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Abstract Human Pose Estimation: Pipeline

A contextual rescoring method is proposed for improving the detection of body joints
of a pictorial structure model for human pose estimation. A set of mid-level parts is
iIncorporated in the model, and their detections are used to extract spatial and score-
related features relative to other body joint hypotheses. A technique is proposed for

Mid-level part detections
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the automatic discovery of a compact subset of poselets that covers a set of validation Basic part i j> Part j context. Part i

Images while maximizing precision. A rescoring mechanism is defined as a set-based detections features rescoring ’

boosting classifier that computes a new score for body joint detections, given its B " B PS Model
relationship to detections of other body joints and mid-level parts in the image. This inference

new score complements the unary potential of a discriminatively trained pictorial Basic part P, j> Part P, context. » Part P,
structure model. Experiments on two benchmarks show performance improvements detections features rescoring

when considering the proposed mid-level image representation and rescoring qut image Poseestimaty
approach in comparison with other pictorial structure-based approaches.
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Mid-level part representation Contextual Rescoring & Pictorial structure formulation
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4. Pictorial structure formulation
2. Poselet selection: weighted set cover
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Results: LSP [4] and UIUC Sports [5] datasets

Quantitative results Qualitative_ results
(left: Yang & Ramanan [1], right: Ours, poselets cov.)
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