 

Where NC contains the number of samples of the data set that has not been classified by any 

gesture since the classification threshold μ has not been satisfied. This evaluation is pessimistic 

and realistic since both a sample which is not classified or is classified more than once 

penalizes the final evaluation measurement. 

 

The obtained results applying DTW begin-end gesture recognition and including the Feature 

Weighting approach on the new data set are shown in Table 7.3. The results show the final 

performance per gesture over the whole data set using both classification strategies. The best 
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performance per category is marked in bold. Note that for all gesture categories, the begin-

end DTW technique with Feature Weighting improves the accuracy of standard DTW. 

 

 
Figure 7.3 

 

 
Table 7.3 Comparative table of results obtained 
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Chapter 8 

Applications developed 
 

In this chapter we are going to apply the methodology explained during this work. These 

applications are the result of the methodology that is explained in the previous chapters. 

Applications developed are mainly based on the recognition of human posture. In the first 

application we focus on evaluating the static pose for a specialized analytical study in 

functional rehabilitation. In this first application is very important the robustness and reliability 

of the data obtained, for this reason we place special emphasis on calibration and phase 

distortion of the image, analyzing the areas of interest through body marker placement. In the 

second application is a study in dynamic conditions of the position does not control. In this 

second application key markers will not be used as a major application feature is no invasion of 

the system on the actors. In this second application will place special emphasis on the results 

of the classification and recognition of gestures. 

 

8.1 ADIBAS Posture 

 
The analysis of posture and range of motion are essential to understanding the optimization of 

the gesture and improve, thus, the detection performance and possible injury. This 

quantification is especially interesting in athletes or in patients with neurological injury or 

muscle-skeletal system, allowing know the evolutionary process of these patients, evaluate the 

effectiveness of therapy applied and propose, if necessary, a modification of the treatment 

protocol. We present an automated system that allows, through a non-invasive technology, 

the automatic acquisition of LED markers placed on the patient and further analysis to show 

the specialist objective data to enable better support for diagnosis. It also describes an 

analytical system of the body posture without markers, where it has operated in dynamic 

sequences provides a high degree of naturalness to the patient when performing functional 

exercises. 

 

8.1.1 Motivation 

 
Corporal evaluation is a physical analysis procedure included in the American Medical 

Association policies. An incorrect postural alignment can alter the distribution of the 

articulation efforts, and produce an irreversible articular degeneration, inadequate muscular 

tension, and back pain. In particular, near 80% of the world population will be affected of back 

pain during his life. Current practices to analyze back problems are expensive and invasive, and 

alternative procedures should be required.  
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Digital biometry is defined by the American Society of photogrammetry as: “the technology to 

obtain reliable information from physical objects or from the environment though recording 

processes, measurements or image interpretation”. The systems based on this technology are 

able to estimate morphological or functional alternations, being an accessible resource for 

professionals from health experts as well as professionals from sports care. If we are able to 

report a robust and automatic system based on digital biometry to the expert, he/she may 

optimize the time dedicated to each test and reduce the risk os systematic error computation 

in the measurements. 

 

8.1.1 State of the art 

 
In the last decade, some works have been reported based on digital biometry applied to 

corporal analysis, being used by different health sectors because of the low implementation 

cost, high friability, and easiness of application. Most of the reported works are applied in the 

area of physiotherapy. Although the benefits of this technology are clear to the community, 

most of the reported systems are far from being fully-automatic. Two of the most well-known 

and used applications are Posture Print [1], from Brazil (SAPo), and Italy (DBIS), which require 

from continuous user interaction. Some other works are reported in literature. In [2], the 

authors present an initial approach to analyze the posture as a combination of rotation and 

translation matrices of three main corporal blobs. The results of the approach are satisfactory, 

though the analysis of only three human blobs reduces the system reliability. The work of [3] 

bases on the previous reference to define an environment of multiple cameras to calibrate the 

scene. Although the system estimate metrics among markers on the subjects, the system 

requires from full user interaction in order to select the relevant image points. Finally, in the 

work of [4], a large analysis of data capture by the previous approaches is performed. In this 

work, we present a fully-automatic system that is able to segment the human body as well as 

the markers distributed among the human body.  

 
 

8.1.2 Methodology 

 
To carry out this project we have subdivided the problem into four main modules. Each of the 

modules to be cited below may be viewed as black boxes of incoming and outgoing data, but 

for the good overall performance of the application, there must be a continuous flow of data 

communication and synchronization between the different modules. Description of each 

module is as follows: 

 

1. Module I: handles communication between the multisensor device and PC. This 

module must be capable of encoding the visual signal from the RGB camera and 

infrared sensor from the deep to be able to treat this information later. These data 

must be processed with high fluidity, in order to get good feedback from the user 

application. To use this feature OpenNI middleware, while our system is a multisensor 

device PrimeSense company.  
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2. Module II: the alignment occurs between the RGB and depth maps. In this module is 

implemented the primitives to obtain the world coordinates from the  RGBD space, it 

is for this reason that this module will provide the reliability of the data the system. 

Within this module also must use image processing techniques to extract the body 

markers. In this module we have used OpenCV library. For these functions call this 

module as a module of computer vision. 

 

 
Figure 8.1 Intelligent analysis example 

 

3. Module III: after obtaining the positions of the markers body, is reconstructed the 

skeletal model for subsequent postural analysis. To reconstruct the posture which is 

required to analyze are used techniques of alignment and shape reconstruction like 

Active Shape Models. This reconstruction will allow the therapist to perform intelligent 

analysis depending on the protocol which they want to make. Because of these 

features this is the artificial intelligence module. 

 

4. This module collects all analysis values to be displayed in an intuitive interface. This is 

the visualization module. It has been used NokiaQt library. 
 

 
Figure 8.2 Intuitive interface 
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Some modules mentioned before require constant must have been pre-computed. This is the 

case of Computer Vision module. For the world has been necessary to coordinate a calibration 

process using two-dimensional template. Then we detail this process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.1 ADIBAS [75] posture architecture 

 

 

8.1.3 Pre-process: Calibration  

 
The calibration process was conducted using the methodology discussed in Chapter 2, 

calibration using two-dimensional template. The software and hardware used is as follows: 

 

-PC Intel i7 2,4GHz CPU double kernel 

- two-dimensional template of size: 115,5cmx84cm 

- RGB camera resolution 640x480 pixels.  

- OpenCv library 

Module I 

Multisensor 

Device 
PC 

Module II 

RGB data 
Depth data 

Align 

Process 

Markers 

extraction 

World 

coords 

Module III 

Markers 

extraction 

Skeletal 

model 

Intelligent postural 

analysis 

World 

coords 

Module IV 

 Intelligent 

postural analysis 

Intuitive 

interface 

Rehabilitation 

patient 

Rehabilitation 

specialist 



68 
 

 

Figure 8.2 2D Calibration template 

One of the main features of the visual characteristics calibration template is the 

complementary colors. This feature will help us to implement a detection of corners and edges 

on the template. We will use an algorithm very common in computer vision, edge detector 

Harris corners. As shown in the figure below, the detection of corners and edges is very 

precise. 

 

Figure 8.3 Corners detected by Harris Algorithm (pixel error =0.13 pixels) 

Intrinsic values: 

Focal distance x = 5.3009194943536181e+02 

Focal distance y = 5.2635860167133876e+02 

Principal point x = 3.2821930715948992e+02 

Principal point y = 2.6872781351282777e+02 

Distortion values matrix: 

kc = [2.6172416643533958e-01, -8.2104703257074252e-01, -1.0637850248230928e-03, 

8.4946289275097779e-04]  
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The following table shows the results from the calibration data obtained (shown values of 10 

random samples referred to corners). 

 

Corners Pixel postion Real coord. Computed coord. Directional error 

u (pixels) v (pixels) x (cm) y(cm)    (cm)    (cm)    cm    cm 

1 52 32 18.5 8.5 18.25634 8.785612 0.24366 -0.285 

2 108 65 29 19 29.45855 19.32213 -0.4585 0.322 

3 166 100 39.5 29.5 39.81254 29.49242 -0.3125 -0.008 

4 226 140 50 40 49.95812 40.28745 0.0418 0.287 

5 286 182 60.5 50.5 60.65413 50.12544 -0.1541 0.375 

6 347 225 71 61 71.63214 61.48521 -0.6432 -0.485 

7 408 272 81.5 71.5 81.1256 71.36515 0.3744 0.135 

8 471 322 92 82 92.2325 82.36541 -0.2325 -0.365 

9 534 377 102.5 92.5 102.5478 92.87125 -0.0478 -0.371 

10 597 437 113 103 112.8542 103.35481 0.1458 0.354 

 

In order to verify the accuracy of the calibration algorithm, keep the camera position and 

reposition the template for different shots (or vice versa). The error can be evaluated by the 

following expression: 

 

   
          

          
  

   

 
 

Equation 8.1 

 

The average value is 0.3547cm, and this value is the mean error in the postural analysis 

posture. 

 

 

8.2 ADHD disorder analysis 
 

The goal is to make a proof of concept to show the influence of the variable "motivation" in 

the symptoms of the ADHD construct. The results of this analysis can be applied directly to 

support an objective diagnosis of ADHD in clinical practice, avoiding the subjective 

observational during short periods of time of experts involved in the process (teachers and 

pedagogues, parents, psychiatrists, psychologists, etc.). 
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Figure 8.4 Environment example 

 

8.2.1 Motivation 

 
Epidemiological studies on ADHD have provided information both unclear and controversy in 

recent years. The reasons for this confusion are the use of unreliable diagnostic tools 

(observation by an adult) and, above all, the differences arising from the qualifying criteria 

adopted (Shin, 2000). Currently, the diagnosis is made following the criteria of the DSM IV-TR 

(American Psychiatric Association, 2000) or ICD-10. These criteria include three different 

blocks: attention deficit, hyperactivity, and impulsivity. These criteria do not include the 

variable "motivation". Thus, a child may show symptoms of inattention or hyperactivity in the 

context of little or no motivation but not shown in the context of strong motivation. From this 

thought explains the concept of motivation as the forms of connection and relationship 

between the successive states of the psychic event. Rodriguez and Violante (2010, 2006) bring 

us the concept of motivation as a set of features and psychological processes that constitute 

the mental activity of a person. The motivation operates a set of variables that trigger the 

behavior and / or guidance in determining a direction for achieving a goal.  

 

8.2.2 Goal 
 

A primary goal of this project is to analyze the reliability of automatic methods of Vision and 

Artificial Intelligence for automatic analysis of human behavior and help in TDAH clinical 

diagnosis. 
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8.2.3 Implementation 

 

One of the principal conditions of the ADHD is the uncontrolled environment; the actors 

cannot interact with the sensors. So it is necessary to implement a full automatic framework. 

For this purpose, in this application we need to model the human pose without markers. To 

extract the skeletal model we use the methodology explicated in the chapter 6. In the 

framework we can use other techniques as support, like the RGB-D alignment, and DTW 

analysis for gesture recognition. In the next figure, we can see the architecture of the 

implementation. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 8.5 Architecture of the ADHD analysis 

 

 

One of the most difficult tasks is the extraction of the skeletal model under uncontrolled 

environments. One example of the environment is shown in Figure 8.4. There exists several 

scenes with partially occlusion, and the pose of the actors would be very complex. We can 

observe some example of unstable skeletal model reconstruction in figure 8.6. 
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Figure 8.6 Gesture Example of instability of the system 

 

 

Currently, the more robust part in the application is the gesture recognition for a good skeletal 

model sequence. In the next figure we can see how we can successfully extract a gesture from 

the DSM-IV and CIE-10 Database. 

 

 

 
Figure 8.7 Short sequence of a gesture 
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Chapter 9 

Conclusions 
 

In this master thesis we proposed a general methodology for human pose 

recovery and behavior analysis using multi-modal RGB-Depth data.  

 

The camera model is a necessary element if one needs to use the information in 

images to make measurements of the scene or to make 3D reconstructions of 

the same. This process involves estimating the intrinsic and extrinsic parameters 

of the camera or corresponding projection matrix. Two dimensional templates 

can be used for calibration purposes. The effectiveness of the calibration 

process depends on the quality of the measures involved, and the model used.  

In conclusion, we defined a calibration method that is effective and valid for 

most calibration problems that may arise today.  

 

Once calibration and RGB-Depth alignment was performed, we presented 

different methodologies for landmark detection and human pose recovery. 

These methods are based on image segmentation using several state-of-the-art 

technologies, such as Random Forest and Graph Cuts. The presented results 

show robust pose segmentation for different configurations and points of view, 

improving previous state-of-the-art results in the field. 

 

Moreover, we presented different feature descriptions based on depth map 

information and also tested gesture recognition approaches for time series 

analysis. In particular, we focused on Dynamic Time Warping, and we showed 

that Feature Weighting improves classical DTW results. 

 

From an application point of view, we presented different novel benchmarking 

data sets based on RGB-D information, and tested the novel approaches in a 

physiotherapy and TDAH clinical environments, showing promising results. 

  

As future lines of research we plan to test the proposed methodology in 

different real uncontrolled environments to analyze the main problematic of 

multi-modal behavior analysis and continue the research in the field. 
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Annex I 

Contributions: 

A.1.1 Papers and model utilities 

Miguel Reyes, Gabriel Domínguez, and Sergio Escalera, Feature Weighting in Dynamic 

TimeWarping for Gesture Recognition in Depth Data, 1st IEEE Workshop on Consumer Depth 

Cameras for Computer Vision, International Conference in Computer Vision, Barcelona, 2012.  

Miguel Reyes, José Ramírez-Moreno, Juan R. Revilla, Petia Radeva, and Sergio Escalera, 

ADiBAS: Sistema Multisensor de Adquisición Automática de Datos Corporales Objetivos, 

Robustos y Fiables para el Análisis de la Postura y el Movimiento, VI Congreso Iberoamericano 

de Tecnologíad de Apoyo a la Discapacidad, Mallorca, 16/06/2011-17/06/2011. 

M. Reyes, S. Escalera, and Petia Radeva, Real-time head pose classification in uncontrolled 

environments with Spatio-Temporal Active Appearance Models, CVCRD'10, Achievements and 

New Opportunities in Computer Vision, pp. 101-104, CVC, 29/10/2010, Barcelona, ISBN 978-

84-938351-0-1, 2010.  

Antonio Hernández, Miguel Reyes, Sergio Escalera, and Petia Radeva, Spatio-Temporal 

GrabCut Human Segmentation for Face and Pose Recovery, IEEE International Workshop on 

Analysis and Modeling of Faces and Gestures, Computer Vision and Pattern Recognition, IEEE 

Computer Society, 13/06/2010-18/06/2010, San Francisco, ISBN 978-1-4244-7029-7, 2010.  

Registered software number B3342-11, ADiBAS Posture: Automatic Digital Biometry Analysis 

System, Miguel Reyes, Sergio Escalera, José Ramírez, Juan Ramón Revilla, and Petia Radeva, 

2011. 

Laura Igual, Antonio Hernandez, Sergio Escalera, Miguel Reyes, Josep Moya, Joan Carles Soliva, 

Jordi Faquet,Oscar Vilarroya, Petia Radeva, Automatic Techniques for Studying Attention-

Deficit/Hyperactivity Disorder, Jornada TIC Salut Girona, 04/05/2011-05/05/2011, Girona, 

Spain, 2011.  

M. Reyes, J. Vitrià, P. Radeva, and S. Escalera, Real-Time Activity Monitoring of Inpatients, 

MICCAT, 28/10/2010, Gerona, 2010.  

 

 

 

 

http://www.maia.ub.es/~sergio/linked/iccvdtw2011.pdf
http://www.maia.ub.es/~sergio/linked/iccvdtw2011.pdf
http://www.maia.ub.es/~sergio/linked/iberdiscap.pdf
http://www.maia.ub.es/~sergio/linked/iberdiscap.pdf
http://www.maia.ub.es/~sergio/files/cvcrd2010reyes.pdf
http://www.maia.ub.es/~sergio/files/cvcrd2010reyes.pdf
http://www.maia.ub.es/~sergio/files/CVPR2010STGRABCUT.pdf
http://www.maia.ub.es/~sergio/files/CVPR2010STGRABCUT.pdf
http://www.maia.ub.es/~sergio/files/LauraTICDocu2011.pdf
http://www.maia.ub.es/~sergio/files/LauraTICDocu2011.pdf
http://www.maia.ub.es/~sergio/files/miccat2010Miguel.pdf
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Annex II 

A.1.2 Teaching 

 

 Introduction program to intelligent systems for prospective 

university students. Universitat de Barcelona, 2010. 

 

 Introduction program to computer vision systems for prospective 

university students (Campus Itaca). Universitat Autònoma de 

Barcelona, 2011. 

 

 Introduction program to robotics for prospective university students 

(Campus Itaca). Universitat Autònoma de Barcelona, 2011. 

 

The teaching material used in these sessions has been prepared by the 

methodologies outlined in this master thesis. 
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