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Motivations

Head pose recovery and 3D shape estimation have a wide range of
applications for both image and behaviour analysis.

Image quality assessment

◦ Pose is correct?

◦ Mouth open/eyes closed?

◦ Obstructions? (eyeglasses, scarf)

Driver attention evaluation

◦ Looking at the road?

◦ Yawning?

◦ Eyes closing?

Head pose recovery and shape estimation in still images
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Method overview

Supervised Descent Method: Overview

◦ Augment training data: multiple initializations

◦ Initialize validation estimates to mean shape and location

◦ While validation error descending

◦ Extract descriptors at landmark estimates
◦ Concatenate descriptors to single feature vector
◦ Perform PCA to reduce features dimensionality
◦ Train linear regressor for the shape
◦ Update shape estimates using the regressor

Head pose recovery and shape estimation in still images
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Augmenting the training data

Supervised Descent Method: Stochastic initializations

Multiple training instances are generated for each training image.
These have different initial shape estimates in order to increase the

variability of Φ∗ − Φ0.

◦ Affected parameters modelled as a normal distribution

◦ Monte-Carlo sampling for each training instance

◦ Affected parameters: Scale, rotation angle and offsets

Head pose recovery and shape estimation in still images
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Describing the landmarks

Supervised Descent Method: Simplified SIFT descriptor

The Scale Invariant Feature Transform descriptor
describes a suqared region around a point as a grid

of normalized gradient histograms.

◦ Smooth image with a gaussian filter (σ = 1.6)

◦ Find preferent gradient orientation

◦ 36-bin orientations histogram
◦ Gaussian weight to magnitudes (σ = scale/2)

◦ Rotate window to preferent orientation

◦ Extract histogram at each grid cell

◦ Normalized 8-bin orientations histogram
◦ Gaussian weight to magnitudes (σ = scale/2)

Head pose recovery and shape estimation in still images
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Regressing the shape estimates

Supervised Descent Method: Linear regressors

Linear regressors are used as a data-driven approach to gradient
descent, minimizing the difference between the target feature

vector Φ∗ and the current one, Φi

Newton method
Prone to local minima
Descent depends on slope

◦ Start with Newton’s descent method
f (Li + ∆Li+1) = ||h(d(Li + ∆Li+1))− Φ∗||22
◦ Second order taylor expansion

f (Li + ∆Li+1) ≈
f (Li ) + Jf (Li )

T∆Li + 1
2
∆LTHf (Li )∆L

◦ Simplification
∆L1 = Ri · Φi − Ri · Φ∗ = Ri · Φi − bi

where Ri = −2H−1
f JT

f

Head pose recovery and shape estimation in still images
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Regressing the shape estimates

Supervised Descent Method: Linear regressors

Linear regressors are used as a data-driven approach to gradient
descent, minimizing the difference between the target feature

vector Φ∗ and the current one, Φi

SDM method
Avoids local minima
Direct descent to target
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f (Li + ∆Li+1) = ||h(d(Li + ∆Li+1))− Φ∗||22
◦ Second order taylor expansion
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Active Shape Models

ASM: Shapes alignment

Shapes are aligned through generalized procrustes analysis, an
iterative process aligning all the shapes to their mean in the

canonical form.

◦ Initialize each shape L2Di transform tfmi to the identity matrix

◦ While not converged

◦ Calculate mean shape
M =

[
(L2D1 .. L2Dn ) · (tfmT

1 .. tfmT
n )T

]
/n

◦ Bring mean shape to the canonical form
M = M · (M†

iC
· C )

◦ Find transforms aligning shapes to the mean
tfmi = (L2Di )† ·M

Head pose recovery and shape estimation in still images
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Active Shape Models

ASM: Principal Component Analysis

Find a transform for the feature
space giving a set of uncorrelated
dimensions following the directions
of maximum variance of the data.

◦ Subtract mean from aligned
shapes

◦ Obtain correlation matrix

◦ Diagonalize matrix

◦ Matrix of eigenvectors
◦ Eigenvalues diagonal matrix

◦ Keep 95% of the variance

PCA components describe main

modes of shape deformation.

◦ 1st eigenvector: Face yaw
◦ 2nd eigenvector: Face pitch

Head pose recovery and shape estimation in still images
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Parametric representation

Parametric representation: Model location parameters

p = 〈b, sx , sy , dx , dy , θ〉

The ASM weights only describe the aligned shape deformation.
Extra parameters are required to align the shape to the image.

◦ ASM weights

◦ Scaling factors

◦ Translation parameters

◦ Rotation

Head pose recovery and shape estimation in still images
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Parametric representation

Parametric representation: Reduced feature vectors

◦ Fixed number of location parameters

◦ Less ASM weights than landmark coordinates

◦ AFLW: 42 landmarks, 21+5 parameters
◦ LFPW: 58 landmarks, 23+5 parameters

The number of weights at each linear regressor is proportional to
the number of regressed parameters. With a smaller weights

matrix the algorithm can generalize better.

Head pose recovery and shape estimation in still images
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Method improvements

Adaptive SIFT window sizes

SIFTd = SIFTd ′ ·
sx + sy

2

The parametric approach directly provides a scaling factor for the
face at each cascade step. This can be used to adapt the SIFT

window size, keeping it proportional to the face scale.

◦ Provides invariance to scale

◦ SIFT descriptors consistent across instances

Head pose recovery and shape estimation in still images
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Method improvements

Centroid fit selection

Selects the fitting where most initializations converge, ignoring
those stuck in a local minima.

◦ Multiple initializations at different
rotation angles

◦ Fit all initializations to the image

◦ Calculate euclidean distance between each
pair of fits

d(Li , Lj) =
n∑

p=1

√
(x jp − x ip)2 + (y jp − y ip)2

◦ Select fit minimizing the sum of distances

Head pose recovery and shape estimation in still images



Supervised Descent Method Parametric approach 3D models Datasets Experimental results Conclusions

Method improvements

Centroid fit selection

Selects the fitting where most initializations converge, ignoring
those stuck in a local minima.

◦ Multiple initializations at different
rotation angles

◦ Fit all initializations to the image

◦ Calculate euclidean distance between each
pair of fits

d(Li , Lj) =
n∑

p=1

√
(x jp − x ip)2 + (y jp − y ip)2

◦ Select fit minimizing the sum of distances

Head pose recovery and shape estimation in still images



Supervised Descent Method Parametric approach 3D models Datasets Experimental results Conclusions

Method improvements

Centroid fit selection

Selects the fitting where most initializations converge, ignoring
those stuck in a local minima.

◦ Multiple initializations at different
rotation angles

◦ Fit all initializations to the image

◦ Calculate euclidean distance between each
pair of fits

d(Li , Lj) =
n∑

p=1

√
(x jp − x ip)2 + (y jp − y ip)2

◦ Select fit minimizing the sum of distances

Head pose recovery and shape estimation in still images



Supervised Descent Method Parametric approach 3D models Datasets Experimental results Conclusions

Method improvements

Centroid fit selection

Selects the fitting where most initializations converge, ignoring
those stuck in a local minima.

◦ Multiple initializations at different
rotation angles

◦ Fit all initializations to the image

◦ Calculate euclidean distance between each
pair of fits

d(Li , Lj) =
n∑

p=1

√
(x jp − x ip)2 + (y jp − y ip)2

◦ Select fit minimizing the sum of distances

Head pose recovery and shape estimation in still images



Supervised Descent Method Parametric approach 3D models Datasets Experimental results Conclusions

Method improvements

Centroid fit selection

Selects the fitting where most initializations converge, ignoring
those stuck in a local minima.

◦ Multiple initializations at different
rotation angles

◦ Fit all initializations to the image

◦ Calculate euclidean distance between each
pair of fits

d(Li , Lj) =
n∑

p=1

√
(x jp − x ip)2 + (y jp − y ip)2

◦ Select fit minimizing the sum of distances

Head pose recovery and shape estimation in still images



Supervised Descent Method Parametric approach 3D models Datasets Experimental results Conclusions

Outline

3D models
3D alignment
3D regression

Head pose recovery and shape estimation in still images



Supervised Descent Method Parametric approach 3D models Datasets Experimental results Conclusions

3D alignment

3D Active Shape Model

Facewarehouse dataset:

◦ 3D face range scans

◦ 150 individuals, 20 facial expressions

◦ Semi-automated landmark selection

ASM features:

◦ 3 coordinates per landmark

◦ Small increase of PCA bases

◦ AFLW: from 21 to 23
◦ LFPW: from 23 to 26

Head pose recovery and shape estimation in still images
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3D alignment

Restricted camera model

Find the best 3D rotation, scaling and translation adjusting a a 3D
shape to a 2D one through an ortographic projection.

◦ Single scaling factor

◦ Three rotation angles: roll, pitch, yaw

◦ Closed-form solution

◦ Find projection matrix (least-squares)
◦ Extrapolate third dimension (cross-product)
◦ Force dimensions orthogonality and equal scaling at each

dimension (QR decomposition)

Head pose recovery and shape estimation in still images
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3D alignment

Iterative alignment

Iteratively adjust restricted camera
model parameters and 3D ASM weights

until convergence.

◦ Initialize to mean 3D shape

◦ Align to 2D shape

◦ While not converged

◦ Find best ASM weights
◦ Re-align shape to 2D landmarks

Head pose recovery and shape estimation in still images
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3D regression

Extended parametric representation

p = 〈b, s, dx , dy , θ, γ, η〉

Extend the parametric representation to include the restricted
camera model parameters and 3D ASM weights.

L2D = [P · (s · Rη · Rγ · Rθ)] · L3D′ + T = R · L3D′ + T

Head pose recovery and shape estimation in still images
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Outline

Datasets
Face alignment datasets
Head pose recovery dataset
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Face alignment datasets

AFLW and LFPW datasets

AFLW
2359 images, 21 landmarks
Mostly frontal poses

Two in-the-wild datasets with
images at different resolutions,

qualities, poses and for different
ages, genders and ethnicities.

LFPW
836 images, 29 landmarks

Wide range of poses

Head pose recovery and shape estimation in still images
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Head pose recovery dataset

Pointing ’04 dataset

Dataset created in a controlled environ-
ment, labelled with the pitch and yaw
pose angles, but not with geometric in-
formation.

◦ 15 individuals

◦ 2 series per person

◦ 93 poses per serie

◦ Discrete angles, 15 degrees apart

Head pose recovery and shape estimation in still images
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Outline

Experimental results
2D methods
3D methods
Sample processed images
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2D methods

2D methods: Parameter selection

◦ Lower tendency to overfit with
more data augmentations

◦ SDM converges faster in both
datasets

AFLW
Smaller effect of data augmentation

Converges faster
Bigger average NMED error

Head pose recovery and shape estimation in still images
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2D methods

2D methods: Parameter selection

AFLW LFPW

SDM Parametric SDM Parametric

Data augmentations 6 6 6 6

Cascade steps 25 15 15 15

Initializations 1 1 1 1

Head pose recovery and shape estimation in still images
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2D methods

2D methods: Shape alignment accuracies

AFLW
Minimum NMED error of 0.05
Error below 0.15 for 95% of cases
Better accuracy for parametric

SDM runtime: 13ms
Parametric runtime: 13ms

SDM Parametric p-value Independence

AFLW 0.0973± 0.0032 0.0928± 0.0031 1.7 · 10−10 yes

LFPW 0.0763± 0.0090 0.0774± 0.0085 0.2671 no

Head pose recovery and shape estimation in still images



Supervised Descent Method Parametric approach 3D models Datasets Experimental results Conclusions

2D methods

2D methods: Shape alignment accuracies

AFLW
Minimum NMED error of 0.05
Error below 0.15 for 95% of cases
Better accuracy for parametric

SDM runtime: 13ms
Parametric runtime: 13ms

SDM Parametric p-value Independence

AFLW 0.0973± 0.0032 0.0928± 0.0031 1.7 · 10−10 yes

LFPW 0.0763± 0.0090 0.0774± 0.0085 0.2671 no

Head pose recovery and shape estimation in still images



Supervised Descent Method Parametric approach 3D models Datasets Experimental results Conclusions

2D methods

2D methods: Shape alignment accuracies

AFLW
Minimum NMED error of 0.05
Error below 0.15 for 95% of cases
Better accuracy for parametric

SDM runtime: 13ms
Parametric runtime: 13ms

SDM Parametric p-value Independence

AFLW 0.0973± 0.0032 0.0928± 0.0031 1.7 · 10−10 yes

LFPW 0.0763± 0.0090 0.0774± 0.0085 0.2671 no

Head pose recovery and shape estimation in still images



Supervised Descent Method Parametric approach 3D models Datasets Experimental results Conclusions

2D methods

2D methods: Shape alignment accuracies

AFLW
Minimum NMED error of 0.05
Error below 0.15 for 95% of cases
Better accuracy for parametric

SDM runtime: 13ms
Parametric runtime: 13ms

SDM Parametric p-value Independence

AFLW 0.0973± 0.0032 0.0928± 0.0031 1.7 · 10−10 yes

LFPW 0.0763± 0.0090 0.0774± 0.0085 0.2671 no

Head pose recovery and shape estimation in still images



Supervised Descent Method Parametric approach 3D models Datasets Experimental results Conclusions

2D methods

2D methods: Shape alignment accuracies

LFPW
Minimum NMED error of 0.03
Error below 0.15 for 95% of cases
Better accuracy for SDM

SDM runtime: 20ms
Parametric runtime: 20ms

SDM Parametric p-value Independence

AFLW 0.0973± 0.0032 0.0928± 0.0031 1.7 · 10−10 yes

LFPW 0.0763± 0.0090 0.0774± 0.0085 0.2671 no

Head pose recovery and shape estimation in still images



Supervised Descent Method Parametric approach 3D models Datasets Experimental results Conclusions

2D methods

2D methods: Shape alignment accuracies

LFPW
Minimum NMED error of 0.03
Error below 0.15 for 95% of cases
Better accuracy for SDM

SDM runtime: 20ms
Parametric runtime: 20ms

SDM Parametric p-value Independence

AFLW 0.0973± 0.0032 0.0928± 0.0031 1.7 · 10−10 yes

LFPW 0.0763± 0.0090 0.0774± 0.0085 0.2671 no

Head pose recovery and shape estimation in still images



Supervised Descent Method Parametric approach 3D models Datasets Experimental results Conclusions

2D methods

2D methods: Shape alignment accuracies

LFPW
Minimum NMED error of 0.03
Error below 0.15 for 95% of cases
Better accuracy for SDM

SDM runtime: 20ms
Parametric runtime: 20ms

SDM Parametric p-value Independence

AFLW 0.0973± 0.0032 0.0928± 0.0031 1.7 · 10−10 yes

LFPW 0.0763± 0.0090 0.0774± 0.0085 0.2671 no

Head pose recovery and shape estimation in still images



Supervised Descent Method Parametric approach 3D models Datasets Experimental results Conclusions

3D methods

3D methods: Parameter selection

◦ 3D regression always converges
faster

◦ No effect of data augmentation
after 5 augments
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3D methods

3D methods: Parameter selection
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3D methods

3D methods: Shape alignment accuracies

AFLW
Minimum NMED error of 0.06
Error below 0.23 for 95% of cases
Better accuracy for 3D alignment

3D alignment runtime: 27ms
3D regression runtime: 11ms

3D alignment 3D regression p-value Independence

AFLW 0.1340± 0.0036 0.1387± 0.0045 0.0134 yes

LFPW 0.1235± 0.0081 0.1229± 0.0094 0.3412 no
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3D methods: Shape alignment accuracies

LFPW
Minimum NMED error of 0.05
Error below 0.23 for 95% of cases
Better accuracy for 3D regression

3D alignment runtime: 34ms
3D regression runtime: 16ms

3D alignment 3D regression p-value Independence
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3D methods: Pose recovery error distribution

Pitch 3D alignment Yaw

Both 3D methods are good only at predicting small variations from
the frontal pose, with 3D regression being able to predict a wider

range of poses.

Head pose recovery and shape estimation in still images
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Sample processed images

Qualitative evaluation

2D methods (over AFLW)

Parametric approach has better accuracy for low quality images, as
well as better locating the face countour.
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Sample processed images

Qualitative evaluation

3D methods (over LFPW)

3D regression obtains a better pose estimate. 3D alignment fails to
accurately predict the landmarks giving a visual cue for the pose in

exchange of increasing the overall shape alignment accuracy.

Head pose recovery and shape estimation in still images
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Conclusions
Conclusions
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Conclusions

Parametric approach

◦ Generalizes better when enough data is available

◦ More robust to local minima

◦ ASM model may restrict valid shape deformations

3D regression

◦ Better prediction for both pitch and yaw

◦ Much faster than 3D alignment

◦ Slightly worse shape alignment accuracy

Head pose recovery and shape estimation in still images
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Conclusions

Questions?

Head pose recovery and shape estimation in still images
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