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RGB-D data
* Problem:
* Continuous Gesture Recognition in video
sequences.

e Multimodal data, RGB+D.

* Approaches:
* Probabilistic Graphical Models.
* Dynamic Time Warping.
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M (i, j) = d(f, j) + min{M(i — 1,5 — 1), M(i —1,5), M(i,j — 1)}

Gesture start Gesture end 4
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Our goal:
* Improve the detection by encoding the variability of a certain
gesture category using RGB-D data.
Our proposal:
 Use DTW to align gesture samplesin order to deal with temporal
deformations.
* Use Gaussian Mixture Models to deal with pose deformations.
* Include a soft-distance based on posterior probabilitiesin the DTW
algorithm.
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[[ Gestl.lresamples ] | GMM learning Il Soft-lﬂ;tg:/c”;based DTW ]

* Differentsamples are used to model the pattern gesture.
* Todeal with temporal deformations all samples are aligned with the
mean length sample using classic DTW.

Training set
Mean length sample

S Yau
Vi

MV
.

All rights reserved HUBPA®



Human Pose Recoveryand Behavior Analysis

Group GMM learning

Introduction Methodology Results Conclusion
Gesture samples . Soft-Distance based
-‘ GMM learnin % —
[ alignment 2 on GMM e

* When the gesture samples are aligned we use a Gaussian Mixture Model to learn
each set of elements overall sequences.

Training set
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* Data:

* ChalearnDataset (CVPR2012), in which, each video sequence shows an actor
performing a set of gestures discriminated by an Idle gesture performed in
between (more than 940 sequences).

e Ourgoalisto detect the Idle gesture (more than 1000 samples available).

 We defined a 10x10 grid approach to extract HOG+HOF feature descriptors per
cell.

* We use 900 samples of the gesture category in a ten-fold validation procedure.

. Methods

* Hidden Markov Model.
* Probability-based DTW.

* Evaluation:
* We obtainthe overlapping metric (frame wise) and the accuracy metric of the

number of gestures detected in each video sequences.
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* Idle gesture detection for two video sequences in the ChalLearn

Dataset.
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e Resultsshow how the new approach outperforms classic DTW and HMM by

nearly 10% of overlapping.

* When analyzingthe accuracy, it can be seen that the new approach easily detects

more ldle gesturesthan the classical approaches.
* Subtledifferences found between Euclidean DTW and HMM.

Overlap. Acc.

Probability-based DTW|39.08+ 2.11|67.81+2.39

Euclidean DTW 30.03+3.02 [60.43+ 3.21

HMM 28.51+4.32|53.284+5.19
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Introduction Methodology Results Conclusion

We proposed a probability-based DTW for gesture recognition.

The pattern modelis learned from several samples of the same gesture
category using multimodal RGBD data.

Different sequences were used to build a Gaussian-based probabilistic
model of the gesture whose possible deformations are implicitly
encoded.

A soft-distance based on the posterior probability of the GMM was
defined.

The proposal is able to deal with multiple deformations in data, showing
performance improvements compared to the classical DTW and HMM
approaches.
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