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1 Introduction
Once we analyzed OpenCL as seen in the TAD Appendix, we decided to use it for one project that  
could take advantage of GPU-OpenCL, and has not yet been implemented.

Anna and Sergio were developing a GPGPU adapted innovative algorithm for MRI reconstruction 
in GSGL, but needed more performance so I implemented an OpenCL version of the algorithm.

I started with a first optimization step, focusing on the slowest part that is PCIe, to later focus on 
typical optimization techniques and obtain the best performance I can.

1.1 Project scope
Due to GPU-OpenCL nature, this project is related to some different areas of computer engineering.

First of all, programming languages. In this case ANSI C and C++, for the original source code to 
be implemented in OpenCL, and OpenCL C.

Second, concepts like API, or Framework appear when talking about OpenCL Host code.

Another two areas are computer architecture and operating systems. To deeply understand OpenCL, 
is convenient to know some OS basic concepts, because OpenCL interacts deeply with it.

Computer architecture is needed for understanding how to program OpenCL and mandatory to do 
performance-OpenCL.  Also  a  few  basic  concepts  of  operating  systems  can  be  needed  for 
performance OpenCL when handling concurrent computing and data transfers.

The last main area for OpenCL is parallel programming. It is convenient to know about common 
parallel  programming paradigms,  and then know which  ones  OpenCL uses.  OpenCL is  mainly 
about parallelism since this is the basis for High Performance Computing, and even commercial 
hardware, but also about parallelism between heterogeneous computing architectures.

1.2 Motivation
When we knew about GPU computing and Cell Broadband Engine, we found it very interesting 
since  with  GPU  performance,  there  were  some  magical  equations.  Price/Performance,  and 
Power/Performance were incredibly improved for lots of scientific workloads. It was as to say that  
you could have Supercomputer performance in a Workstation, or even a Desktop. Today it includes 
Laptops and even a few Netbooks.

There are several biomedical applications that need to extract different objects of interest, such as 
tissues and organs, contained into a volume dataset from MRI, CT, fMRI and PET input captions. 
Diagnostic methods, structures volume measurements, and visualization systems require to specify 
to which anatomical structure each sample/voxel belongs. In the bibliography, Transfer Functions 
has been used in order to directly associate optical properties or labels to the different data samples 
according their belonging to a particular structure in the underlying data. However, in general, the 
anatomical  structures  are  complex,  and  relationships  between  them  do  not  allow  to  separate 
sufficiently the different structures. In these cases, Transfer Functions alone do not suffice in order 
to separate different objects and it becomes necessary to use labeling, or segmentation methods. In 
this  sense,  several  approaches  to  label  biomedical  datasets  have  been proposed to  discriminate 
different anatomical structures in an output tagged dataset depending on the used imaging modality. 
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Among existing  methods,  supervised  learning  methods  for  segmentation  have  been devised  to 
easily analyze biomedical datasets  by a non-expert  user.  In a preprocess, an expert user, such a 
radiologist,  should  identify a subset of samples of each anatomical structure.  Then, during the 
learning step, the supervised method defines a classifier to be automatically used in the testing or 
classification stage. Since learning phase is carried on a pre-process, before labeling, the classifier 
can be used in different  classifications several times by an inexpert  user.  Thus, to optimize the 
classification stage becomes imperative. Thanks to the recent emerging technologies of multi-core 
CPUs and GPUs, as well as new software languages, such as NVIDIA’s CUDA and OpenCL, we 
propose to parallelize the classification step of a well-know supervised method, called Adaboost, in 
the GPU.

This project then is an effort to improve performance for a modern classification algorithm, using 
new High Performance Computing technologies.

1.3 General goals
The first  goal of this  implementation is  to  improve the performance achieved for  binary voxel 
classification in OpenMP C++ and GSGL.

1.4 Specifc Goals
We propose an alternative representation of the Adaboost binary classifier in order to increase the 
performance of the classical implementations of the Adaboost.

We  use  this  proposed  representation  to  define  and  implement  a  new  GPU-based  parallelized 
Adaboost testing stage using the GPU-OpenCL architecture.

We provide numerical experiments based on large available data sets and we compare our results to 
CPU-based strategies in terms of time and labeling speeds.

1.5 Project memory organization
This memory is organized in 5 main parts. A previous work section, were all the information related 
to the project is explained, except for the information related to OpenCL that is already explained in  
the TAD appendix. It is followed by a proposal section where all the work done is explained. Then a 
section for results shows them followed by another one with conclusions.

The last main section is a Gantt Chart showing the time spend on the project. Then a section for 
references and all the appendixes. 

2 Previous work 
In this section we explain all the basic concepts related to the project that are already known and 
can be found in the literature. These concepts are basic to understand the project, and some of them 
are  explained  deeply  in  the  TAD  appendix.  We  recommend  reading  the  TAD  to  completely 
understand this work.

2.1 Background
Now we discuss some related work already done in the area to understand the point from where this 
project starts.
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2.1.1. Volumetric Pixel World

A Volumetric  Pixel Model or Voxel Model is a coordinate defined volume, divided as a 
regular grid of equal spaced and sized points with a common origin, that usually is (0,0,0). 
Each sub-cube defined by the coordinates of the grid is a Voxel or Volumetric Pixel.

Voxels have a size defined by the volume spacing. A spacing parameter is defined for each 
of the three dimensions of the volume. A density value is defined for each of the Voxels. It is 
possible then to visualize only the voxels for a given density, so a Voxel model can contain 
as many objects as density levels defined (see Figure 1.1) or a specific object can contain 
several  density  values  (see  Figure  1.2).  For  this  reason,  to  select  a  specific  structure 
becomes, sometimes, a tidy and manual task.

This technique is used in areas where  representing regularly-sampled spaces that are non-
homogeneously  filled is  needed.  One  of  the  most  common  areas  is  medical  imaging, 
obtaining the density values from sources like MRI (Magnetic Resonance Imaging) and CT 
(Computed Tomographies).

Figure 1.1: Reconstruction of a 3D voxel model from a head MRI data set.

In this work we use an Adaboost based algorithm adapted to massively parallel processors 
like GPU's to classify the density values of a Voxel model. This Voxel World is obtained 
from MRI and CT techniques.
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Figure 1.2: selection of an anatomical structure from density values

2.1.2. Machine Learning methods to classify datasets

Data classification is a technique that groups elements of an array of data based in some 
criteria.

For our data set, that is a Voxel model, we wanted to use a Machine Learning Classification 
method. The idea is to provide users as doctors with an interface to a program that can learn 
from them. So the user can correct or introduce some new information into the classification 
results, and the program learns from that input to gain more precision and new classification 
capabilities without reprogramming the software.

Machine learning is a scientific discipline that is concerned with the design and development  
of algorithms that allow computers to evolve behaviors based on empirical data, such as 
from sensor data or databases. A learner can take advantage of examples (data) to capture 
characteristics of interest of their unknown underlying probability distribution. Data can be 
seen  as  examples  that  illustrate  relations  between observed  variables.  A major  focus  of 
machine learning research is to automatically learn to recognize complex patterns and make 
intelligent decisions based on data. The difficulty lies in the fact that the set of all possible 
behaviors given all possible inputs is too large to be covered by the set of observed examples 
(training data). Hence the learner must generalize from the given examples, so as to be able 
to produce a useful output in new cases.

AdaBoost,  short  for  Adaptive  Boosting,  is  a  machine learning algorithm,  formulated  by 
Yoav Freund and Robert Schapire [1]. It is a meta-algorithm, and can be used in conjunction 
with many other learning algorithms to improve their performance. AdaBoost is adaptive in 
the  sense  that  subsequent  classifiers  built  are  tweaked  in  favor  of  those  instances 
misclassified  by  previous  classifiers.  AdaBoost  is  sensitive  to  noisy  data  and  outliers. 
However in some problems it can be less susceptible to the over-fitting problem than most 
learning algorithms.
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We focus on  the  Discrete  version  of  Adaboost,  which  has  shown robust  results  in  real 
applications.  Given a set  of  N training samples  (x1,y1),..,(xN,yN),  being  xi a vector valued 
feature and  yi = −1 or 1.  We define  F(x) = ∑M

1 cf fm(x), where each  fm(x) is a classifier 
producing values ±1 and  cm are constants; the corresponding prediction is sign(F(x)). The 
Adaboost procedure trains the classifiers  fm(x) on weighed versions of the training sample, 
giving higher weights to cases that are currently misclassified. This is done for a sequence of 
weighted samples, and then the final classifier is defined to be a linear combination of the 
classifiers from each stage. Ew represents expectation over the training data with weights w 
= (w1,w2,..,wN), and 1(S) is the indicator of the set S. For a good generalization of F(x), each 
fm(x) is required to obtain a classification prediction just better than random. Thus, the most 
common "weak classifier" fm is the "decision stump". For each fm(x) we just need to compute 
a threshold value and a polarity to take a binary decision, selecting that one that minimizes 
the  error  based  on  the  assigned  weights.  This  simple  combination  of  classifiers  has 
demonstrated to reduce the variance error term of the final classifier F(x). 

In Algorithm 1, we show the testing of the final decision function F(x) = ∑M
1 cf fm(x) using 

the  Discrete  Adaboost  algorithm with  Decision  Stump "weak  classifier".  Each Decision 
Stump fm fits a threshold Tm and a polarity Pm over the selected m-th feature. In testing time, 
xm corresponds to the value of the feature selected by fm(x) on a test sample x. Note that cm 

value  is  subtracted from  F(x) if  the hypothesis  fm(x) is  not  satisfied on the test  sample. 
Otherwise,  positive  values  of  cm are  accumulated.  Finally  decision  on  x  is  obtained by 
sign(F(x)).

This technique applied to each of the points of a 3D world requires a huge computational 
time, and it  would be convenient to calculate operations as fast  as possible to provide a 
responsive software for the user to interact with it in the way we described.
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2.1.3. General-purpose computing on graphics processing units 
(GPGPU)

Most computer architectures are based in the Von Neumann computer model:

Figure 2.1: Von Neumann architecture representation.

 This model was not designed for parallelism. Nevertheless, there are some ways to achieve 
parallelism based in Von Neumann design. These are mainly shared memory systems, where 
several  Von  Neumann  processors  share  a  common  physical  memory,  with  private  and 
common virtual memory spaces, and message passing systems where each processor or node 
has its own memory, and communication is done through an interconnect system using an 
specific protocol.

A third architectural model called Data Parallel, was a variation of the Von Neumann model, 
in order to have a natively parallel architecture. It was used for very specific computing 
tasks and was the predecessor of vector units in CPU's (SIMD Single Instruction Multiple 
Data), as well as GPU's (SIMT Single Instruction Multiple Thread or SPMD Single Program 
Multiple Data). It was based in a single control unit for a set of processing elements, in order 
to execute concurrently the same instruction for arrays of independent data.   

GPU's used to be instead a fixed function pipeline, until they started to implement some 
algorithms in hardware for 3D visual effects that required some computation. 

Figure 2.2: a tipical graphics card hardware pipeline [2]

This algorithms started to be more diverse and as a consequence,  the designs  of GPU's 
started to include more general-purpose capabilities in  intermediate stages of the hardware 
pipeline.
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Figure 2.3: representation of the hardware stages computed by the Unified Processor Array [2]

Today, is possible to use GPU's only for it's more general-purpose capabilities, but these are 
not as general as the CPU.

Comparing to the Von Neumann model, a GPGPU hardware scheme would look like Figure 
2.4.

Figure 2.4: block diagram of the general purpose hardware of a GPU.

Although CPU's have a more complex memory hierarchy than the simple Von Neumann 
scheme by using several cache levels, these levels are transparent to the programmer since 
they  have  an  automatic  hardware  driven  actualization  algorithm.  At  most,  we  can 
differentiate between values that reside on the main memory and values that probably reside 
on the register file.

Instead, GPU's are based in a specific memory hierarchy, where the programmer has almost 
perfect control over the location of the data. Also, there is a single control unit that manages 
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several  processing  units  for  an  in-hardware  parallelism  control.  This  block  is  called  a 
multiprocessor  and corresponds to  the Unified Processor Array  in  Figure 2.3.  The local 
memory allows for a multiprocessor to work with a private copy of data, that was on the 
global memory, so the transfers between a multiprocessor and global memory are controlled 
by  the  programmer  in  contrast  with  CPU's  caches.  That  allows  to  pack  several 
multiprocessors  in  communication  with  the  same  global  memory  and  in  a  single  chip 
without increasing exponentially the chip design complexity to scale in performance. Also, 
global memory is constructed in a way that each multiprocessor can have the responsibility 
to access a memory block through dedicated lanes. This way, the more multiprocessors, the 
more memory chips, and more memory lanes, so more memory bandwidth. This increases 
the hardware scalability, but also relies on software exploiting the aggregate bandwidth.

In general, a GPU used as a parallel computational unit is considered an accelerator since it 
has no context switching capabilities and others that help a CPU to handle efficiently for 
instance an operating system. In fact, today it does not exist an Operating System that can be 
run in a GPU.

There are several languages to program a GPU. The first one only used for computational 
purposes was OpenGL. It is not designed for general-purpose computation but for graphical 
programming. It was complex to program and gave no control over all the GPU computing 
hardware and memory hierarchy.

To solve that NVIDIA developed CUDA C (Compute Unified Device Architecture) and ATI 
CAL (Compute  Abstraction  Layer).  Later  Apple  started  a  project  to  create  an  standard 
language and API to  program not  only  any GPGPU but  any hardware available  on the 
system. For that reason it  includes a low level  abstraction to allow control over  system 
communication and memory hierarchies for any kind of device. This makes programming 
OpenCL a bit complex.

Despite the fact that OpenCL can be more complex and slow to write than CUDA in the 
Host  code  part,  and the  performance shown in our  own analysis  is  almost  the  same as 
CUDA, we chose OpenCL because of the portability.

OpenCL provides an abstraction to differentiate between the code that is executed on the 
processor that actually executes the operating system, and the code that is executed on any 
other  hardware,  including  the  first.  The  first  code  is  referred  as  the  Host  code  by  the 
OpenCL specification,  and  is  written  in  ANSI  C with  specific  libraries  and  types.  The 
second one is referred as the Device code or Kernel, and it is written in OpenCL C, that is a  
subset of ANSI C with some restrictions and native specific function calls and types.

Due  to  the  fact  that  OpenCL wants  a  kernel  to  be  able  to  target  any  hardware  that 
implements  any parallel  paradigm or  memory hierarchy etc,  there are different  types of 
kernels.  Doing a  kernel  that suits  every operation  would limit  programmer control  over 
hardware. For this same reason, it is also possible to define a custom type of kernel or to use 
precompiled binaries. Some of those custom kernels can end being native OpenCL kernels 
in successive OpenCL versions.

For the GPU, OpenCL provides the NDRange kernel, which mimics the NVIDIA CUDA 
programming  model,  and  works  for  NVIDIA GPU’s,  ATI  GPU’s  and  it  is  suitable  for 
processors like the Cell BE. The NDRange kernel provides a mapping for the large amount 
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of threads executing on multiple cores of massively parallel processors like GPU’s.  This 
mapping starts with a two dimensional space called NDRange where all the threads reside. 
These threads are called Work-Items and further organized in groups called Work-Groups, 
that can be 1, 2 o 3 dimensional. So, at maximum, we can have “cube” groups of threads 
inside the NDRange “plane”.
Due to hardware restrictions common or similar in NVIDIA and ATI cards, this organization 
has some restrictions or rules:

◦ To use 3D Work-Groups, declaring a 3D NDRange is needed, even the 3rd dimension of 
the  NDRange  is  limited  to  size=1.  So  dimensions  declared  for  the  NDRange  are 
propagated to the Work-Groups, but not the sizes for each dimension.

◦ Dimension size in  an NDRange accounts  for  the number of  Work-Items,  not  Work-
Groups, in that dimension.

◦ Dimension  size  in  a  Work-Group  accounts  for  the  number  of  Work-Items  in  that 
dimension, inside the Work-Group.

◦ There is a proportionality to be kept between the dimension sizes of the NDRange and 
the dimension sizes of the Work-Groups. The size of an NDRange dimension has to be 
evenly divisible by the size of the Work-Groups in the same dimension.

◦ The maximum number of Work-Items in a Work-Group is 512 for NVIDIA pre Fermi 
devices.  It  is  variable  between  vendors  and  models  so  it  is  possible  to  query  this 
restriction to automatically adapt the NDRange and Work-Item sizes for each device.

◦ NVIDIA differentiates the different hardware characteristics and limitations in what they 
call compute capabilities.

2.2 Classifcation methods into GPU
A proposal for this year aims to parallelize Adaboost algorithm[3] using an european infrastructure. 
Others have studied an OpenCL implementation for packet classification for networking[4]. Also 
some machine learning work is done in GPU[5].

Other methods like neural networks have more and successful history in GPU computing, even 
mixing GPU and Multicore CPU computation[6].

2.3 Conclusions
In general, GPGPU involves an scalable parallel hardware design and a highly scalable parallel 
programming model.

In standard non parallel driven programming models like ANSI C, is very difficult to scale up to 80 
CPU cores. That means that the software is not increasing performance by using more than that 
amount of cores. Using specifically parallel programming languages like OpenMP and MPI, scaling 
highly depends on the platform characteristics and the algorithm implementation, that also depends 
on the language and system used.

Instead GPGPU with languages like OpenCL only requires to adapt the algorithm to data 
parallelism, and it will automatically scale to new generations of GPU hardware without any change 
on the code. Data parallelism means executing the same instruction or program for multiple data, at  
the same time. We are talking about scaling to hundreds of processing units, generating hundreds of 
thousands or millions of threads.

In this project we have adapted the Adaboost algorithm to be highly parallel in first C++ 
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implementation, and then substituted almost all for loops with GPU inherent indexing, increasing 
this way parallelism.

For 512x512x512 sized Voxel Models, we can generate 62.914.560 threads. So we have several 
years of GPU generations to scale up in performance without changing the code. For this reason, 
and the performance boost we can achieve now, we chose GPGPU to increase performance.

Because of the amount of documentation and technical articles based on NVIDIA, we decided to 
base this implementation on NVIDIA hardware. Because of our hardware availability we based the 
design for compute capabilities from 1.0 to 1.1. At the end of the project we had available a 2.0 
compute capability device from NVIDIA. We will explore performance tweaks for that device as a 
future work.

3 Proposal
Now I will explain all the process, starting with adapting the Adaboost algorithm to a highly parallel  
form and then design an OpenCL implementation.

Before the classification algorithm there is a process that generates data from each point in the 
Voxel Model, a well known gradient calculation algorithm [7]. It has some implications for overall  
performance, and I will explain the global design of the OpenCL implementation based on that.  
Then we detail the design decisions and arguments and finally we list well known optimization 
techniques for NVIDIA GPU's and comment if we implemented them or not in our code and why.

3.1 Algorithm analysis for GPGPU:
They propose to define a new and equivalent representation of cm and |x| that facilitate the 
paralellization of the testing. We define the matrix Vfm(x) of size 3 × (|x| · M), where |x| corresponds 
to the dimensionality of the feature space. First row of Vfm(x) codifies the values cm for the 
corresponding features that have been considered during training. In this sense, each position i of 
the first row of Vfm(x) contains the value cm for the feature mod(i,|x|) if mod(i,|x|)≠ 0 or |x|, 
otherwise. The next value of cm for that feature is found in position i+|x|. The positions 
corresponding to features not considered during training are set to zero. The second and third rows 
of Vfm(x) for column i contains the values of Pm and Tm for the corresponding Decision Stump.

Figure 3.1: Representation of alfa, threshold and polarity for each one of the  
240 values.

13



Note that in the representation of Vfm(x) we loss the information of the order in which the Decision 
Stumps were fitted during the training step. However, though in different order, all trained "weak 
classifiers" are codified, and thus, the final additive decision model F(x) is equivalent.

3.2 Adaptation to OpenCL:
My proposed OpenCL’s implementation is based primarily on the GPU-PCIe accelerator concept, 
taking into account the PCIe bottleneck and the GPU’s main memory or Global Memory. As we 
deal with large datasets of voxels, we use out-of-core techniques to subdivide the initial dataset into 
subsets which can fit into GPU main memory. Thus, PCIe bandwidth becomes an essential factor in 
the overall execution.

I decided to do a first implementation where optimizing PCIe usage implies more complexity in the 
kernel and even a previous kernel whose task will be explained in the next section. Also I decided to 
focus on one of the common recommendations in this first implementation, that is generating as 
much threads as possible in order to scale as mentioned in previous sections.

That means that this implementation has a very good usage of PCIe, a huge parallelism, few slow 
steps in order to have a good use of local memory, but a very bad use of global memory. This is 
because the difficult part was to improve the PCIe but once done and validated, it will be quite easy 
to improve global memory usage.

I overview my proposed OpenCL implementation in Figures 3.3 and 3.7. The eight features 
considered at each sample by the binary classifier are: the spatial location (x, y, z), the sampled 
value (v), and its associated gradient value (gx, gy, gz, |g|). The binary classifier, for each feature, 
has N=3∗|number of weights|.

I create a matrix of Work-Groups that covers the x and y size of the dataset fitted into GPU global 
memory, whereas the component z is computed in a inner loop in the kernel. Each WorkGroup 
classifies one voxel. Inside each WorkGroup, we define N ∗ 8 threads, or WorkItems. Each thread 
computes a single operation with the 3 channels or weights of the weak classifier. The resulting N ∗ 
8 values will be reduced at the end of the execution and compared to a reduced addition. The final 
label for each voxel is directly computed by this comparison.

3.3 Gradient calculation:
The computation of dataset gradients is an essential operation in many visualization techniques.  
Visualizing a given three dimensional dataset can be done by surface rendering algorithms, such as 
the Marching Cubes Algorithm [8], or by direct volume rendering algorithms, raycasting [9] or 
splatting [10]. For direct volume rendering methods the voxel intensity, gradient direction and 
magnitude are often used to shade and classify the dataset. For surface rendering techniques the 
gradient is used as an estimation of the surface normal which is used for shading.

Gradient operators are also often used during the classification of data as well. The classification 
procedure provides an optical density value for each voxel in the dataset, called opacity. Opacities  
are typically calculated using either voxel intensities or a combination of voxel intensities and 
gradient information. We use voxel intensities and gradient information in the Adaboost 
classification algorithm.

In the GSGL implementation, 8 float values for each Voxel where send to the graphics cards. With 
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OpenCL instead, is quite easy to do a gradient calculation, so we could send only the intensities, 
and launch a kernel that calculates the gradients.

This gradient calculation follows the shape of a 7 point stencil [11], but with a little modification in  
the front and behind values.

Figure 3.2: representation of the values used for gradient calculation for a current position

As shown in Figure 3.2, the front and behind values are displaced from a normal stencil 
configuration. For the current voxel we calculate a gradient value for each of the dimensions. It is 
(left-right)/2 for x dimension, (up-down)/2 for y dimension and (behind-infront)/2 for the z 
dimension. This way we obtain what we note as gx,gy and gz in the code.

3.4 Global architecture:
As seen in every GPGPU implementation in the literature, there are always parts of a program more 
suitable  for  GPGPU  computing  than  others.  In  our  case  we  wanted  to  improve  the  voxel 
classification algorithm code performance of the program, but as mentioned in the previous sections 
introducing a previous step into the GPU allows for a huge performance gain in PCIe transfers. This 
previous step is the gradient calculation.
As we need 8 values for each voxel, density, 3 position values, one for each dimension, 3 gradient  
values one for each dimension again and a factor calculated fith the gradients, there should be 8  
float values to be passed for each Voxel. But we only pass an unsigned char that correspond to the 
Voxel  density.  The positions are requested to OpenCL through API calls,  the gradients  and the 
factor are calculated with the gradient calculation kernel.
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Figure 3.3: General program diagram

Figure 1 shows the main flow of the program and the data. A 3D unsigned char voxel data model is 
loaded into the graphics card main memory, as well as the data used to classify them. 
A gradient calculation kernel is loaded into de device and executed to produce neighbor aware data 
for each voxel. This gradient data is not loaded back to the host. 
Another  kernel,  the  classification  kernel,  is  loaded  and  executed  then,  with  the  gradient  data 
produced by the previous kernel as a parameter.
This last kernel produces a labeled model of unsigned char values that are either 1 or 0. 

The GPU’s, a part from a graphic’s processor, are PCIe based accelerators, with dedicated main 
memory, since now and attending to OpenCL specification, global memory. This mean s that we 
have to take in account the bandwidth of the PCIe connection, and the way that the GPU accesses  
it’s dedicated global memory, as long as read/write bandwidth is concerned.
Looking at the GPU architecture, this is conditioning the inner workings of GPU and therefore the 
structure of the programs when extreme performance is the goal.

3.5 Design decisions:
Following the conditions mentioned in section 3.4, and based on the NVIDIA 1.0 and 1.1 compute  
capabilities for both gradient and classifier kernels, we used 32x8 Work-Groups that the scheduler 
group in 8 warps of 32 Work-Items for compute capabilities 1.x and 32x4 for compute capability 
2.0 following what we found in the OpenCL analysis in the TAD. These warps are executed in two 
steps, executing in each step what is called a half-warp of 16 Work-Items. In compute capabilities 
2.0  two half  warps  will  be  executed  at  the  same time  in  each SM (Stream Multiprocessor  or  
Compute Unit in OpenCL terms).
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For  the  gradient  calculation  kernel,  16  Work-Items  read  16  unsigned  char  values  in  one 
transaction. That means that only 16 bytes will be read, while 64byte segments could be read in one  
transaction. Moreover, as each unsigned char is 1 byte long, for compute capabilities 1.0 and 1.1 
this operation will serialize into 16 memory transactions. For compute capabilities (CC) 1.2 and 
greater, the reads are coalesced in one memory transaction for 16 consecutive bytes.

That results in a 1/64th of the maximum global memory bandwidth, since maximum read bandwidth 
corresponds to 64byte reads and we are reading 1byte per memory transfer. Anyway, using integer 
or float types will mean copying 4 times the amount of data from host to the device, that would be 
the same as reducing the PCIe bandwidth by 1/4th. Comparing that numbers, and taking in account 
bandwidths for the same number of words to be transferred, but different word sizes, we found that  
for NVIDIA graphics cards from 8000M series up to some Geforce 9600M versions it would be 
faster to use float instead of unsigned char values. But for the rest, unsigned char is better, and more 
for compute capabilities 1.2 and above.

Figure 3.4: Comparing PCIe  + global  memory theoretical  read times  with uchar  or  float  types.  X axis  
represents global memory bandwidth in GB/s. Y axis represents time in seconds needed to copy 150GWords  
from Host to Device and from Global memory to the next memory hierarchy level in gradient kernel.

The difference decreases with better global memory bandwidths that vary a lot from card to card,  
while PCIe 2.0 bandwidth will never change. PCIe 3.0 will decrease the difference, but by then 
global memory speeds will provably be much better.

Figure 3.4 shows the theoretical read times for the same number of words to be copied. To calculate 
that I had to take in account that different word sizes implied different behaviors in global memory. 
To make the calculations more clear I used the number of words in GigaWord sizes instead of 
GigaBytes. Using float words,  1GW = 4GB, and for unsigned char it is  1GW = 1GB. This is a 
conversion factor so I note it as Cf.

In all cases, the PCIe bandwidth EB is 4GB/s, and the global memory bandwidth GB is variable.

The behavior change in global memory is expressed by Bf, where it is neutral for float words and 
1/64 for unsigned char in CC 1.0 to 1.1 and 1/4 for unsigned char in CC 1.2 and above.    
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In the case of using floats I defined the time necessary to transfer 150GW from Host to Device as  
Thd where Thd  = 150GW / (EB.(1GW/4GB)). It is always 150 seconds. The time to read from global 
memory 150GW is Tgm = 150GW / (GB.(1GW/4GB)). The total time is Tt.

Time formulas:

Thd = 150GW / (EB.Cf )
Tgm = 150GW / ((GB.Bf).Cf )
Tt = Thd + Tgm

Conversion factors:

Cf  = 1GW/4GB (float)
Cf = 1GW/1GB (unsigned char)

Behavior change factor:

Bf = 1 (float)
Bf = 1/4 (unsigned char CC 1.2 to 2.0)
Bf = 1/64 (unsigned char CC 1.0 to  1.1)

Figure 3.5: time formulas for Figure 3.4.

To reduce global memory reads in gradient kernel I did a variation on the Micikevicius stencil for 
GPU's algorithm [12]. I used registers for behind and front values, and local memory for up, down, 
left and right values. Current value is not needed for gradient calculation. As seen in Figure 3.6 
there is a displacement for behind and front values that translates in a change of shape for local 
memory plane comparing with  Micikevicius algorithm.

Figure 3.6: representation of the values in registers and local memory for gradient kernel. In yellow values  
read from infront registers. In blue values read from global memory to local and registers. In green values  

read from local memory to behind registers.

Finally, each Work-Item has 4 float elements to write into the global memory for the next kernel.

Once the gradient kernel ends, the  classifier kernel  is launched, reusing the same device pointer 
where the gradients reside to avoid copying to device, as shown in Figure 3.3.
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This kernel tries to exploit parallelism as much as possible. The C version of this code has been 
tested with OpenMP only parallelizing the outer loop of two nested loops. Due to the massively 
parallel capabilities of graphics cards, we implemented a fully concurrent version that can scale 
perfectly  with  more  cores,  expected  in  each new GPU architecture  version,  so performance  is  
expected to increase proportionately without code changes.

Figure 3.7: classification kernel diagram

Each voxel to be processed represents a Work-Group with enough threads to process concurrently 
all the tasks to classify this voxel. Specifically, we use 240 threads for each voxel that do the testing 
for each RGB channel. We have 240 data elements for each channel and 8 data elements from the 
voxel to compare with. 4 of that last ones are the gradient calculation kernel output.
This 240 element arrays are thirty groups of 8 elements whose proprieties correspond to each voxel  
8-element array, from first to last.

The comparison reads the first element of the first 8-element group for each RGB channel, and the 
first element of the 8-element group of the voxel values. Then, the second element for the same 8-
element groups is read, until the 8th element. Then, the first element of the voxel and the 9 th of each 
RGB array that corresponds to the 1st element of the second 8-element subgroup are read, etc.

To be able to use the thread indexes to access the voxel data elements, we use a 16 float array, as 
shown in figure 3, to store the 8 voxel elements twice. So thread indexes (0,0), (8,0) and (0,5) will  
read the same value.

Once all is computed, we obtain two values for each of the 240 threads. Now we have to do vector 
reduction for each Work-Group and each data set. We use the widely described method for NVIDIA 
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graphics cards, to avoid local memory bank conflicts. A final operation determines a single value 
using the two resulting from reduction and we end with a single uchar value for each work group.

For  this  reason we are  not  measuring  the  write  times in  Figure  3.7,  since  it  wouldn't  make a 
difference to write a float or a unsigned char value per Work-Group.

As  we  mentioned  before,  this  kernel  design  is  focused  on  exploiting  parallelism  as  much  as 
possible, but for compute capabilities 1.2 and above, it could be better to change this kernel to  
exploit CC 1.2 8-byte word coalescing global memory capabilities, by using each thread to classify 
one voxel or doing the same operation for several voxels, allowing then 16 unsigned char or 16 
uchar4 coalesced reads inside each Work-Group, and increase global memory bandwidth up to 64x. 
Increasing bandwidth, at the end means increase the number of processor cycles with computation 
being done. It reduces the number of global memory transfers, and for each transaction removed we 
earn 600 computing cycles, so we expect huge speedups in the next iteration of the code.

In  GPU  programming  there's  always  a  balance  between  exploiting  parallelism  and  execution 
throughput. What will be faster depends entirely on the characteristics of the hardware and on the 
application.

3.6 Optimizations for the NVIDIA architecture:
Now we describe most of the optimization techniques described for NVIDIA GPU's but can be also 
valid for ATI GPU's. I also comment if I applied or not the technique.

3.6.1 Global memory use:
Global memory in GPU's is like the main memory for a CPU. From the GPU code point of 
view it is the source of every single data element, so it is mandatory for a program to use 
global memory. It is also the biggest memory in terms of capacity, but also the slowest.

While  reading any CUDA or  OpenCL programming  guide,  the  first  recommendation  in 
order to obtain performance is to read global memory in a coalesced way. Coalescence is 
produced when 16 4bit words are read in a single transaction. The conditions for that to 
happen vary from CC to CC decreasing the restrictions in each new CC, but overall it is 
required to read contiguous data from a single memory block. A memory block is a sub 
organization of global memory, where each element of a memory block can be accessed in 
the  same  memory  transaction.  Accessing  data  elements  from  different  memory  blocks, 
produces as many memory transactions as different memory blocks are accessed.

More information can be found in the NVIDIA Best practices guide [13] or the ATI Stream 
SDK OpenCL programming guide [14]. 

Gradient kernel uses global memory as few times as possible, but it does it moderately 
well. It uses 1/4th of the theoretical maximum bandwidth for compute capabilities 1.2 and 
above. But it  only uses 1/64th in CC 1.0 and 1.1. As mentioned before, it  will  be easily 
solved in the next iteration of the program.

When writing to global memory, it uses local memory in order to have data in a way, that  
can be read and stored in consecutive chunks of 16 elements, so in a coalesced way, from 
local memory to global memory. This way I am saving a lot of computational cycles.
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Classification kernel uses global memory also only one time per data, but when it does it, it 
does the worst use possible. It uses 1/64th of the maximum global memory bandwidth for 
any  compute  capability,  by  reading  only  one  unsigned  char  per  work  group.  Reading 
gradient  values is  also bad,  it  reads  only  4 floats  in  each transaction.  This will  be also 
addressed in the next iteration of the software.

3.6.2 Local memory use:
The  two  most  important  GPU  architectures  share  a  common  memory  hierarchy.  The  
properties, sizes and behaviors vary a little from ATI to NVIDA though.
In general, there are two main kinds of memories. Global-Memory that is big, slow and 
accessible to any thread in the kernel and Local-Memory that is small, fast and resides inside  
each multiprocessor or compute unit of the GPU, so each value stored by a thread in Local-
Memory will only be accessible by the threads of the same Work-Group.
The difference  in  speed is  really  huge.  According to  NVIDIA documentation,  accessing 
Global-Memory  equals  to  wasting  from  400  to  600  multiprocessor  execution  cycles. 
Accessing Local-Memory needs only 2 cycles. That explains too the importance of Global-
Memory coalescing. Performing one coalesced transfer means loosing 600 cycles, dividing 
this transfer into 16 transfers means 600*16 lost cycles.
In our implementation we use Local-Memory in the following parts.

Gradient kernel:

– As each unsigned char value from source voxel model is read a minimum of 1 times and 
a maximum of 4 times in a non coalesced way, performing one coalesced read for each 
Work-Group  to  Local-Memory  allows  to  compute  reading  from  local  memory  and 
effectively use hundreds of processing cycles.
Moreover using float types, we avoid Local-Memory bank conflicts. Reading 15 values 
from contiguous banks and one from another set of banks does not produce 16 transfers 
like in 1.0-1.1 Global-Memories, it produces two transfers and so 2x2 lost processing 
cycles instead of 600*16 cycles per half warp.

– We use Local-Memory again before writing to memory, as explained in section 3.6.1.

Classifcation kernel:

– In this case, we want to access 8 values using the local id's of each thread or Work Item. 
So we built a variable called thisVoxel, shown in Figure 3.7.

As this values will be accessed 30 times, using Local-Memory we are increasing notably 
performance, and even more achieving Local-Memory coalescence by copying twice the 
values to achieve a 16 float long variable, that will be read by 16 threads in a single 
Local-Memory transaction.

I have not used Local-Memory for the classification data arrays but in next iterations it 
will be useful to do it, because they are not only read once per plane in the z dimension 
but also each Work-Group will classify more than one Voxel, and then will  read the  
classification arrays much more times.

3.6.3 Local memory bank confict behavior:
As explained before, there are some differences on bank conflict behaviors and coalescence 
between compute capabilities in Global-Memory and between Global-Memory and Local-
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Memory.

Local memory in NVIDIA cards is disposed in groups of 16 4byte words. This groups are 
called local memory banks. There are several groups of banks, packed in a way that only one 
bank can be accessed  at  the same time.  So accesses  produced by a  single  half  warp in 
different banks are serialized in a way that there will be as many transactions as different  
groups accessed. When using words smaller than 4 bytes and two threads read two different 
words from the same bank, there is a bank conflict too, and there is a local memory transfer 
for each word.

In the case of gradient kernel, we store each Work-Item result (4 floats) in a Local-Memory 
variable,  in  a  way  that  each  Work-Item  stores  one  of  the  values  in  each  transaction  4 
positions away from the left neighboring Work-Item. So a half warp performs 8 memory 
transactions. We have 16 half-warps in a Work-Group so 128 transactions will be needed for 
the  first  value  of  each thread.  We have to  store 4 values  per WI,  so that means 128*4 
transactions per Work-Group. That is wasting 128*4*2 cycles, instead of 128*4*600 cycles 
if we store directly to Global-Memory. Having the data stored in local memory we can do 
coalesced  writes  in  chunks  of  16  floats  into Global-Memory  that  means  16*4*600 lost 
cycles. So we achieve 128*4*2 + 16*4*600 instead of 128*4*600 lost cycles, 87,5% less.

In the  case  of  classification kernel,  the  bank conflicts  are  a  problem when performing 
matrix reduction.
Focusing only in Work-Items executing in chunks of 16, we could sum to the first 16 values 
the other 14 16-value groups in 14 steps, obtaining one vector for each 16x15 matrix. This 
first part is perfectly coalesced and bank-conflict free. Then, it could be possible to copy the 
two arrays in a single 32-value one in order to use a half-warp for all of them in a sum-pairs  
fashion, until we obtain a value in position 0, and another one in position 16.
But here comes the bank-conflict. When 16 threads try to sum 32 neighboring values in pairs 
in Local-Memory, 8 WI will be reading values of the same 64bit segment, and the next 8 WI 
will do the same in another Local-Memory segment. So we will need twice the number of 
Local-Memory transactions.
Instead of that, using the documented NVIDIA reduction version [15], we have a simple 
code resolving all the issues in a for loop.     

3.6.4 Register count and execution scheduling:
As I commented before,  the Work-Items in a Work-Group are scheduled in packs of 32 
Work-Items. This structure is called a  warp. When a warp is going to be executed, it  is 
divided into two half warps, and each half warp is executed concurrently, if possible.
From this point we can take in account two concepts to tune performance:

– Occupancy: the number of active warps per multiprocessor or compute unit. An active 
warp means 32 Work-Items able to perform their execution. Inactive warps are those 
waiting for synchronization, memory reads etc.

– The number of registers being used per Work-Group.

Both  concepts  are  tightly  related,  since  altering  the  number of  registers  used,  can  alter 
occupancy in one or another way.
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3.6.4.1 Occupancy tuning:

Achieving  more  occupancy  means  reducing  the  provabilities  of  waiting  for  data  to  be 
available  while  executing,  by  increasing  the  number  of  active  warps  available  to  the 
compute unit.

This is because each compute unit can have instantiated on registers more than one Work-
Group. The compute unit then takes any set of instructions (warps) belonging to any of the 
Work-Groups in any order,  although often sequentially for the warps of the same Work-
Group. When an instruction needs to load data from Local or Global-Memory, the NVIDIA 
compute unit  can hide the load latency by fetching another active warp from any of the 
Work-Groups with, while loading the data for the first one at the same time.

Sequentiality  is  more  prone  to  happen within  the  same Work-Group,  for  instance,  with 
barrier synchronization. That means that several warps will be inactive until some others 
finish  execution  inside  the  same Work-Group.  Having only one  Work-Group potentially 
decreases occupancy and thus decreases latency hiding. NVIDIA provides an excel sheet 
that helps calculating occupancy.

Using a lot of Local-Memory or a lot of registers can produce instantiating only one Work-
Group  in  each  compute  unit.  Sometimes  it  is  impossible  to  avoid  that  without  losing 
performance in Global-Memory reads, but there are techniques to reduce latency an improve 
performance in these cases.
That is the case for our implementation. For gradient kernel we could fit at most two Work-
Groups  so  we  focused  on  the  techniques  described  in  the  next  section.  In  contrast, 
classification kernel can have up to 7 Work-Groups in a single compute unit.

3.6.4.2 Register related techniques:

An NVIDIA compute unit, for 1.0 and 1.1 compute capabilities, has 8192 registers.
In gradient kernel we end up with a maximum of two Work-Groups per compute unit. We 
found that it is better to focus on prefetching and other techniques to reduce latency and take 
profit of the amount of registers available.
The techniques we considered are the following:

– Prefetching: we ensure register level data availability when an operation is performed 
reading Local or Global-Memories, by reading first the data into a single non pointer 
variable, that automatically resides on register.

– Unrolling: since there are thousands of registers free, we can transform a loop in to a 
sequence  of  registers  without  branching  instructions  hence  reducing  the  number  of 
instructions to execute, but increasing the number of instructions residing on registers.

Another approach that we will test is to spill the registers used for indexing into a Local-
Memory  variable  or  use  directly  the  API  calls,  even reducing  code  clarity,  to  improve 
occupancy as  we observed  in  the  CUDA GPU Occupancy  Calculator  for  gradient and 
classification kernels. Then, we will check if there's any performance difference for various 
compute capabilities.
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4 Results
In this section I will show the time results for a data set of 128x128x128 voxels that contain a 3D 
image of a foot.

Figure 4.1: view of the classified data set representing a foot. Captured using Paraview [16].

The first results I will show compare only the classification times in CPU with C++, a dual core  
CPU with OpenMP, GSGL and my OpenCL implementation. For CPU tests we used the same Intel 
dual core processor and for GSGL and OpenCL the same Geforce 8800 GTX.

Figure 4.2: execution times for the different implementations of  
the classification algorithm.

Why this is a very good result? Remember that there is a pending performance improvement related 
to global memory that we expect to give a very big speedup over that version. Also, the 8800 GTX 
card is a CC 1.0 card, so there is a 1/64th factor of the maximum global memory bandwidth that is 
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not applicable to cards of CC 1.2 to 2.0. We could expect that OpenCL version to be slower than the 
GSGL but the times are better. The exact speedups are the following:

8,5x of the C++ version
4,5x of the OpenMP version
1,4x of the GSGL version

This is without taking in account the Host-Device transfer times neither for the GSGL or the 
OpenCL. The OpenCL transfer times are 1/32th of the GSGL version, as it transfers 8 4byte values 
for each voxel. 

Now I show a comparison of the execution times for the OpenCL version in different graphics 
cards. It shows the good scalability of the software depending on the number of cores of the GPU.

Figure 4.3: execution times for different GPU cards with different number of  
processing elements. Geforce 9600M GT with 32 PE's, Geforce 8800 GTX  
with 128 PE's and Geforce GTX 470 with 448 PE's.

The fastest card used to obtain the times in Figure 4.3 at the moment of this writing costs around 
340€. This is not a huge price for the performance obtained, and the performance expected to obtain 
in next iterations.

5 Conclusions
The basic goal of the project was to achieve an execution time improvement over a GSGL version. 
Even though I decided to take a previous step with some slow parts, in order to later obtain greater 
speedups in the next step, the results are already better.

This can be explained by the increased parallelism used in the OpenCL version, and the greater 
control  over the GPU hardware.  We could  control  almost  every data movement  and operation, 
including all the memory hierarchy. This are the benefits of GPU-OpenCL.

But GPU-OpenCL is not the only purpose of OpenCL. OpenCL is not only a GPU language. It is 
supposed to be a every thing language, including CPU's, FPGA's etc... A next iteration of the code 
will explore the CPU kernels in OpenCL, the LLVM compiler optimization capabilities, and the 
OpenCL task parallelism auto-fork.

The next steps are very promising. We expect to obtain better results in the GPU-OpenCL kernels, 
but also we can exploit the CPU's at the same time. As CPU's are slower than the GPU, a simple 
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scheduling policy could help to use also CPU without making the GPU to wait doing nothing. As 
OpenCL API calls are non-blocking, we can wait to finish execution only for the GPU, give a piece 
of work to it, then check if CPU is working, if not give it some work and wait for the GPU to finish. 
If when we check the CPU it is working, we don't wait, we continue the loop and wait for the GPU 
to finish, as it is the fastest device.

6 Gantt chart
The time spent in this project is divided in three main parts. Learning, analyzing OpenCL and doing 
the PFC. The learning time starts with some basic concepts of computer architecture and 
parallelism, and then specifically OpenCL. Analyzing OpenCL was done in BSC (Barcelona 
Supercomputing Center) to test performance of OpenCL in comparison to CUDA, and to test 
portability to ATI cards. It was a crutial part in learning OpenCL, since I could program, test, and 
see how OpenCL works. Also I could see some OpenCL examples, learn how they work, and learn 
the optimization techniques.

Designing and developing the code for the PFC was the fastest part, since learning was really 
advanced at the moment of starting the project.  
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8 Appendix TAD (OpenCL: an overview and case 
study) 

8.1 Introduction:
In the past few years we have seen, as usual, an explosion of new technologies that increase the 
computing power of processors. In the past, this technologies have been introduced first as 
accelerators and rapidly integrated into general purpose processors as CPU’s. This time, the process 
started as usual, but is having an historically unexpected duration. 

The new technology that is revolutionizing the price/performance and power/performance equations 
in computing industry is called GPU (Graphics Processing Unit) computing or GPGPU. The first 
difference with other kinds of accelerators is that it was not designed from scratch but from an 
existent design that had a very specific use. 

The graphical use for GPU’s required every time more different and specific hardware acceleration 
for specific visual effects, so GPU designers started to search a way to abstract some parts of the 
hardware pipeline to create a shared resource model where one or more of the computing units can 
be used for different kinds of visual effects. That idea, derived to programmable computing units, as 
to allow programmers to implement new visual effects with the same GPU. At that point, this GPU 
processors had to manage millions of polygons, and map them to the corresponding pixels to obtain 
an image, and several times in a second to obtain a moving 3D image. That results in a processor 
able to modify with simple operations, millions of data points in a second. 

Some people from computational science related fields imagined the great utility it could have for  
intensive Data-Parallel scientific applications and others. Some projects started to search the best  
way to access GPU’s computation capabilities for general purpose, not only graphics, through the 
graphics API, typically OpenGL. They called that General Purpose GPU or GPGPU programming. 
Later, the GPU vendors started some initiatives to not only ease this kind of programming but to 
allow more control over the hardware to allow more different kinds of algorithms to fit on the GPU. 
So they got the GPU’s even more general purpose. 

At that point, we have a PCIe accelerator that surpasses the Data-Parallel computational capabilities  
of the CPU’s, sometimes by factors of thousand’s. But in contrast with a typical accelerator, GPU’s 
are available to any one who has a computer, so any one has a development platform. Additionally,  
GPU’s are more general purpose than typical accelerators and vendors are trying to increase the 
capabilities of GPU’s in that direction. At architecture level, if we compare CPU’s and GPU’s, we’ll 
find that trends are making GPU’s to look more like a CPU, and CPU’s to look more like a GPU. A 
GPU contains a group of multiprocessors, and each multiprocessor has several small and simple 
processors. A big scheduling unit in each multiprocessor allows to execute concurrently several 
threads in all processor of the multiprocessor. Some vendors now are adding caches outside the 
multiprocessor level, and double precision cores, and more single precision and integer cores in the 
multiprocessors. They even do, dual issue. So the trends in that case are adding more complexity an 
not much more multiprocessors. Also, the frequency is growing slowly, being half or less the 
frequency of CPU’s. In contrast, CPU’s are made of few big and complex cores, each with its own 
scheduling system, and sharing expensive coherent caches. Trends are to reduce vector instructions 
in order to reduce power consumption and die size, multi threading in a single core by making two 
cores to share scheduling (AMD bulldozer) or one single core to map two threads in the pipe line 
(Intel Hiperthreading). Also, there are some startups that build x86 processors (up to 100 cores in 
the same die) of simpler x86 cores, and slower in frequency.  
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To end with this architecture review, AMD and Intel are mixing CPU’s and GPU’s in a single die, 
but it seem’s that it still won’t be absorbed by the CPU, as there are a lot of possible paths to follow 
in the processor design both for the CPU and the GPU. It seems that by now they will still be 
programmed with different parallel paradigms with, different API’s. Professionals in the field, 
predict two more years for the GPU programming to exist as an “out-of-CPU” processor. That will 
mean longer than expected survival time, and greater than usual changes to the CPU. This is not 
adding a component to the CPU, but redesigning the whole CPU. 

It has been like a huge coincidence, as CPU’s had to switch from increasing freqüency to increase 
performance, to increase complexity and now core count to increase performance. That GPU 
revolution wouldn’t have happened without that factor, since parallel programing was a small 
market, only for big company’s huge servers, or research supercomputers, and therefore most of the 
commercial development environments, operating systems and programming languages are 
prepared for one core, or at most 4 cores. To scale and use more than 2 or 4 cores, difficult 
development has to be done since not all parts of a program are parallelizable. So we end up talking 
about parallel fractions of a program. Even more problematic is, how well a parallel fraction scales? 
That is, how many cores is able to use this parallel fraction of the program?. So creating multicore 
processors means a huge change in the computing industry at hardware and software level, until an 
standard is reached that allows to develop portable code that scales without the problematic we find 
now. 

The API’s that GPU vendors have created, address the scalability problem since allow a deep data-
parallelism to create millions of threads for a single program. That million-threaded program will  
scale perfectly in next generation GPU’s accounting for thousands of cores. The hardware 
scheduling of the GPU’s ensure a level os synchronization that allows easier programming. 

Taking in account the availability of the hardware, the really cheap price points due to the consumer 
gaming market nature of the GPU devices, the parallelism problem already going on in the CPU for 
all markets and the need for new programming paradigms, and the effort of some GPU vendors to 
port basic libraries to GPU, and making GPU’s more general purpose, all that is making the  GPU 
computing not only a success but a revolution. Of course, every body expects the GPU to mix with 
CPU and at the end have a single programming paradigm, but it seem there’s a lot of work in the 
way to go there. 

For all that, and for the potential of GPU computing in scientific programming and hardware 
availability that allows supercomputing capabilities in a single PC, I’ve decided to analyze the  
youngest of the GPU computing languages and API’s, OpenCL. 

8.2 OpenCL 1.0 overview:
There are basically two major GPU vendors, ATI and NVIDIA. ATI created a GPU computing API 
called CAL, but they haven’t pushed it to be adopted by developers as much as NVIDIA has with 
CUDA, it’s own GPU computing API. Apple was using some of the capabilities of ATI CAL in its 
operating system but wanted to be able to create code that not only had the benefits of CUDA, but 
also be portable, so they started the OpenCL project where ATI, NVIDIA, IBM, ARM and several 
others joined to create an industry standard, managed by Khronos as well as many other standards 
like OpenGL. 

OpenCL is intended to be multi platform, multi vendor, multi parallel paradigm, for performance 
and commercial software. As to allow for developers to produce performance code without caring 
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about hardware specifics, the compiling process is based on LLVM (Low Level Virtual Machine). 
LLVM is designed to take care of the best automatic-performance tweaks for the specific hardware 
being targeted. So OpenCL is trying to ease programming and porting for performance software. 

In this work we will discuss first of all different possibilities for GPU OpenCL implementations, to 
see which kinds of programs are more suitable for GPU programming, and second we will check all 
that performance and portability attributed to OpenCL, comparing CUDA and OpenCL versions of 
the same code. 

8.2.1 Platform Model
The  Platform Model defines  a  virtual  machine  where  usually  compute  intensive  and  parallel 
programs called “kernels” will be executed. This virtual machine is the one we will communicate 
with, using the OpenCL C language. It also defines the virtual machine components, execution and 
data transfer mechanisms and the equivalences in real hardware. 

Next is defined the virtual machine’s structure: 

8.2.1.1 Host

The host can be understood as the computer itself. The host executes a controller program called 
host program that creates the virtual machine and instantiates and manages the kernels, memory 
objects etc. All that host program actions are controlled through C code with OpenCL libraries. 

The  host program can do some automatic resource management, but the programmer can do a 
more low level approach to do faster code and handle some resources and hardware capabilities 
manually. This can be also a more platform dependent approach. All that is actually being analyzed 
by some HPC centers.
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8.2.1.2 Compute Device

A compute device represents the hardware devices as CPU’s or graphics cards (GPU Graphics 
Processing Unit). If there are “cores” or similar structures inside the device, they are defined as 
specific components inside the compute device. 

8.2.1.3 Compute unit

The compute unit is the CPU core or the GPU SM (Scalar Multiprocessor).  That means a unit  
capable of decoding an instruction and executing it, and whose internal parts can only do a fraction 
of this process.

8.2.1.4 Processing elements

The  processing  elements  in  a  GPU represent  the  ALU-like  processors  with  a  special  external 
memory addressing system and execution coordination, inside the SM (compute unit). So in the 
platform model we have processing elements inside compute units, and that ones inside compute 
devices.
In the GPU’s, the processing elements are able to do a few number of different operations, but they 
are also small. Therefore a big number of them fit in a silicon die. This allows to use them with  
parallel  hardware  memory  addressing  and  execution  control  units  to  address  a  lot  of  parallel 
operations in each clock cycle, in a single silicon die.
Thats  why  vectorizing  algorithms,  and  executing  them  in  a  GPU makes  such  a  difference  in 
performance. But that is not possible for all kinds of programs.

8.2.1.5 Some real hardware examples

At this point, is interesting to list some real hardware examples that any one can buy (commercial 
data).

 -  NVIDIA:  GForce  9400M  This  is  a  small  low-power  graphics  processor.  It  is  sold 
integrated with mobile nvidia chipsets. It has 2 SM (Streaming Multiprocessor) or compute units, 
with 8 CUDA cores or processing elements each one for a total of 16. It develops 54 GigaFLOPS 
and has Computing capability version 1.1* 

- NVIDIA: Tesla C1060 This is a supercomputing-adapted GPU. All the elements that are graphics-
only have been removed. It is sold in a two slot size-one PCIExpress connection package. It has 30 
compute  units,  240 processing  elements,  is  capable  of  near  1  TeraFLOPS calculations  and has 
Computing capability version 1.3* 

- ATI: HD 5870 Is a standard hig-end graphics card processor. Is the newest from AMD/ATI. It has 
20 SIMD arrays or compute units each one with 80 SP or Stream Processors grouped in packs of 5 
that conform 16 processing elements for a total of 320 in the device. It is capable of a bit more than 
a theoretical 2,7 TeraFLOPS calculations.
To compare with, the most powerful public supercomputer on the planet has a peak performance of 
1456 TFLOPs using hundreds of thousands of processors as of june 2009. Using the ATI HD 5870 
only  hundreds  would  be  necessary  to  achieve  the  same  peak  performance.  The  maximum 
performance is very different though. For the traditional supercomputer, it is between the 80 and 
90% of the peak performance. In the graphics cards, it is usually a 20% of the peak performance in 
a very good implementation. This is because of the memory access managements and latencies. 
New  graphics  card  technologies  developed  by  NVIDIA are  trying  to  address  that  with  more 
advanced DMA’s and thread scheduling.

The comparison for usable maximum performance is: 
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- Traditional supercomputer: 1105 TFLOPs with 129600 processors.
- GPU (ATI HD 5870):  1105 TFLOPs with 2050 GPU’s. (2050 GPU’s using only 20% of their 
peak capacity develop 1105 TFLOPS)

*Compute capability version is a set of computing capabilities described for NIVIDIA graphics 
cards that can vary from version to version. There are 1.0 to 1.3 computing capabilities, and the 
differences  refer  mostly  to  memory  management,  specifically  for  what  NVIDIA describes  as 
coalescing. 

8.2.2 Execution Model
The execution model describes the processes in the virtual machine, detailed in the Platform Model,  
while executing an OpenCL program.
In this section I will explain those aspects of the Execution Model that are not explained through the  
“Interactions with the Execution Model” subsection in the previous section.
As described in the OpenCL Specification, the Execution Model occurs in two parts: the kernels 
that execute on the devices (that can include the CPU) and the host program that executes on the 
host (the CPU that executes the operating system).
Of this two parts, in a performance GPU OpenCL case, the most important to understand is the 
execution  of  the  kernels,  as  this  information  provides  keys  for  knowing  how  to  dispose  the 
information into work-groups for better performance. So I’ll explain some concepts to understand 
better the connection between the Execution Model and the code, and the Execution Model itself.

8.2.2.1 Kernels and kernel instances

You can think of a kernel like a C function to be executed on a device. The differences with a C 
function are:

-  The  OpenCL  kernel is  written  in  OpenCL C code,  that  means  using  some  specific  types, 
modifiers and libraries and having to deal with a list of important restrictions (you should carefully 
read them before writing any OpenCL C code). 
- This code can be precompiled or treated as a string, as source code, for run-time compilation. 

We need such abstraction because sometimes is better to read the source code on runtime, to be able 
to compile this code for different architectures when the program is due to be executed in several 
different architectures like video games and this kind of commercial apps for the mainstream. This 
avoids having to include all possible binaries in the distribution software package. 

The kernel instance is more similar to the object in object oriented programming languages. The 
kernel instance contains the behavior and pointers and variables defined by the kernel. There are 
several kernel instances of the same kernel running in a device, but using different data. Thats the 
behavior of the SIMD instructions and the data parallel model in GPU’s.
So, what a kernel instance in fact is, is a copy of assembler code for a particular device architecture,  
executed in a compute unit.

8.2.2.2 Work-Item

What’s the difference between a kernel instance and a work-item then? 

Well, the work-item concept differs from the kernel instance in the use of the concept. The first is 
used to talk about the kernel instance with a particular position in an index space, and the second 
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one to talk about the instance itself. 

As we saw in the Platform Model section, a NDRange contains a group of work-groups, and each  
work-group contains a group of work-items. 

8.2.2.3 The index space

The index space also called NDRange, is indexed as it’s name indicates. 

This is an OpenCL concept only for NDRange Kernels, that perform a data parallel model. Even 
though, this are the most powerful kernels due to the newest GPU’s capabilities. 

The indexation is really simple: 

- There is an index for each dimension in the index space. - Each index starts in position 0 and 
increases one unit for each work-item until reaching the number of work-items in this dimension 
minus one. 
- To describe the position of a work-item in the N-dimensional index space, a tuple of N elements is 
used. (2,4,0) would be the index for a work-item in a 3DRange. This index is called the work-item 
global ID. It is unique for each work-item. 
- Inside a work-group a local ID is defined for each work-item that follows the same rule as for 
global ID but inside the limits of the work-group. In a 2-dimensional work-group, (0,0) would be 
the index of the work-item in the top left corner of it. 
- Each work-group has a work-group ID to identify it in the index space. It’s the same again. So we 
can identify a work-item by it’s global ID, or by a combination of the local ID and the work-group 
ID. 

A visual example: 

In this index space, you can see the global indexes for each dimension in black numbers, and the 
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local indexes in red numbers. 

So, for the green square that represents a work-item, we can define tree indexes: 

- The global ID: (7,14) - The work-group ID for the work-group where it is in: (1,1) 
- The local ID: (2,4) 

To obtain the global ID from the combination of local ID and work-group ID you must perform the 
following operation: 

( 1*(work-group x size)+2 , 1*(work-group y size)+4) = (7,14) 

Why this is not a good example?? Because in a NDRange the number of work-items per work-
group should be a multiple of the number of processing elements in a compute unit, and also the 
number of work-groups should be a multiple of the number of compute units in a device. This 
provides optimal computing efficiency and facilitates coalescing*.

In NVIDIA GPU’s the work-groups are executed in portions of 16 work-items or half warp, 
serializing all the work group in the x dimension, so ideally, almost the x dimension of a work 
group should be multiple of 16 work-items.

This is because of the GPU’s own internal structure. As seen in the Platform model “Some real 
hardware examples section”, all brands use an even number of processing elements in the compute 
units. The optimal situation is having in each clock-cycle, the same number of work-groups to 
execute as compute units in the device, and for each w.g.-c.u. pair, the same number of work-items 
to execute as processing elements at every clock-cycle. 

The reason is simple. Doing that, all processing elements will be working in each clock-cycle, and 
no computational capacity is wasted. For instance, what would be the execution sequence of the 
2DRange on the image above, for a NVIDIA graphics card? First of all, a 9 series NVIDIA GPU 
has a minimum of two compute units with eight processing elements each one. That means that we 
will have warps with 5 work-items wasting almost half of the processing elements in each clock 
cycle or if it makes groups of 16 work-items anyway, then 2 processing elements will be wasted at 
the end of execution of each work-group. 

Following the NVIDIA example, you could organize your kernels caring about one 9-series specific 
model, and think of multiples of its number of compute units, or better try to do multiples of the 
maximum number of compute units in the biggest model, because it will work for models with less 
compute units and still better, if it uses a big number of work-groups, it will be efficient with further 
GPU models that will have more compute units. Fortunately, ATI graphics cards use 16 processing 
elements per compute unit so it seems that is not that difficult to make efficient and portable code.  
Any way, doing profiling with NVIDIA cards could produce a code with some problems in an ATI 
card. That will be one of the analysis for the degree final project which this summary is involved. 

So, if you are trying to do a platform independent implementation, maybe you are going to sacrifice 
some performance, but knowing “why” can help on trying to optimize as much as possible even this 
circumstances. For instance, using even numbers will always be better than odd numbers. 

Also, each device has kernel addressing limits, so a limited amount of kernels can be addressed at a 
time. It varies not only for the brand but the model of the same brand. An option to face all that, is  
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to query the device, and write host code that decides proportions based on that information. 

*Coalescing is a hardware procedure described only for NVIDIA CUDA architecture, that takes 
groups of work-items aligned in 16 work-items as a “unit”, and move them from local memory to 
compute units in only one transaction. 

8.2.2.4 Context

The context is the environment managed by the host program. The context includes a set of devices, 
the memory accessible to those devices, and one or more command queues used to schedule 
execution of one or more kernels. A context is needed to share memory objects between devices. 

8.2.2.5 Command queue

As commented in the Platform model section, OpenCL command queues are used for submitting 
work and data to a device. They provide a channel to communicate with devices through 
commands. OpenCL executes the commands in the order that you enqueue them in the command 
queue if the command queue is set as in_order. An out_of_order can be created but it is defined to 
have implementation dependent behavior. 

8.2.2.6 Program objects

An OpenCL program is a set of OpenCL kernels, auxiliary functions called by the kernels, and 
constants used by the kernels. 

An OpenCL program object is a data type that represents your OpenCL program. It encapsulates the 
following data: 

- A reference to a context for the program (which is needed to know on which devices the program 
can run).

- The program source code or binary. - The latest successfully built OpenCL program executable.

- The list of devices for which the program executable was built, the build options used, and a build 
log. 

8.2.2.7 Memory objects

A memory object is a reference to a region of global memory. You can create memory objects to 
reserve memory on a device to store your application data. As commented in the Platform model 
section, there are two types of memory objects used in OpenCL: buffer objects and image objects. 
The host application can enqueue commands on the command queue to read from and write to 
memory objects. 

8.2.3 Memory model
The memory model handles the device memory. It defines four memory regions with some or no 
access restrictions for the work-items. The memory objects placed in those regions will be affected 
by this restrictions. 

- Global Memory: this memory region permits read/write access to all work-items in all work-
groups. Work-items can read from or write to any element of a memory object placed in the global 
memory. Reads and writes to global memory may be cached depending on the capabilities of the 
device. 
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- Constant Memory: it defines a region of global memory that remains constant during the 
execution of a kernel. It means that no work-item can write in any memory object placed in constant  
memory. 
- Local Memory: it defines a memory region that is “local to” a work-group. This memory region 
can be used to allocate variables that are shared by all work-items in that work-group. The local 
memory is on-chip memory and is the fastest memory available in the device, but also the smallest  
one. 
- Private Memory: private memory defines memory only accessible to a single work-item. This 
memory is the same kind of on-chip memory as local memory. The kernel code has no access to 
that kind of memory. 

If you care about performance, you care knowing when your program is using global or local 
memory, since local memory is faster and has no coalescing problems. 

ATI and NVIDIA have slightly different naming for OpenCL memory hierarchy definitions. 

This is the ATI Memory model definition (the most similar to OpenCL specification): 

- Private memory is memory that can only be used by a single processing element. This is similar 
to registers in a single processing element or a single CPU core. 

- Local memory is memory that can be used by the work-items in a work-group. This is similar to 
the local data share* that is available on the current generation of AMD GPUs. 

- Constant memory is memory that can be used to store constant data for read-only access by all of 
the compute units in the device during the execution of a kernel. The host processor is responsible 
for allocating and initializing the memory objects that reside in this memory space. This is similar  
to the constant caches that are available on AMD GPUs. 

- Global memory is memory that can be used by all the compute units on the device. This is similar 
to the off-chip GPU memory that is available on AMD GPUs. 

So, in this case, the local memory is mapped into a special compute unit cache area accessible to the  
programmer. Also the constant memory is on-chip memory.

The next picture shows the ATI/Krhonos OpenCL memory definition: 
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Next is the NVIDIA OpenCL Memory model definition: 

- Global memory is memory that can be used by all the compute units on the device. It is not 
cached, so the most important is to follow the right access pattern to get maximum memory 
bandwidth, especially given how costly accesses to device memory are. 

- Local memory is memory that can be used by the work-items in a work-group. CUDA local 
memory is not cached, so accesses to local memory are as expensive as accesses to global memory. 

- Constant memory is memory that can be used to store constant data for read-only access by all of 
the compute units in the device during the execution of a kernel.
 It is cached so a read from constant memory costs one memory read from device memory only on a 
cache miss, otherwise it just costs one read from the constant cache. 

- Private memory is memory that can only be used by a single processing element. This is register 
memory. Generally, accessing a register is zero extra clock cycles per instruction, but delays may 
occur due to register read-after-write dependencies and register memory bank conflicts. 

- Shared memory is where OpenCL local memory resides. It is to say that shared memory differs 
from local memory only by the hardware place it is mapped. Shared memory is on chip memory so 
it’s much faster than local and global memory. In fact, for all threads of a warp, accessing shared 
memory is as fast as accessing a register as long as there are no bank conflicts between the threads. 
In the code you may indicate shared memory with the “__local” flag instead of the “local” one used 
for local memory. 

8.2.4 Programming Model
The OpenCL execution model supports data parallel and task parallel programming models, as well 
as supporting hybrids of these two models. The primary model driving the design of OpenCL is data 
parallel. 

8.2.4.1 Data parallel programming model

A data parallel programming model defines a computation in terms of a sequence of instructions 
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applied to multiple elements of a memory object. The index space associated with the OpenCL 
execution model defines the work-items and how the data maps onto the work-items. In a strictly 
data parallel model, there is a one-to-one mapping between the work-item and the element in a  
memory object over which a kernel can be executed in parallel. OpenCL implements a relaxed 
version of the data parallel programming model where a strict one-to-one mapping is not a 
requirement.

OpenCL provides a hierarchical data parallel programming model. There are two ways to specify 
the hierarchical subdivision. 

- In the explicit model a programmer defines the total number of work-items to execute in parallel 
and also how the work-items are divided among work-groups. 
- In the implicit model, a programmer specifies only the total number of work-items to execute in 
parallel, and the division into work-groups is managed by the OpenCL implementation. 

8.2.4.2 Task parallel programming model

The OpenCL task parallel programming model defines a model in which a single instance of a 
kernel is executed independent of any index space. It is logically equivalent to executing a kernel on 
a compute unit with a work-group containing a single work-item. Under this model, users express 
parallelism by: Using vector data types implemented by the device Enqueuing multiple tasks,  
and/or Enqueuing native kernels developed using a programming model orthogonal to OpenCL 

8.2.4.3 Synchronization

There are two domains of synchronization in OpenCL: 

- Work-items in a single work-group. - Commands enqueued to command-queue(s) in a single 
context.
Synchronization between work-items in a single work-group is done using a work-group barrier. All 
the work-items of a work-group must execute the barrier before any are allowed to continue 
execution beyond the barrier. Note that the work-group barrier must be encountered by all work- 
items of a work-group executing the kernel or by none at all. 

There is no mechanism for synchronization between work-groups. The synchronization points 
between commands in command-queues are: 

- Command-queue barrier: the command-queue barrier ensures that all previously queued 
commands have finished execution and any resulting updates to memory objects are visible to 
subsequently enqueued commands before they begin execution. This barrier can only be used to 
synchronize between commands in a single command-queue. 

- Waiting on an event: all OpenCL API functions that enqueue commands return an event that 
identifies the command and memory objects it updates. A subsequent command waiting on that 
event is guaranteed that updates to those memory objects are visible before the command begins 
execution.
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8.2.5 Interactions of the platform model with the execution 
model

8.2.5.1 Device

A command-queue is used for sending commands to the device. This commands can be kernel 
instantiations, data copies or buffering, and event queries. 

Events are objects representing the commands enqueued in the command queue and containing 
execution status information about them. This will be useful for debugging purposes and dynamic 
command management. 

The structures used to store or buffer data to the device are the Buffer objects that are one 
dimensional memory object’s, and the Image objects that can be two or three dimensional memory 
objects. 

We can: Create memory objects assigning to them host pointers to read from or write to. Enqueue 
this memory objects to the device to make a copy or create a buffer from host pointers to device 
global memory. Manipulate then the memory object contents with the kernel code, copying parts of 
it to faster local memories for processing and copying back the results to the data objects that reside 
in global memory. And finally reading the data from the buffer objects and copying it back to the 
host memory to make it available to the host program. The command-queue will also be used to 
create up to three different kinds of kernel instances inside the device. NDRange kernel (data 
parallel model), kernel (task parallel model) and Native kernel (hardware specific native binaries). 

The same OpenCL program can execute different kernels in different devices controlled by the host 
program. When the host program submits a NDRangekernel to be executed in a device, the kernel is 
instantiated p times in a n-dimensional index space called NDRange (1d=1DRange | 2d=2DRange | 
3d=3DRange). If n=2, x_size=32 and y_size=16  then the kernel will be instantiated p=32x16 times. 
Tis index space is divided into work-groups. All of them with the same dimension order as the 
NDRange, and all with the same sizes as each other work-group. For instance, dividing an index 
space dimension size for the number of work-groups in that dimension should return an integer, as 
to say that modulus should return zero. This work-groups give more flexibility and coarse grained 
execution, and make possible to manage bigger amounts of data. 

Each device executes only one NDRange at the same time. This NDRange contains instances of 
only one kernel.  
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8.2.5.2 Compute unit

In a compute device the kernels inside of a work-group are executed as concurrently as the compute 
device is capable of. For instance, in the NVIDIA GPU’s with compute capability 1.x to 1.2, each 
work group is divided in warps of 32 elements and each warp in half warps of 16 elements. That 16 
elements are sent to execution in to a CUDA multiprocessor or compute unit. 

Executing several work-groups inside the same compute unit is also possible, depending on the 
sizes of the work-groups and the compute unit capability and memories. 

In the picture below, the compute-unit is labelled as a Multiprocessor. 

8.2.5.3 Processing element

The kernel instances, are called work-items in the execution model. This work-items are executed in 
the processing elements.    
    Each processing element executes one work-item, or kernel instance, with different data 
depending on the global_id or local_id of this work-item. This will be explained in the Execution 
Model section. 

Optimizing OpenCL code for GPU’s and similar architectures like CellBE will be then creating a 
code that ensures the maximum processing element use rate per clock cycle, for the total amount of  
processing elements in all the devices controlled by the host program. 

The key factor in achieving this, is knowing how to manage the memory hierarchy model, since 
load and store operations waste lots of computational clock cycles with all the processing elements 
idle. 

In the picture below the processing element is the NVIDIA labeled Scalar Processor. 
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8.3 Case study
Now we describe some possible OpenCL implementations, and finally the implementation we used 
to test OpenCL performance and portability. 

8.3.1 Implementation of OpenCL in ATLAS for Matlab
Implementing OpenCL in some basic mathematical libraries seems the first natural step, since it  
makes possible to use OpenCL from any application that uses a non OpenCL version of the same 
library. In that case we thought that could be interesting to test it with Matlab that is very used for  
algorithms involving matrix and vector operations, that are very suitable for GPU computing. 
Matlab uses since version 7.0.1 specific libraries from CPU vendors. This libraries which 
implement BLAS (Basic Linear Algebra Subprograms) and LAPACK (Linear Algebra Package) 
are: 

- MKL for Intel processors 
- ACML for AMD processors. 

Before version 7.0.1, Matlab used ATLAS libraries (Automatically Tuned Linear Algebra 
Software). 

ATLAS is a BLAS Open Source implementation with some LAPACK components, that 
automatically generates a tuned binary version of that libraries for the system where is being 
installed. Nevertheless, the vendor implementations perform better than ATLAS. Although vendor 
libraries are not free, and expensive, Mathworks decided to use them for better performance. But 
Mathworks also allows to change the BLAS and LAPACK libraries an choose one of yourself. 
According to the online Matlab documentation, there are two environment variables to do so, and 
indicate the binary library files to use instead of the default ones. So, taking a look to the ATLAS 
project code, we can see that it is a complex package with C source code and several make files. 
The complexity of the package is due to the auto hardware detection, and several different versions 
of the same program depending on the kind of optimization depending on the hardware. 

There are any way the basic versions. So we could take this basic codes and implement them in 
OpenCL. Now, the problem is that we don’t know how the Matlab behavior is. That is, we don’t 
know if Matlab calls the BLAS and LAPACK libraries with small data packs, or big data packs. In 
case a call is performed for a small data set, provably is better to use optimized CPU instead of 
GPU, because of the PCIe transfer times. So there should be a condition or something in the code to 
detect that and select between CPU or GPU version. We could rely on OpenCL CPU, but as we will 
see in the CPU OpenCL section, the LLVM optimizations for CPU are not as good as manual 
optimizations in code and compiler flags. So, because all that, and because there are groups of 
people on universities and businesses that use to do that kind of work, we searched for a simpler 
implementation to test the OpenCL characteristics. 

At the moment of this work, there was no ATLAS-OpenCL project or similars, but a partial FFT-
OpenCL implementation from Apple. Also, Mathworks said that they where not planning to 
implement any GPU support into their Matlab product. Today, there is an OpenCL Linear Algebra 
project and others: 

- ViennaCL http://viennacl.sourceforge.net/index.php%3Fid=about.html
- Mathworks offers multi CPU, cluster and GPU support for Matlab with a separate product called 
Parallel Computing Toolbox 5.0. 
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8.3.2 Four point stencil based 3D fnite diferences
We implemented a very used numerical method for finite differences to test all the characteristics  
attributed to OpenCL. This method is a four point stencil, and we added some extras to validate the 
codes when simulating wave propagation in homogeneous materials. That allowed us to 
numerically and visually compare the results with already validated codes. 

Stencil is a process that sums all the values around one point in a 2D or 3D numerical space, 
including the value of that point.  It can be used for a lot of purposes, but in this case we used it to 
calculate an approximation of the finite differences of a wave propagation function for each of the 
points of a 3D numerical space.  The number of neighboring points to be summed in each 
dimension is arbitrarily variable. The more, the better precision we can get on the finite difference,  
but computing complexity increases with more neighbors so, we chose a 4 point stencil (25 in total 
counting each side for each dimension). This method is used to calculate a different value for the 
central point according to the final value of the sum, and some criteria that use to be applying 
coefficients in one or another way. In this case, the coefficients give to each point a proportion in 
the influence of his value for the final value, depending on the distance of this point to the central 
one. In this case we use it to calculate the values of each point for the next time step in a 
propagation process. 

We started with non vectorized implementations for both CPU and GPU to do a first test. We 
compared CUDA to OpenCL performance for an identical code and then the same OpenCL code in 
an ATI card, doing three versions of the kernel and testing performance on them to see the effects of 
each improvement in an ATI card. To deeply test the performance in ATI cards we will implement  
vectorized versions in a future iteration. 

8.3.2.1 Implementation for CUDA and NVIDIA-OpenCL

A 4-points stencil is implemented using well-known optimization methods for NVIDIA GPU’s, in 
CUDA and OpenCL languages. The kernel optimization is based on reducing global memory reads 
by  using  registers  in  the  z  dimension  (”y”  geophysical  axis),  and  local  memory  for  x  and  y 
dimensions. 

Using the GPU’s memory hierarchy, the algorithm fills the registers and local memory to allow the 
stencil calculation for the inner points of the local memory x-y plane. Reading several times the 
same data from local memory and registers is  far  faster than reading from global memories in 
NVIDIA graphics cards. We used a 2D local memory shape to allow contiguous local memory reads 
in the x axis, so contiguous threads can read from local in a single transaction in chunks of 16  
threads, as specified in the documentation. 
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Local-Memory data shape: blue is read from 
registers, orange is read from Global-Memory

The reasons to use registers for the rest of the points not only is that registers are faster, but also the  
amount of local memory available. Since 9 planes of the fastest dimensions for thread scheduling 
(32x4 threads in Fermi 32x8 non Fermi Tesla, and 64x2 ATI) doesn’t fit in local memory, we use 
only the central plane with 4 point borders in local memory, and the rest in registers without the  
borders  since  we  only  calculate  the  points  of  the  central  plane  in  each step.  So the  8  planes 
contained in registers are the ghost points of the inner local memory points, added to the 4-values 
external radius in local memory, that are also used as ghost points. The stencil calculation advances 
from plane to plane in the z axis, ensuring that calculations are finished for all the values of the  
actual plane before starting with the next plane. This is because we don’t want a thread changing 
values in local memory until all calculations are finished for the actual data, to avoid invalid results.

Data usage of 4 threads mapped to the 4 inner values

To update the data we only need to discard the values from the first front ghost sub-plane of the 9 
planes, move all values one plane front, and fill the last back plane with the next unread plane. This 
is done by transferring data from registers to local, from local to registers, and reading from global  
memory  only  the  last  back plane  and the  local  4  point  borders.  The  value  of  the  point  being 
calculated, as long as the ghost points needed in x and y axis, are in local memory, in one sub-plane 
with x and y sizes according to Work Group or Thread Block x and y sizes. Also, there is a memory 
padding done to increase coalescing on global memory reads and writes. We tested the performance 
of this implementation in OpenCL and CUDA against different cards, including one ATI (Juniper 
architecture),  and comparing with a CPU version run on Intel and AMD. We found little to no  
performance difference between OpenCL and CUDA. For large data sets, CUDA performs a little 
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bit better. This is provably due to a difference in the compiler register management between CUDA 
and OpenCL, given that high levels of unrolling increases performance in CUDA version and in the 
OpenCL is the LLVM compiler who decides the unrolling level. Unrolling increases the number of 
registers being used,  and a bad compiler register  optimization can produce  more registers  than 
needed being used, thus reducing the number of Work Groups or Thread Blocks being active in 
each Compute Unit or SM. As a consequence, Occupancy is reduced and throughput decreases, 
reducing the benefits of unrolling. We checked that 32x4 is the better Work Group dimension sizes 
for Fermi cards, and 32x8 for pre-Fermi NVIDIA cards, for both CUDA and OpenCL. Executing 
this implementation in the OpenCL version, on the ATI card,  works by just  changing Makefile 
parameters, because we focused on avoiding platform defined behavior API calls described on the 
Khronos  OpenCL specification.  But  this  direct  execution  results  in  a  very  low  performance 
calculation. 

8.3.2.2 Testing NVIDIA-OpenCL version in an ATI card

Another version of the kernel follows ATI OpenCL programming guide performance guidelines. 
According to this documentation, coalescing is not as problematic as in NVIDIA cards since ATI 
subdivides the warps or wavefronts in smaller consecutive chunks. So we avoided the memory 
padding. The performance difference between the NIVIDIA-OpenCL version with padding, and 
without padding, is huge. We also tested other padding sizes according to the ATI memory block 
sizes, but none improved performance. Te best performing NVIDIA version for the ATI is the one 
without padding. 

8.3.2.3 Naïve version for ATI 

In order to see the performance difference between using local memory and not using it in an ATI 
card, we implemented a naive version of the kernel that only uses global memory. We haven’t done 
it for NVIDIA cards because the difference is already well known and documented. The results are 
better than the NVIDIA version with padding in the ATI, and also worst than the NVIDIA version 
without padding on the ATI. To test that kernel, we had to change few things in the driver side, since  
we reduced the number of parameters to the kernel. We also packed the non-pointer parameters into 
a constant memory pointer. 

8.3.2.4 Register only tuned version for ATI

The last kernel version for the ATI uses the same algorithm as the NVIDIA version, but without  
local memory. All values that on the other algorithm are in local memory now are read directly from 
global memory. We used registers for the front, back and center or current values, updating them in 
the same way as the NVIDIA version, but exploiting float4 data types to calculate and to move the 
data. We can calculate in chunks of 4 values, and move data in chunks of 3 for the update process,  
all in one cycle for each Work Item, due to the ATI VLIW capabilities. The left, right, up and down 
are read and updated all in every plane transition, reading from global memory to float4 registers. 
Here is where a future implementation will add local memory optimizations to lower the number of 
global  memory  reads.  This  can  be  done  reusing  the  NVIDIA code.  Applying  only  the  first 
optimization,  for  the  front,  back and current  values,  the  times  improve noticeably.  Adding  the 
second, VLIW for the left-right and up and down, there is also an improvement but not so high as 
the first one. This shows that VLIW capabilities are important in ATI cards, but reducing global 
memory reads by using registers using VLIW capabilities in the process is much more effective. 
Also, we have to take in account that ATI registers are vectorial. There are 16k 128bit vectorial  
registers or 16k x 4 32bit registers. Twice the 32k of last Fermi NVIDIA cards. So global memory 
reads, is not so problematic as in NVIDIA cards, but is still a main performance factor in ATI. Also, 
we tested different Work Group dimension sizes and found that 64x2 is the best for the ATI card. 
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That makes sense since the warp or wavefront size in ATI is 64 Work Items. So this is an ATI sub-
performance version, and we still have to implement a true VLIW version for the ATI, but testing it  
on NVIDIA (changing to 32x4) we found that performance is not so far away from that of the first 
NVIDIA-performance OpenCL implementation. So we could think of this ver- sion as an universal 
version, that works pretty fast on both ATI and NVIDIA graphics cards, and was very straight fast to 
implement it. With more time we could provably find better implementations that work faster than 
that one, on both architectures, since float4 works too in NVIDIA although without VLIW support.

8.3.3 Results
In this section we describe and discuss the results we had in the tests. 

8.3.3.1 CUDA-OpenCL comparison

First of all we wanted to test the performance difference between OpenCL and CUDA for the same 
code. 

As seen in the graphs, the average difference is almost 0% being CUDA the winner for a bery thin  
margin. So OpenCL for NVIDIA GPU's is still an option. 

We also had the chance to compare two OpenCL API functions to synchronice queue execution 
commands, with different control level over events. 
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As seen on the above graph, using the OpenCL API call clFinish, is faster that clWaitForEvents.  
The functional differences are that clFinish acts only as a barrier for the Host program, and makes it  
wait  until  all  commands  are  executed  on  the  queue  especified  in  clFinish  call.  Instead, 
clWaitForEvents, requires the creation of almost one event for a queued command, in order to make 
the Host program to wait until that specific event or events is or are finished. That means extra work  
that produces a measurable overhead.

8.3.3.2 ATI-OpenCL test

Now that we have tested OpenCL performance, we tested also OpenCL portability. We developed 
the  code used in  all  tests  with portability  in  mind,  so we avoided all  API calls  that  imply  an  
implementation defined behaviour. That was a non difficult task.

Executing the code used to obtain the results shown in the previous subsection on an ATI card, 
implied no change on the OpenCL code. Only Makefile had to be changed to target the OpenCL 
libraries provided by AMD. 

We tested four version of the OpenCL kernel. One that is exactly the same as the one used for the 
NVIDIA tests,  the same but  without  padding alignment,  one naive version without  using local 
memory or register optimization and an hybrid version that uses register optimization without local, 
using too VLIW registers,  but  not  a true VLIW implementation form the ground up.  A VLIW 
implementation will be done in a future iteration, given the VLIW capabilities of the ATI cards. 
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As a mention, we found that for a given kernel, in an ATI card, the best Work-Group sizes are 64x2. 

8.3.3.3 CPU single core tests to compare

 
In this Figure we can see that CPU times are much more hig than GPU times. But it is important to  
note that the CPU version is a non multicore CPU version.

8.3.4 Hardware description
There are two main architectural differences that we found important when reading ATI and 
NVIDIA documentation. The first one is the warp size that ATI calls wavefront. For NVIDIA is 32, 
and for ATI is 64. We tested performance differences with Work Group sizes of 32x4 and 64x2 and 
the first performed better on NVIDIA Fermi, and the last one better on the ATI. The second one is 
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the VLIW capabilities of ATI cards not present on NVIDIA, and used by ATI to measure the 
theoretical peak performance of their graphics cards. So at first, it seems more difficult for an ATI 
card to have a good percentage of use of it’s peak performance, since not only we have to 
parallelize the program, but also use vectorized data types to achieve maximum performance. Apart  
from this ones, there are other differences like non coalesced global memory accesses behavior, and 
non 32bit data types, as well as global and local memory bank conflicts. Next we show hardware 
tables with the main characteristics for each processor used on the tests: 
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8.3.5 Future work
Future work can be centered in some different aspects. Tuning the OpenCL kernel: the kernel used 
in this experiment was developed by a famous programmer called Paulius Micikevicius, and 
explained in the paper 3D Finite Difference Computation on GPUs using CUDA. This algorithm is 
highly optimized for GPU’s, but we think some small optimizations can still be performed, by 
completely removing the register movements, mixing it with an unrolling. That will increase de 
code size, but taking in account the Fermi caches that reduce latency for register instruction global  
memory spilling. Another possible way to optimize it, is by reducing local memory reads using the 
semi-stencil algorithm. Developing a true VLIW kernel version for ATI cards, and optimize it  
following the ATI guidelines and architecture. Then, compare price/performance between NVIDIA 
and ATI, and check which performance the ATI version has on NVIDIA cards.

8.3.6 Conclusions
Overall, the slowest part to code was the driver part. All the needed API calls, OpenCL objects and 
so on, makes the coding a long work. It also gives a lot of control over the process though. The 
kernels are almost the same as in CUDA. It was the fastest part. So there is a reasonable chance to  
successfully create interfaces that ease coding the Host part, as found in the literature. Portability in  
OpenCL is a valid feature, since taking care to avoid the implementation defined API calls, the code 
worked  without  any  change.  So  having  an  OpenCL version  of  a  program,  allows  to  change 
hardware, and start from the tuning stage, instead of starting by learning a new API and language. 
Performance is  comparable  to that  of CUDA, so if  in  the future,  the majority of the hardware 
supports OpenCL, it will definitely be the way to go. 

8.4 OpenCL 1.1 fash view
At the moment of writing this documentation, AMD has released few weeks ago the first public 
OpenCL 1.1 version. It is supposed to fix some issues found with ATI cards when using smaller  
than 32bit data types, and add support for SSE 2.x CPU’s, plus adding the changes from 1.0 to 1.1 
version.  Major  changes  are  related  to  integrating  some  extensions  as  default  OpenCL 
functionalities, reduce OpenCL C restrictions and improving integration of OpenCL with different 
graphics API’s like OpenGL and DirectX. 

8.5 CPU OpenCL and other considerations
Apart  from  the  device  specific  parallelism  capabilities,  there  are  several  different  kinds  of 
parallelism that can be exploited on OpenCL. First of all, every call to a queue, is a non-blocking  
call, so the Host program can perform other tasks like performing other calls to other queues linked 
to other devices. That allows to control the scheduling of tasks between different devices of the 
same or different architecture. For instance we can program a work flow that is valanced by the  
OpenCL Host program between all CPU’s and all GPU’s on a system. We can also synchronize 
queues by blocking the Host program until all enqueued commands are performed in a given queue, 
or until one of the commands of a particular queue is finished. That last synchronization system 
uses  what’s  called  OpenCL events.  NVIDIA OpenCL examples  use  this  event  synchronization 
approach, but for our code this is unnecessary, we can synchronize by waiting all commands to 
finish in the queue with a simpler API call and without generating OpenCL events, thus reducing 
the overhead. We measured this difference, and for small data sets it is very noticeable, but also 
observable for big ones. We tested a C version of the stencil algorithm implemented in an OpenCL 
CPU kernel to see the difference between compiling with gcc knowing the architecture of the CPU, 
so adding architecture specific compiler flags to improve performance, and LLVM automatic tuning 
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compiler used by OpenCL. The results sow a big difference in performance, being the OpenCL 
implementation much slower. Fixstars has developed an OpenCL for CPU’s implementation, and 
they say that their implementation performs much better than the AMD one, that is the OpenCL 
implementation  we  used  to  do  the  test.  Until  we  don’t  find  better  results  with  OpenCL CPU 
implementations we won’t put much effort into CPU OpenCL implementations. By now, is much 
more interesting for performance reasons, use OpenMP for CPU’s and OpenCL for GPU’s. 

8.6 Conclusions
Learning OpenCL has some stages. The first one is conceptual. For those used to program parallel  
languages and CUDA, this is a no brainer. The new concepts maybe can be on the driver side if the  
programmer have  not  entered into much detail  or multi-device programming with  CUDA. The 
second one is to learn the OpenCL C language restrictions (this are only 15), and OpenCL API calls.  
All that can be done while coding having the OpenCL specification around, but reading carefully to 
avoid implementation defined behaviors and missing important details. Overall, OpenCL seems a 
good option for GPU computing today, for the support that NVIDIA gives and AMD focusing all 
the efforts in OpenCL. Also it can be a good choice for the future, in order to preserve development  
investments. Some new architectures are supporting OpenCL like the Zii processor, and OpenCL is 
designed to support any kind of hardware like accelerators, FPGA’s etc... 

9 Appendix A: how to run the software
For either ATI or NVIDIA version it is necessary to first install a specific driver into a PC with an 
ATI or NVIDIA graphics card supporting OpenCL. All that information can be found in their web 
pages.

Once installed all drivers, or havig an Apple computer with Mac OSX 10.6 with a compatible 
graphics card, you only need to compile the software with gcc and some specific flags depending on 
the OpenCL implementation.

For detailed instructions see the ATI or NVIDIA web pages or: The OpenCL Programming Book, 
Ryoji Tsuchiyama and others, Fixstars, http://www.fixstars.com/en/company/books/opencl/
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