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ABSTRACT
Hand pose recognition in advanced Human Computer Inter-

action systems (HCI) is becoming more feasible thanks to the
use of affordable multi-modal RGB-Depth cameras. Depth
data generated by these sensors is a very valuable input in-
formation, although the representation of 3D descriptors is
still a critical step to obtain robust object representations.
This paper presents an overview of different multi-modal
descriptors, and provides a comparative study of two fea-
ture descriptors called Multi-modal Hand Shape (MHS) and
Fourier-based Hand Shape (FHS), which compute local and
global 2D-3D hand shape statistics to robustly describe hand
poses. A new dataset of 38K hand poses has been created for
real-time hand pose and gesture recognition, corresponding
to five hand shape categories recorded from eight users. Ex-
perimental results show good performance of the fused MHS
and FHS descriptors, improving recognition accuracy while
assuring real-time computation in HCI scenarios.

1. INTRODUCTION
An increasing interest in multi-modal data fusion is cur-

rently arising in the fields of Computer Vision thanks to
affordable RGB-D cameras like KinectTM . Several appli-
cations benefit from these new sensors, such vision surveil-
lance, face detection, object recognition, eHealth systems
and Human Computer Interaction (HCI) systems [11].

Regarding HCI, the use of the depth sensor for hand detec-
tion and gesture recognition allows vision-based interfaces
to use the user hands to interact and communicate with a
computer, thus providing intuitive means of navigation and
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control. However, robust and accurate 3D hand pose recog-
nition for real-time computing is still an open problem, and
several research papers have been recently devoted to this
issue.

Descriptors for 2D object recognition have been exten-
sively studied in literature [14, 10]. In this sense, many
authors have defined new 3D descriptors as an extension
of well-known 2D image features, such as SIFT, HOG or
SURF [15, 6]. Although successful results were obtained for
some 3D object recognition tasks, methods are still compu-
tationally expensive for real-time performance [13]. In addi-
tion, several others depth descriptors for 3D object recogni-
tion have been recently proposed [1, 19, 16, 2]. The SHOT
descriptor [12] uses normal points from a 3D grid surface
and calculates the angle between them and their feature
point normals. However, the lack of warping for non-rigid
surfaces yields to poor results. Other 3D descriptors in-
clude spherical harmonics features [5] or the relative curva-
ture of a vertex [3], though they become computationally
expensive for real-time performance. Towards this end, the
Fast-Point Feature Histogram (F-PFH) [21] computation-
ally improves the original PFH (in essence, 3D geometric
primitives based on linked points [22]) by codifying the 3D
environment angles relation. Lastly, the Viewpoint Feature
Histogram (VFH) [23] appears as a combination of F-PFH
and surface normals. The common drawback in all previous
descriptors is the generation of blurred point clouds, loos-
ing partial 3D details, and thus reducing final recognition
accuracy.

The aim of this paper is to present a comprehensive study
and comparison of existing multi-modal descriptors applied
to 3D hand pose recognition. We present a real-time hand
pose recognition system based on two feature descriptors
called Fourier-based Hand Shape (FHS) and Multi-modal
Hand Shape (MHS). The FHS descriptor is based on the
descriptor presented in [24], here extended to the use of 3D
segmented depth data. In addition we reduce the descriptor
size to 44 sub-sampled coefficients while enclosing relevant
information for hand pose classification. The MHS descrip-
tor is based on the work presented in [17], enhanced with
an equally relevant features calculation by applying data



Figure 1: HCI system flowchart.

normalization. Finally, we combine the FHS and MHS de-
scriptors which constitute the core of a real-time HCI system
for hand pose detection and gesture recognition. For clas-
sification, we compare support vector machines (SVM) [7],
randomized decision forests (RF) [4] and non-parametric K-
Nearest Neighbors (KNN) [9], obtaining successful results.

The rest of the paper is organized as follows. Section 2
presents the proposed system for HCI. Section 3 includes
hand pose classification results and HCI application exam-
ples. Section 4 describes the main conclusions obtained from
the experimental results.

2. SYSTEM
The flowchart of the system being implemented is shown

in Figure 1. First, both color and depth images are ac-
quired from the KinectTM sensor and the user skeleton is
computed based on Random Forest and Mean Shift ap-
proach of [25]. From that, hand segmentation is applied
using skeleton and depth data only, yielding to a 3D seg-
mented hand depth map. Then, features are calculated by
generating a FHS/MHS descriptor feature vector as input
to the pose classification module. These features codify lo-
cal and global depth and silhouette statistics from the seg-
mented used masks, meanwhile aligned RGB data is used
for monitoring purposes within the HCI application inter-
face. Finally, gesture recognition is calculated by combining
the skeleton data trajectory and the classified pose for real-
time interaction.

For current HCI experiments, the KinectTM motion sens-
ing input device designed by Microsoft is utilized. The main
advantage for the user is the control and interaction with the
console by gesturing and speaking. The KinectTM contains
an RGB color camera, a depth sensor and a multi-array mi-
crophone. Both color and depth sensors acquire at 640×480
pixels resolution and 30 fps acquisition rate. The depth sen-
sor works within a range distance from 0.7 to 5.0 meters.
It comes with built-in software, which is able to acquire 3D
full-body in motion, face and hand recognition, and voice
interpretation.

The advantage of KinectTM being multi-modal allows depth
and color acquisition simultaneously. Segmentation process
utilizes depth and skeleton data, and color image is utilized
to combine both color and depth information by 3D cali-
bration to visualize depth segmented data on color image
at the HCI screen. With reference to gesture recognition,
the SDK that comes with KinectTM is only able to recog-
nize two hand poses, open and close hand. This limitation
has challenged researchers to broaden the gesture recogni-
tion set. Therefore, a methodology for creating an extended

gesture dictionary is presented, which include hand segmen-
tation, descriptors computation, pose classification, gesture
recognition and an integration step in a HCI system.

2.1 Hand Segmentation
Hand detection is based on depth segmentation. First,

joints are detected using the original skeleton analysis li-
braries of KinectTM based on Random Forest segmentation
and Mean Shift skeletal joint estimation [25]. From that, a
3D depth window centered at hand joint position is selected,
thus generating the final depth hand segmentation. Since
segmented hands size may vary from different individuals,
image normalization by scaling to a model size is applied in
order to obtain similar-sized hands segmented depth images.
Results from hand segmentation are shown in Figure 2.

Figure 2: Example of depth hand image segmentation.

2.2 Hand Pose Descriptors
The following step is to generate an appropriate feature

vector to describe a hand pose class, which is thereafter
used as input for pose classification. This work presents
a comparative study of feature descriptor representation us-
ing Fourier-based descriptors (FHS) and multi-modal hand
shape descriptors (MHS) by five features descriptor sets, and
classification comparing support vector machines (SVM) [7],
the randomized decision forest (RF) [4] and the non-parametric
K-Nearest Neighbour classifier(KNN) [9]. The five descrip-
tor sets are presented next.

2.2.1 Fourier based Hand Shape descriptors
The FHS used in this study is based on the Fourier-based

descriptor presented in [24], which considers the Fourier co-
efficients of a 2D segmented image. Contour points (xi, yi), i =
0, .., N − 1 are represented by complex numbers, zi:

∀i ∈ [0, .., N − 1], (xi, yi)⇔ zi = xi + jyi. (1)



In this study, FHS is applied to the 3D segmented im-
age hand [24]. As an extension, we use 3D segmented depth
data instead while reducing the descriptor to 44 sub-sampled
coefficients, enclosing relevant information for pose classifi-
cation as described next.

A discrete sub-sampled set from the hand contour is used
as input to the Fast Fourier Transform (FFT). For the sub-
sample, 64 points are selected, and thereafter the Fourier
coefficients are calculated as follows:

Ck =

N−1∑
i=0

zie(
−2πjik

N
), k = 0, .., N − 1. (2)

Then, the inverse Fourier Transform restores zi as:

zi =

N−1∑
k=0

Cke(
2πjik

N
), k = 0, .., N − 1. (3)

For a more intuitive interpretation, the zero frequency is
moved to the center of the vector C, and the input image is
multiplied by (−1)k = ejω, where ω is the value of 2π(k/2).
As a result, the spectrum calculated is sampled by half the
frequency.

Since rotation and scale invariant results are required, the
coefficients are normalized by C1, yielding N − 2 Fourier
descriptors Ik:

Ik =
|Ck|
|C1|

, k = 2, .., N − 1, (4)

Ĉk =

M−1∑
i=0

zie(
−2πjik

N
), k = 0, .., N − 1. (5)

The low-frequency components define the global shape
of the boundary while high-frequency components represent
fine details. C0 corresponds to the image position. Hence,
the selection of 44 coefficients is considered sufficient and
representative of the current Fourier-based descriptor study
using 3D segmented data. In order to determine the selec-
tion of Fourier frequencies to represent a shape, Figure 3
shows examples of shape poses reconstruction.

Figure 3: Example of reconstruction with FD: The im-

age is sampled to obtain 64 frequencies. The output

image is reconstructed using from 2 to 64. Sixteen fre-

quencies are sufficient to identify a shape, where low ones

represent the contour and high ones fine details.

2.2.2 Multi-modal Hand Shape descriptors
The MHS used in this study is extended from the descrip-

tor presented in [17]. In particular, we apply an equally
relevant features calculation step by means of data normal-
ization.

The features of the descriptor are divided into three sub-
sets A, B and C, in order to identify and characterize seg-
ment hand patches. The feature set MHS-A performs a
global image statistics like the percentage of pixels that is
covered by the blob contour, number of fingertips detected,
the mean angle from the blob’s centroid to those fingertips
and the Hu moments. A second descriptor MHS-B is built
from the number of pixels covered by every possible rectan-
gle contained in the blob’s bounding box and then normal-
ized by its total size. Finally, a third feature set MHS-C
uses a similar grid as the second set. However, instead of
analyzing the coverage within different rectangles, it is com-
posed from the difference between the mean depth for each
pair of individual cells. In order to generate equally relevant
features, the coefficients of the features descriptor are nor-
malized. This features descriptor creates a 535 size vector.

2.2.3 Combining FHS and MHS descriptors
Five features descriptor sets were proposed for this work,

as a combination of the above described FHS and MHS
strategies. The first feature descriptor set, MHS, accounts
for the complete 535 normalized MHS features. FHS ac-
counts for the 44 FHS features described above. The third
descriptor set, MHS-A, comprises the subset A of MHS, con-
taining the first 10 MHS features. The fourth set, FHS-
MHS-A, contains the complete 44 FHS features and the
first 10 features corresponding to subset A of MHS. Finally,
the fifth features descriptor set corresponds to the complete
FHS descriptor and 525 features from the B and C subsets
of MHS. Table 1 shows a brief description of the five set
combinations. All features are normalized by each individ-
ual feature of the training set, thus yielding equally relevant
information data for training each dimension of the feature
space.

Descriptor set Combination # Features

1 MHS 535
2 FHS 44
3 MHS A set 10
4 FHS and MHS A set 54
5 FHS and MHS B and C sets 569

Table 1: Summary of the feature combination sets and

descriptor lengths.

2.3 Gesture Recognition for HCI
The different multi-modal descriptors and classifiers were

integrated as part of a HCI design for recognizing multiple
user hand poses and track their trajectories. This pose-
trajectory estimation was used in order to interact and nav-
igate with volumes by means of different actions like zoom-
ing, rotation or translation. First, the HCI was utilized to
acquire the dataset to train and to test the classifier in real-
time.

The HCI system was developed in C++, using Qt[20],
PCL[19] and VTK[26] for the graphical user interface. The
KinectTM acquisition module was implemented by Windows



(a) (b) (c)

Figure 4: Human computer interaction system for gesture recognition: gestures are aimed to navigate through a 3D

object. (a) Close hand for rotating, (b) L-pose for translation, and (c) open hand for zoom.

Kinect SDK, and image analysis by OpenCV[18] libraries.
The Model-view-controller design (MVC) [8] was followed to
structure the software application and separate user inter-
face from the rest of implementation.

Figure 4 shows the HCI windows interface and examples
of human interaction and gesture recognition. In this appli-
cation, the gestures of the user are identified and directly
linked to an action of the 3D object: zoom, rotation and
translation. In the image, segmented hand regions are vi-
sualized (bottom-left), 3D hand point clouds are displayed
(bottom-right), and the hand pose recognition is applied
and showed for each of the to user hands. For example, in
Fig. 4(a) one can see that the classification is correctly per-
formed as ’close hand’ pose, which in our application stands
for rotation. Then the hand pose in combination with the
real distance movements of the hands defines the input in-
teraction for rotating the 3D volume. The same is applied
for translation and zoom in Fig. 4(b) and (c), respectively.

3. EXPERIMENTAL RESULTS
This section describes the dataset generated by an inte-

grated HCI system, and explains the experiments that were
carried out by all fifteen combinations of descriptors and
classifiers. Additionally, the HCI integration is also de-
scribed as a result of a real-time gesture recognition HCI
system.

The dataset for the experiments was acquired using the
integrated HCI system, where both depth and skeleton data
were extracted from the KinectTM , and processed to gen-
erate the descriptor feature sets. A total of 38K labeled
instances from eight individuals were obtained during ac-
quisition. Five poses were recorded from both right and left
hands, using 24K instances for training and keeping 13K
for testing. Table 2 shows the five hand shape categories
corresponding to the training poses.

All experiments reported in this paper were performed
on a DELL Precision T3500, with Intel Xeon CPU W3530
2.80GHz processor and 6GB RAM, running under Windows
7 Enterprise 64 bits SP1.

A separate training was considered for each training set,
utilizing the support vector machine (SVM), the random-
ized decision forest (RF) and the non-parametric the non-
parametric K-Nearest Neighbor classifier (KNN). SVM was
trained with LIBSVM [7], using a radial basis function (RBF)
kernel and optimizing parameters to maximize accuracy. RF
was trained on 50 trees with depth of 15.

palm fist L pointer angled
shape profile

R

L

Table 2: Examples of the five hand pose categories eval-

uated in this paper. First row shows right hand and

second row shows left hand.

3.1 Performance evaluation of the proposed
descriptors

The combination of descriptors and classifiers produced a
total of 15 experimental setups. Testing results are shown
in Figure 5 in terms of accuracy percentage of true posi-
tive classification. The first columns stand for the success
classification using the KNN classifier. The second ones cor-
respond to the success rate under the SVM classifier. The
third ones account to the success rates with the RF classifier.
Each three-columns set correspond to, from left to right, the
five descriptor training set employed at each classification.
The highest success rate stands for the SVM classifier for all
five descriptor sets, with a maximum success rate of 92.6%.
The second one, the RF with a maximum success rate of
88.6%, and far from best results is the KNN with a max-
imum success rate of 83.5%. An explanation for the lower
results when comparing the RF with the SVM may be the
depth of 15 during RF training, showing the need of a larger
depth which may increase the number of features to use.

Analyzing results, the best performance corresponds to
the FHS by KNN, the FHS&MHS-A by SVM and the FHS
by RF. The combination of FHS and MHS-A improves re-
sults with respect to FHS alone. A reason may be de addi-
tion of information which complements descriptor features.
However, FHS&MHS-B-C results worsen slightly since MHS
B-C does not provide relevant information to the FHS fea-
tures descriptor.

Overall, the best performance of pose recognition accounts
for the FHS&MHS-A set trained by SVM. To further ana-
lyze results from this best performance, the confusion ma-
trix is evaluated, as shown in Table 3. Predicted output



Figure 5: Testing results in accuracy percentage for each

feature set and considered classifiers.

is compared against current results to calculate the error
distribution. The true positives (TP) rate is significant on
palm and fist recognition, while low on angled profile pose.
On this case, L-shape pose may be recognized instead of an-
gled profile. Because the angled pose is manually difficult to
perform, there is more posture variability between different
individuals, thus showing L-shaped rather than angled one.

Table 3: Confusion matrix of the best performance

(FHS&MHS-A by SVM), which quantifies the error dis-

tribution and success rate.

Figure 6: Features of best descriptor set: FHS & MHS-

A set computing a total of fifty-four features. Compari-

son of three poses by their features values.

Concerning FHS&MHS-A analysis, the chart of Figure 6
shows a comparison between three feature vectors, palm, fist
and L shape. Each vector value corresponds to the mean of
trained features. For each class, the mean vector is calcu-
lated, as mean and median values are similar. Such intra-
class variability may be related to the normalization process
during segmentation as explained in section 2.1. Each line
corresponds to the 54 feature values of palm, L-shape and

fist poses. It may be observed that three classes are clearly
distinguished, being the palm and fist the most ones.

A comparison between classes is shown in Figure 7. Each
chart represents the difference between the mean of two
classes. Changes between classes are represented by non-
zero values. Similarly, if the same feature has zero values
in all charts, the feature has no information. Therefore,
this feature may be excluded from the vector, thus reducing
training time. The additional 10 FHS features provide more
information in all classes, yielding better results than FHS
alone.

Figure 7: Class vectors mean differences: (a) palm vs

fist; (b) palm vs L-shape; (c) palm vs pointer; (d) palm vs

angled profile; (e) fist vs L-shape; (f) fist vs pointer; (g)

fist vs angled profile; (h) L-shape vs pointer; (i) L-shape

vs angled profile; (j) pointer vs angled profile.

3.2 Performance Evaluation on a HCI System
The dataset extraction and experiments were done using

a HCI system, as all methods were part of the integration
of a HCI system.

Best performed descriptor set FHS&MHS-A was bench-
marked using the previously mentioned testing dataset. The
processing time for descriptor step processing time was 4.527msec
and 0.271msec for classification. These values contributed
to the HCI system the achievement of real-time execution
and a smooth look&feel.

In addition to the real-time and accurate classification
performance, the HCI interface allows for visual inspection
of user hand segmentation. Our visual inspection was very
useful in order to evaluate the hand segmentation procedure
for several users with different hand physiognomy, analyz-
ing deviations of hand joint estimation, bad orientation of
the subject and strange postural poses, allowing for better
fitting of methods parameters for accurate user-independent
3D hand point cloud segmentation.



4. CONCLUSIONS
We presented a comprehensive study of existing multi-

modal descriptors for multi-class hand pose recognition in
Human Computer Interaction systems, comprising FHS and
MHS. From them, five descriptor sets were proposed. Fur-
ther training was undertaken by KNN, SVM and RF classi-
fiers. For the experiments, a representative five poses dataset
was created including both left and right hands. Images were
acquired from eight individuals, thus yielding 38K frames,
where 24K were used for training and the rest for test-
ing. Results indicated higher accuracy on FHS than MHS,
though FHS with the inclusion of MHS-A improved final
recognition results. MHS by itself did not provide robust
solutions, but its subset A contributed to improve accuracy
when fused with FHS.

In particular, the proposed descriptors extend previous
works by their application on 3D depth data as input to
FHS instead of 2D image, and by the features-based nor-
malization to equally train all data. Additionally, a fully
functional HCI application was developed integrating the
real hand pose segmentation, hand pose multi-classification,
and gesture recognition technology for real-time navigation
and manipulation of 3D volumes.
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