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Abstract 
 
One of the main problems of autonomous robots interaction is the scene knowledge. 
Recognition is concerned to deal with this problem and to allow robots to interact in 
uncontrolled environments. In this paper, we present a practical application for object 
fitting, normalization and classification of triangular and circular signs. 
The system is introduced in the Aibo robot of Sony to increase the robot interaction 
behaviour. The presented methodology has been tested in real simulations and 
categorization problems, as the traffic signs classification, with very promising results. 
 
 
Resumen 
 
Uno de los principales problemas de la interacción de los robots autónomos es el 
conocimiento de la escena. El reconocimiento es fundamental para solventar este 
problema y permitir a los robots interactuar en un escenario no controlado. En este 
documento, presentamos una aplicación práctica de captura del objeto, normalización y 
clasificación de señales triangulares y circulares. El sistema es introducido en el robot 
Aibo de Sony para mejorar el comportamiento de la interacción del robot. La 
metodología presentada ha sido testeada en simulaciones y problemas de categorización 
reales, como es la clasificación de señales de tráfico, con resultados muy prometedores. 
 
 
Resum 
 
Un dels principals problemes de la interacció dels robots autònoms és el coneixement de 
l'escena. El reconeixement és fonamental per a solucionar aquest problema i permetre 
als robots interactuar en un escenari no controlat. En aquest document presentem una 
aplicació practica de la captura d’objectes, normalització i classificació de senyals 
triangulars i circulars. El sistema és introduït en el robot Aibo de Sony per a millorar la 
interacció del robot. La metodologia presentada ha estat testejada en simulacions i 
problemes de categorització reals, com és la classificació de senyals de transit, amb 
resultats molt prometedors. 



 
 
 
Generic Object Classification for Autonomous Robots 
 
 
 
 

Abstract .............................................................................................................................1 
1. Introduction.................................................................................................................1 
2. Aibo robot ...................................................................................................................3 
3. Multi-class Classifiers.................................................................................................5 
4. System.........................................................................................................................9 

4.1 Object detection ..............................................................................................9 
4.2 Model Fitting and normalization...................................................................11 
4.3 Classification.................................................................................................14 

5. Results.......................................................................................................................14 
5.1 Work parameters ...........................................................................................15 

5.1.1 Model fitting............................................................................................15 
5.1.2 Classification...........................................................................................15 

5.2 Aibo Experiments .........................................................................................15 
5.3 Traffic signs classification ............................................................................16 
5.4 Discussion .....................................................................................................18 

5.4.1 "Apropat a la ciència"..............................................................................18 
5.4.2 "Redes"....................................................................................................19 

6. Conclusions...............................................................................................................19 
7. Acknowledges...........................................................................................................20 
8. References.................................................................................................................20 
9. Appendices................................................................................................................22 

9.1 The AIBO® Entertainment Robot ERS-7M3 parts ......................................22 
9.2 Computer Vision ...........................................................................................27 
9.3 Traffic sign recognition mobile mapping acquisition ...................................33 
9.4 Artificial Intelligence History .......................................................................36 
9.5 Apropa't a la Ciencia .....................................................................................46 



Generic Object Classification for Autonomous

Robots
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Abstract

One of the main problems of autonomous robots interaction is the scene knowl-
edge. Recognition is concerned to deal with this problem and to allow robots to
interact in uncontrolled environments. In this paper, we present a practical appli-
cation for object fitting, normalization, and classification of triangular and circular
signs. The system is tested in the Aibo robot of Sony to increase the robot inter-
action behavior. The presented methodology has been tested in real simulations
and categorization problems, as the traffic signs classification, with very promising
results.

Key words: Object Recognition, Autonomous Robots, Model fitting, spatial
normalization, multi-class Classification, Adaboost.

1 Introduction

Autonomous robots[1] are desired to perform tasks in unstructured environ-
ments without continuous human guidance. Any meaningful interaction with
the environment will involve multiple related sentences that describe some
complex ongoing events. To allow the robot to act in an intelligent and flex-
ible way, it requires to recognize objects and learn the identity of unknown
objects. In fact, there are an infinite number of scenes that contain the same
object, which makes direct computation of scene geometry from a single image
impossible. The use of external knowledge about the world and the current vi-
sual task reduces the number of plausible scene interpretations and may make
the problem solvable. This approach is referred to as knowledge-based vision.
Work in the area of knowledge-based vision incorporates methods from the
field of AI in order to focus on the influence of context on scene understanding,
the role of high level knowledge, and appropriate knowledge representations
for visual tasks.



Computer vision is the technology concerned with computational understand-
ing and use of the information present in visual images. In part, computer
vision is analogous to the transformation of visual sensation into visual percep-
tion in biological vision. For this reasons the motivation, objectives, formula-
tion, and methodology of computer vision frequently intersect with knowledge
about their counterparts in biological vision. However, the goal of computer
vision is primarily to enable engineering systems to model and manipulate
the environment by using visual sensing. The machine’s ability to monitor its
environment, allowing it to adjust its actions based on what it has sensed, is a
prerequisite for intelligence, such as Mars micro-rover shown in fig.1. The term
intelligent machine is an anthropomorphism in that intelligence is defined by
the criterion that the actions would appear intelligent if a person were to do
it. A precise, unambiguous, and commonly held definition of intelligence does
not exist.

Fig. 1. Mars micro-rover mobile robot.

Since the physical embodiment of the machine or the particular task performed
by the machine does not mark it as intelligent, the appearance of intelligence
must come from the nature of the control or decision-making process that the
machine performs. Given the centrality of control to any form of intelligent
machine, intelligent control is the essence of an intelligent machine. A central
objective of image interpretation is to recognize the scene contents. Recogni-
tion involves identifying an object based on a variety of criteria. It may involve
identifying a certain object in the image as one seen before once an object is
detect, categorization is required. Schemes for visual classification usually pro-
ceed in two stages. First, features are extracted from the image, and the object
to be classified is represented using these features. Second, a classifier is ap-
plied to the measured features to reach a decision regarding the represented
class. Powerful methods have been developed for performing visual classifica-
tion. Some of the most used are K-Nearest Neighbors [7], Tangent Distance
[9], Fisher Linear Discriminant Analysis [6] or Principal Component Analysis
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[8]. Nowadays, Support Vector Machine [10] and Adaboost [11] are the most
frequently used.

In this paper, we deal with the multi-class classification task applied to au-
tonomous robots. Robotics deals with the practical application of many ar-
tificial intelligence techniques to solve real world problems. This combines
problems of sensing and modeling the world, planning and performing tasks,
and interacting with the world. The Aibo robot from Sony is a perfect tool to
implement and test artificial intelligent techniques in robotics. It establishes
communication with people by displaying emotions, and assumes various be-
haviors based on information which it gathers from its environment. In this
way, we used this tool to test the present system. In our application, we use the
results of the Adaboost procedure as a detection algorithm. The use of this al-
gorithm let us to detect regions of interest with high probability of containing
signs. Once the Adaboost returns a ROI [15], we fit the model using the hough
transform (triangular sign) or fast radial symmetry (circular sign). Once we
have fit the object, we compare a wide set of the state-of-the-art classifica-
tion strategies in order to obtain the label of the present object in the scene.
The system is emulated in the Sony Aibo robot, showing high performance on
classifying different objects in real-time.We also tested our system in a real
categorization problem: real traffic sign classification. Besides, we presented
this work in different scientific exhibitions.

This paper is organized as follows: Section 2 explain the Aibo robot tool.
Section 3 overview the classification technique applied in this paper. Section 4
presents our system. Section 5 shows the experiments and results, and section
6 concludes the paper.

2 Aibo Robot

Robots are growing in complexity and their use in industry is becoming more
widespread. The main use of robots has so far been in the automation of mass
production industries, where the same, definable tasks must be performed re-
peatedly in exactly the same fashion. Industrial robots can be manufactured in
a wide range of sizes and so can handle more tasks requiring heavy lifting than
a human could. Car production is the primary example of the employment of
large and complex robots for producing goods.

Robots are also useful in environments which are unpleasant or dangerous for
humans to work in, for example bomb disposal, work in space (eg. Canadarm2)
or underwater, in mining, and for the cleaning of toxic waste. Robots are
also used for patrolling these toxic areas, robots equipped for this job are
e.g. the Robowatch OFRO[2], and Robowatch MOSRO.Automated Guided
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Vehicles (AGVs) are movable robots that are used in large facilities such as
warehouses hospitals and container ports, for the movement of goods, or even
for safety and security patrols. Such vehicles follow wires, markers or laser-
guidance to navigate around the location and can be programmed to move
between places to deliver goods or patrol a certain area. One robot being
used in the United States is the Tug robot by Aethon Inc[3], an automated
delivery system for hospitals. This robot travels around hospitals to deliver
medical supplies, medication, food trays, or just about anything to nursing
stations. Once it is finished it goes back to its charging station and waits for
its next task. Domestic robots are now available that perform simple tasks
such as vacuum cleaning and grass cutting. Nowadays domestic robots have
the aim of providing companionship (social robots) or play partners (ludobots)
to people. In this scope we find the Aibo robot.

AIBO (Artificial Intelligence roBOt[4], also means ”love” or ”attachment” in
Japanese) is one of several types of robotic pets designed and manufactured
by Sony; there have been several different models since their introduction in
1999. Able to walk, ”see” its environment via camera, and recognize spoken
commands, they are considered to be autonomous robots, since they are able to
learn and mature based on external stimuli from their owner or environment,
or from other AIBOs. The AIBO has seen used as an inexpensive platform for
artificial intelligence research, because it integrates a computer, vision system,
and articulators in a package vastly cheaper than conventional research robots.

Fig. 2. Aibo relationship.

The AIBO robot establishes communication with people by displaying emo-
tions, and assumes various behaviors (autonomous actions) based on infor-
mation which it gathers from its environment. The AIBO robot is not only
a robot, but an autonomous robot with the ability to complement your life.
While living with you, the AIBO robot’s behavioral patterns will develop as it
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learns and grows.Emotions and instincts form the basis for the AIBO robot’s
autonomous behavior. Based on all sorts of factors which it picks up from
its surroundings, the AIBO robot undergoes changes in spirit that display
themselves in the form of emotional expression.

3 Multi-class Classifiers

To deal with the multi-class categorization problem, we perform a wide com-
parative among the state-of-the-art multi-class classifiers: K-Nearest Neigh-
bors [7], Fisher Linear Discriminant Analysis [6], Support Vector Machines
[10], and Adaboost [11].

Table 1 shows the formulation for the different multi-class classifiers and the
rest of the paper techniques:

Var Meaning

N number of samples

x vector features test

n dimension

i, j, m, t index

M number of runs

q distance

y Training samples

C number of class

ci class with index i

z new projected samples

H number of ranges

g gradient

ve affected pixel

X, Y components

θ angle

λ set of intersection points

Var Meaning

W projection matrix

Sb Scatter matrix between-class

Sw Scatter matrix intra-class

s index

T Transpose

l label

d, r, γ Kernel parameters

ξ, b SVM optimization parameters

w eigen vectors

φ Kernel function

h range of distance

p point

O orientation matrix

a pendent of the line

ϕ constant

Table 1
Paper formulation
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K-Nearest Neighbors

Among the various methods of supervised statistical pattern recognition, the
Nearest Neighbor is the most traditional one, it does not consider a priori
assumptions about the distributions from which the training examples are
drawn. It involves a training set of both positive and negative cases. A new
sample is classified by calculating the distance to the nearest training case;
the sign of that point then determines the classification of the sample. The
k−NN classifier extends this idea by taking the k nearest points and assigning
the sign of the majority. It is common to select k small and odd to break ties
(typically 1, 3 or 5). Larger k values help reduce the effects of noisy points
within the training data set, and the choice of k is often performed through
cross-validation. In this way, given a input test sample vector of features x of
dimension n, we estimate its Euclidean distance d (eq.1) with all the training
samples (y) and classify to the class of the minimal distance.

q(x, y) =

√√√√
n∑

j=1

(xj − yj)2 (1)

Fisher Linear Discriminant Analysis

Given the binary classification problem, Fisher projects at one dimension each
pair of classes (reducing to C − 1 where C is the number of classes), multi-
plying each sample by its projection matrix, which minimize the distance
between samples of the same class, and maximizes the distance between the
two classes.The result is shown in fig. 3, where the blue and red points belong
to the samples of the two projected classes, and the green line indicates the
threshold that best separates them .

Fig. 3. Fisher projection for two classes and threshold value.

The algorithm is:

Given the set of N column vectors {−→yi } of dimension n, we calculate the mean
of the data. For C classes {c1, c2, , cC}, the mean of the class ci that contains
Ni elements is:

−→µ yi =
1

Ni

∑
−→y jεci

−→y i (2)
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The separability maximization between classes will be defined as the quotient
between the scatter matrix between-class:

Sb =
I∑

i=1

Ni(−→µ yi −−→µ y)(
−→µ yi −−→µ y)

T (3)

and the scatter matrix intra-class:

Sw =
I∑

i=1

∑
−→y jεci

(−→y j −−→µ yi)(
−→y j −−→µ yi)

T (4)

obtaining a projection that define an optimal discriminant features.

The projection matrix W maximizes:

det(W T SBW )

det(W T SW W )
(5)

Let{−→w 1,−→w s, ...,−→w n} be the generalized eigenvectors of SB and SW. Then,
selecting the d < n that corresponds to the highest eigenvalue, we have the
projection matrix W = [

−→
W 1,

−→
W s, ...,

−→
W n] , project the samples to the new

space by using:

−→z = W T
d
−→y

The generalized eigenvectors of eq.(5) are the eigenvectors of SBS−1
W

Support Vector Machines

The goal of SVM is to produce a model which predicts target value of data
instances in the testing set which are given the attributes . Given a training set
of instance-label pairs (yi, l), where yiεR

n and lε{1,−1}, the support vector
machines require the solution of the following optimization problem:

min
w,b,ξ

1

2
wT w + C

I∑

i=1

ξi (6)

Subject to

l(wT φ(yi) + b) ≥ 1− ξi, ξi ≥ 0 (7)
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Here training vectors yi are mapped into a higher (maybe infinite) dimensional
space by the function φ . Then SVM finds a linear separating hyperplane with
the maximal margin in this higher dimensional space. c > 0 is the penalty
parameter of the error term. We can define, K(yi, yj ≡ φ(yi)

T φ(yj)) called the
kernel function. Though new kernels are being proposed by researchers, the
most common four basic kernels are:

Linear: K(yi, yj) = yT
i yj

Polynomial: K(yi, yj) = (γyT
i yj + r)d, γ > 0

Radial basis function (RBF): K(yi, yj) = exp(−γ ‖ yi − yj ‖2), γ > 0

Sigmoid: K(yi, yj) = tanh(γyT
i yj + r)

Here γ, r, and d are kernel parameters.

Adaboost

The AdaBoost boosting algorithm has become over the last few years a very
popular algorithm to use in practice. The main idea of AdaBoost is to assign
each example of the given training set a weight. At the beginning all weights
are equal, but in every round the weak learner returns a hypothesis, and the
weights of all examples classified wrong by that hypothesis are increased. That
way the weak learner is forced to focus on the difficult examples of the training
set. The final hypothesis is a combination of the hypotheses of all rounds,
namely a weighted majority vote, where hypotheses with lower classification
error have higher weight. Summarizing, the approach consists of a) choosing
a (weak) classifier, b) modifying example weights in order to give priority
to examples where the previous classifiers fail, and c) combining classifiers
in a multiple classifier. The combined classifier allows a good generalization
performance with the only requirement that each weak learner obtains an
accuracy better than random. The Adaboost procedure has been used for
feature selection, detection, and classification problems. In our problem, the
Gentle Adaboost has been previously applied to detect the regions of interest
(ROI) with high probability of containing signs from the Aibo video data[15].
In fig. 4, the Gentle Adaboost algorithm used in the first step of this system[15]
is shown.

In fig.4, the weights of each of the samples of the training set are initialized.
Normally, the same weight is assigned to each sample satisfying

∑N
i=1 fi = 1.

At iteration m of the algorithm, a weak classifier evaluates the feature space
and selects the best feature based on the weights of the samples. The samples
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Fig. 4. Gentle Adaboost algorithm

are re-weighted with a exponential loss function, and the process is repeated
M times or when the training classification error is zero. The final strong
classifier of the Gentle Adaboost algorithm[12] is an additive model that use
a threshold as a final classifier. To classify a new input, the results of applying
the m weak classifiers with the test sample are added or subtracted depending
on the accuracy of each weak classifier. In the common case of using decision
stumps as a weak classifier, the additive model assigns the same weight to
each of the hypothesis, so all the features are considered to have the same
importance. The last fact is the main difference between the Gentle Adaboost
and the traditional Adaboost versions.

4 System

This section explains the details of our system scheme shown in fig. 5, fo-
cusing on the relationship between each of the methods explained above and
their integration in a real time recognition system. The system is composed
by three main stages: object detection, model fitting and normalization, and
classification.

4.1 Object Detection

Detected region are provided by the detection process based on an attentional
cascade of boosting classifiers applying the Haar-like featuring estimated over
the integral image. Given an Adaboost positive sample, it determines a region
of interest (ROI) that contains an object [15] (training detector and object
detection steps of fig.5). However, besides the ROI we miss information about
scale and position, so before applying recognition we need to apply a spatial
normalization. Concerned with the correlation of sign distortion, we look for
affine transformations that can perform the spatial normalization to improve
final recognition.

9



Fig. 5. Object detection and classification system of the Aibo robot
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4.2 Model Fitting and normalization

To deal with the Model fitting step of fig.5,we apply the fast radial symmetry
to fit circular signs, that offers great robustness against the noise [5]. On the
other hand, for the case of triangular signs, the method that allows a successful
model fitting is based on the Hough transform [13].

Fast radial symmetry

In order to capture the model contained in the detected ROI, we consider
the radial properties of the circular signs to fit a possible instance and to
estimate its center and radius.The fast radial symmetry is calculated over
a set of one or more ranges H depending on the scale of the features one is
trying to detect. The value of the transform at range indicates the contribution
to radial symmetry of the gradients at a distance h away from each point.
At each range h, we examine the gradient g at each point p, from which a
corresponding positively-affected pixel p+ve(p) and negatively-affected pixel
p−ve(p) are determined and accumulated in the orientation projection image
On:

a) P+ve(p) = p + round
g(p)

||g(p)||h, P−ve(p) = p− round
g(p)

||g(p)||h (8)

b) Oh(P+ve(p)) = Oh(P+ve(p)) + 1, Oh(P−ve(p)) = Oh(P−ve(p)) + 1(9)

Now, to locate the radial symmetry position, we search for the position (X, Y )
of maximal value at accumulated orientations matrix OT =

∑h
i=1 Oh. Locat-

ing that maximum we determine the radius length. This procedure allows to
obtain robust results for circular traffic signs fitting. An example is shown in
fig. 6, where the X and Y gradient components, gradient module, orientations
matrix, and estimated center and radius are shown.

(a) (b) (c) (d) (e) (f)

Fig. 6. (a) Input image, (b) X-derived, (c) Y-derived, (d) image gradient g, (e) total
orientations accumulator matrix OT , (f) Captured center and radius.
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Hough transform

The Hough transform is a technique which can be used to isolate features of a
particular shape within an image. Because it requires that the desired features
be specified in some parametric form, the generalized Hough transform can
be employed in applications where a simple analytic description of a features
is not possible.The underlying principle of the Hough transform is that there
are an infinite number of potential lines that pass through any point, each at
a different orientation. The purpose of the transform is to determine which
of these theoretical lines pass through most features in an image - that is,
which lines fit most closely to the data in the image. In order to determine
that two points lie on the same potential line, it is necessary to create a
representation of a line that allows meaningful comparison in this context. In
the standard Hough transform, each line is represented by two parameters,
commonly called r and θ (theta), which represent the length and angle from
the origin of a normal to the line in question fig. 7. Using this parametrization,
an equation of the line can be written as:

q = X cos θ + Y sin θ (10)

Y1 = round(
q −X1 cos θ

sin θ
) (11)

Y2 = round(
q − Y2 cos θ

sin θ
) (12)

a =
Y2 − Y1

X2 −X1

(13)

b = Y1 − aX1 (14)

Fig. 7. Correspondence to Hough

Given an input image (fig. 8)(a) we used Canny detector to obtain the contours
map (fig. 8(b)) before of applying the Hough transform..
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Given a region of interest that contains a sign, we know a priori that the three
possible angles of each side of the triangle and an error margin. With this
information, we searched at three possible angles range for the three three
representative lines at Hough space fig. 8(e). Once we had the three lines,
we only needed to calculate its intersection to find the three corners of the
triangle fig. 8(c). With the three corners of the triangle we can transform the
image to correct the affine transformations to proceed with the classification
procedure.

(a) (b) (c) (d) (e)

Fig. 8. (a) Input image, (b) Canny contours, (c) detected triangle lines and intersec-
tions, (d) Hough space, (e) three detected lines for three known angles and margin
error,

Nevertheless,before final transformation, we need to consider additional re-
strictions to obtain the three representative border lines of a triangular traffic
sign. Each line has associated a position in relation to the others. In fig. 9(a)
a false horizontal detected sign due to the background confusion is shown.
As this line does not have the expected spatial restrictions of the object, we
iterate Hough to detect the following representative line considering its range
of degrees. The corrected image is shown in fig. 9(b). Once we have the three
detected lines we calculate their intersection, as shown in fig. 9(c). Given the
parameters a and ϕ that define the equation y = a × x + ϕ for each of the
three lines, the intersection point (X,Y ) for each pair of lines is defined as
follows:

Xt = (ϕi
2 − ϕi

1)/(a
i
1 − ai

2), Yt = ai
1Xt + ϕi

1 | t, i ∈ [1, ..., 3] (15)

To assure that the lines are the expected ones, we complement the procedure
searching for a corner at a circular region at each intersection surroundings
(as shown in fig. 9(d) and (e)):

λ = {(Xi, Yi) | ∃p < ((X −Xi)
2 + (Y − Yi)

2 − d2)} | i ∈ [1, ..., 3] (16)

where λ is the set of valid intersection points, and p corresponds to a corner
point to be located in a neighborhood of the intersection point.
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(a) (b) (c) (d) (e)

Fig. 9. (a) Three detected lines, (b) Corrected horizontal line, (c) Lines intersections,
(d) Corner checking, (e) Corner found.

Normalization:

The analysis of sign images is a difficult problem given the low quality of
the images, To cope with this problem, we need elaborate and study differ-
ent spatial normalization. Once the sign model is fitted using the commented
methods, the next procedure is the spatial normalization of the shape before
classification. The steps are: transform the image to make the recognition in-
variant to small affine deformations, rescale to the signs database size, filter
with Weickert [14] anisotropic filter, and mask the image to exclude back-
ground at the classification step. To prevent the effects of illumination changes,
the histogram equalization improves image contrast and yields a uniform his-
togram.

4.3 Classification

Once we have the image normalized, a set of classification strategies are applied
to deal with the multi-class sign categorization in order to obtain the label of
the object.

5 Results

To validate the methods of our system, we apply a set of experiments: we
simulate the system in the Aibo robot, we test the system in a real traffic signs
and classification problem, and finally, we show different scientific exhibitions
of the present work. In the following section, we show the parameters that
optimize the performance of our system.
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5.1 Work Parameters

5.1.1 Model fitting

The Hough transform applied is the probabilistic hough transform because it
is more efficient in case of few long linear segments. The Distance resolution
in our system is 1 pixel-related units, and the angle resolution measured is
π

180
radians. Others parameters are : 10 accumulated pixel orientations for

threshold, 2 pixels for the maximum gap between line segments lieing on the
same line and, finally, 3 pixels for minimum line length. For the fast radial
symmetry, we apply a range of possible radius between 12 and 32 pixels,
and a threshold of 10% of the maxim gradient magnitude to compute the
orientations.

5.1.2 Classification

The parameter used for the classification strategies are: 3 neighbors for K −
NN , 99% or a previous PCA and 3 neighbors for the FLDA strategy, Radial
Basis function SVM with the gamma parameter set to 1, and 40 runs of Gentle
Adaboost with decision stumps. K −NN algorithm is applied directly in the
multi-class case, the rest of classification strategies are binary (they distinguish
against just two classes). To extend the categorization strategies to the multi-
class case, we used a voting scheme. The voting scheme consist on training
each pair of possible classes (C(C − 1)/2 pair of classes for C classes), and
finally classify by the class with highest number of votes. The estimation of
the accuracy is obtained using stratified ten-fold cross-validation at 95% of
the confidence interval.

5.2 Aibo Experiments

For this experiment, we used a set of 500 triangular and 500 circular signs
obtained from the method of [15]. The triangular and circular signs are divided
in the classes of fig.13. Some real detected regions from the 416 × 320 pixels
Aibo resolution are shown in fig.12

We can observe the good results of the vector classification in fig.10 and 11
for circular and triangular signs, respectively. The results in both cases are
quite similar. In the same figures, Gentle Adaboost also obtain good results,
and the last positions are for FLDA and KNN, respectively.

An example of the detection and classification of triangular signs is shown in
fig.14, with an experimental interface designed for our application in [15].
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Fig. 10. Multi-class classifiers Accuracy for circular signs

Fig. 11. Multi-class classifiers Accuracy for tringular signs

Fig. 12. detected regions from Aibo resolution

Fig. 13. Aibo experiment classes

5.3 Traffic signs classification

For the problem of real traffic sign classification, we use regions from [16] that
contain a wide set of traffic signs. In particular, we classify the 12 triangular
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Fig. 14. Experimental interface with detection and classification of triangular signs

classes of fig.19, and the 18 circular classes of fig.17 and 18. The classification
results are shown in figures fig.15 and 16 for circular and triangular classes,
respectively. In this case, the ranking of the classifiers is similar compared
to the Aibo results, and we also obtain high results for the triangular group
applying our fitting and normalization strategies. Nevertheless, the circular
results are some inferior in this case. It is a normal behavior since the speed
group has very similar classes, and the resolution of the considered regions (at
least 24× 24 pixels) makes the classification ambiguous in some cases.

Fig. 15. Multi-class classifiers Accuracy for circular traffic signs

Fig. 16. Multi-class classifiers Accuracy for triangular traffic signs

In the figures 17,18,19 we can observe as all classes except classes of speed
signs are quite different.
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Fig. 17. Circular traffic classes

Fig. 18. Speed traffic classes

Fig. 19. Triangular traffic classes

5.4 Discussion

In this chapter, we comment different exhibitions of the present system on
different social events.

5.4.1 ”Apropa’t a la cincia”

Robotics is a focus of attention for a high number of scientists. Now, 50 years
after the birth of the Artificial Intelligence, we presented, during the year
2006/2007 in the ”Apropa’t a la Cincia” event organized by the Generalitat de
Catalunya, a simulation of the Aibo robot using our system. Different illustra-
tions from the event are shown in figures fig. 20. For more details of the event
see Appendix X or enter in http://www10.gencat.net/probert/catala/exposicio/ex14 ciencia.htm
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(a) Aibo environment (b) Aibo interface

Fig. 20. Pictures of the exhibition ”Apropa’t a la cincia(2006/2007”)

(a) Program frame (b) Documental logo

Fig. 21. Redes TV program ”Programming emotions”(7.1.2007)

5.4.2 ”Redes”

Besides, our work was emitted as a part of the documental ”REDES” from
TV2 with the little ”programing emotions”, in date of 7.1.2007. Different
images from the show are shown in figure fig.21. For more details enter in
http://www.rtve.es/tve/b/redes/semanal/prg418/index.html

6 Conclusions

We presented a multi-class classification system for triangular and circular
signs that allow to autonomous robots to interact with its environment. The
strategy fits the model and normalize the image region contain. Besides, a
set of state-of-the-art classification strategic has been tested to obtain robust
results. The presented methodology has been introduced in the Aibo robot of
Sony and tested in a real traffic signs problem,with great success.
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8 Appendices

Appendices To complement the information of the project that can not be
included in the article, some appendices have been included. In order to explain
in more detail the domain of the work.

8.1 The AIBO Entertainment Robot ERS-7M3 parts

Fig. 22. Front view of Aibo Robot

[1] Stereo microphones Allow the AIBO Entertainment Robot to listen to the
surrounding environment.

[2] Head distance sensor Measures the distance between the AIBO robot and
other objects.

[3] Color camera Detects the color, shape, and movement of nearby objects.

[4] Mouth Picks up the AIBOne toy and expresses emotions.

[5] Chest distance sensor Measures the distance between the AIBO robot and
other objects.

[6]Tail Moves up, down, left, and right to express the AIBO robot’s emotions.

[7] Ears Indicates the AIBO robot’s emotions and condition.
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Fig. 23. Top view of Aibo Robot.

[8] Head sensor Detects and turns white when you gently stroke the AIBO
robot’s head.

[9] Wireless light (on the back of the AIBO robot’s head) Indicator used with
the wireless LAN function. This light turns blue when the AIBO robot is
connected to the e-mail server.

[10] Pause button When pressed, the AIBO robot’s activity will pause or
resume.

[11] Back sensors (front, middle, and rear) Detect and turn white when you
gently stroke the AIBO robot’s back.

[12] Face lights (illuminated face) These lights turn various colors to show the
AIBO robot’s emotions and conditions.

[13] Head light Detects and turns white when you touch the head sensor.
Lights / flashes orange when one of the AIBO robot’s joints is jammed .

[14] Mode indicators (inner side of ears) These indicate the present mode and
condition of the AIBO robot .
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[15] Operation light During operation: turns green. During preparation for
shutdown: flashes green. During charging: turns orange. When a charging error
occurs: flashes orange. When operation stops: turns OFF. Outside hours of
activity (Sleeping on the Energy Station): slowly flashing green.

[16] Back lights (front, middle, and rear) Detect and turn white when you
gently touch the AIBO robot’s back sensors. These lights also turn blue (front),
orange (middle), and red (rear) to indicate a variety of actions.

This shows the AIBO robot with its stomach compartment cover off.24

Fig. 24. Bottom view of Aibo Robot.

[1] Paw sensors These are located on the bottom of the AIBO Entertainment
Robot’s paws, and detect contact with any surface it touches. When the AIBO
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robot extends one of its paws, it will react with happiness if you touch it.

[2] Speaker Emits music, sound effects, and voice guide.

[3] Charging terminal When you place the AIBO robot on the Energy Station,
this part makes contact with the station to allow charging of the AIBO robot’s
battery.

[4] Volume control switch (VOLUME) Adjusts the volume of the speaker to
one of four levels (including no sound).

[5] Wireless LAN switch (WIRELESS) This turns the AIBO robot’s wireless
LAN function ON or OFF.

[6] ”Memory Stick” media access indicator This indicator turns red while the
AIBO robot is reading or writing to a ”Memory Stick” media. While the
indicator is ON, you cannot remove the ”Memory Stick” media or battery
by means of the ”Memory Stick” media eject button (Z) or the battery latch
(Z). Under this circumstance, never attempt to forcibly remove the ”Memory
Stick” media.

[7] Battery pack latch (BATT Z) Flip this latch to the rear when you want to
remove the battery.

[8] Chin sensor Senses when you touch the AIBO robot’s chin.

[9] FCC ID/MAC address label Indicates the FCC ID and MAC address of
the AIBO robot’s wireless unit.

[10] Battery slot Holds the AIBO robot’s lithium-ion battery.

[11] ”Memory Stick” media eject button (Z) Press to eject the ”Memory Stick”
media. L ”Memory Stick” media slot This is where you insert the provided
AIBO-ware ”Memory Stick” media.

If you experience difficulties ejecting the ”Memory Stick” media or battery
because of a malfunction or operation problems, place the AIBO robot in
Pause mode, and then insert an object such as a paper clip into the emergency
eject hole. (Do not use fragile objects, such as toothpicks, into the emergency
eject hole as they may break.) Under normal circumstances, you do not need
to use the emergency eject hole.

8.1.1 AIBO COLOR CAMERA

About the pictures o Pictures are stored on the ”Memory Stick” media in
JPEG format.The picture resolution is 416x320 pixels. Depending on lighting

25



Fig. 25. Aibo color camera.

conditions at the time the picture is taken, flicker (horizontal stripes) may
appear in pictures, or pictures may have red or blue hues.Fast movement may
result in distortion of pictures.
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8.2 Computer Vision

The field of computer vision can be characterized as immature and diverse.
Even though earlier work exists, it was not until the late 1970s that a more
focused study of the field started when computers could manage the processing
of large data sets such as images. However, these studies usually originated
from various other fields, and consequently there is no standard formulation
of the computer vision problem. Also, and to an even larger extent, there is
no standard formulation of how computer vision problems should be solved.
Instead, there exists an abundance of methods for solving various well-defined
computer vision tasks, where the methods often are very task specific and
seldom can be generalized over a wide range of applications. Many of the
methods and applications are still in the state of basic research, but more
and more methods have found their way into commercial products, where
they often constitute a part of a larger system which can solve complex tasks
(e.g., in the area of medical images, or quality control and measurements in
industrial processes).

Computer vision is by some seen as a subfield of artificial intelligence where
image data is being fed into a system as an alternative to text based input for
controlling the behavior of a system. Some of the learning methods which are
used in computer vision are based on learning techniques developed within
artificial intelligence.

Since a camera can be seen as a light sensor, there are various methods in
computer vision based on correspondences between a physical phenomenon
related to light and images of that phenomenon. For example, it is possible
to extract information about motion in fluids and about waves by analyzing
images of these phenomena. Also, a subfield within computer vision deals with
the physical process which given a scene of objects, light sources, and camera
lenses forms the image in a camera. Consequently, computer vision can also
be seen as an extension of physics.

A third field which plays an important role is neurobiology, specifically the
study of the biological vision system. Over the last century, there has been
an extensive study of eyes, neurons, and the brain structures devoted to pro-
cessing of visual stimuli in both humans and various animals. This has led to
a coarse, yet complicated, description of how real vision systems operate in
order to solve certain vision related tasks. These results have led to a subfield
within computer vision where artificial systems are designed to mimic the pro-
cessing and behavior of biological systems, at different levels of complexity.
Also, some of the learning-based methods developed within computer vision
have their background in biology.
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Yet another field related to computer vision is signal processing. Many existing
methods for processing of one-variable signals, typically temporal signals, can
be extended in a natural way to processing of two-variable signals or multi-
variable signals in computer vision. However, because of the specific nature of
images there are many methods developed within computer vision which have
no counterpart in the processing of one-variable signals. A distinct character
of these methods is the fact that they are non-linear which, together with the
multi-dimensionality of the 19 22 signal, defines a subfield in signal processing
as a part of computer vision.

Beside the above mentioned views on computer vision, many of the related
research topics can also be studied from a purely mathematical point of view.
For example, many methods in computer vision are based on statistics, opti-
mization or geometry. Finally, a significant part of the field is devoted to the
implementation aspect of computer vision; how existing methods can be real-
ized in various combinations of software and hardware, or how these methods
can be modified in order to gain processing speed without losing too much
performance.

8.2.1 Related fields

Computer vision, Image processing, Image analysis, Robot vision and Machine
vision are closely related fields. If you look inside text books which have either
of these names in the title there is a significant overlap in terms of what
techniques and applications they cover. This implies that the basic techniques
that are used and developed in these fields are more or less identical, something
which can be interpreted as there is only one field with different names.

On the other hand, it appears to be necessary for research groups, scientific
journals, conferences and companies to present or market themselves as be-
longing specifically to one of these fields and, hence, various characterizations
which distinguish each of the fields from the others have been presented. The
following characterizations appear relevant but should not be taken as univer-
sally accepted.

Image processing and Image analysis tend to focus on 2D images, how to
transform one image to another, e.g., by pixel-wise operations such as con-
trast enhancement, local operations such as edge extraction or noise removal,
or geometrical transformations such as rotating the image. This characteri-
zation implies that image processing/ analysis does not produce nor require
assumptions about what a specific image is an image of.

Computer vision tends to focus on the 3D scene projected onto one or several
images, e.g., how to reconstruct structure or other information about the 3D
scene from one or several images. Computer vision often relies on more or less
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complex assumptions about the scene depicted in an image.

Machine vision tends to focus on applications, mainly in industry, e.g., vision
based autonomous robots and systems for vision based inspection or measure-
ment. This implies that image sensor technologies and control theory often
are integrated with the processing of image data to control a robot and that
real-time processing is emphasized by means of efficient implementations in
hardware and software. There is also a field called Imaging which primarily
focus on the process of producing images, but sometimes also deals with pro-
cessing and analysis of images. For example, Medical imaging contains lots of
work on the analysis of image data in medical applications.

Finally, pattern recognition is a field which uses various methods to extract
information from signals in general, mainly based on statistical approaches.
A significant part of this field is devoted to applying these methods to image
data. A consequence of this state of affairs is that you can be working in a
lab related to one of these fields, apply methods from a second field to solve
a problem in a third field and present the result at a conference related to a
fourth field!

8.2.2 Examples of applications for computer vision

Another way to describe computer vision is in terms of applications areas. One
of the most prominent application fields is medical computer vision or medical
image processing. This area is characterized by the extraction of information
from image data for the purpose of making a medical diagnosis of a patient.
Typically image data is in the form of microscopy images, X-ray images, an-
giography images, ultrasonic images, and tomography images. An example of
information which can be extracted from such image data is detection of tu-
mours, arteriosclerosis or other malign changes. It can also be measurements
of organ dimensions, blood flow, etc. This application area also supports med-
ical research by providing new information, e.g., about the structure of the
brain, or about the quality of medical treatments.

A second application area in computer vision is in industry. Here, informa-
tion is extracted for the purpose of supporting a manufacturing process. One
example is quality control where details or final products are being automat-
ically inspected in order to find defects. Another example is measurement of
position and orientation of details to be picked up by a robot arm. See the
article on machine vision for more details on this area.

Military applications are probably one of the largest areas for computer vi-
sion, even though only a small part of this work is open to the public. The
obvious examples are detection of enemy soldiers or vehicles and guidance of
missiles to a designated target. More advanced systems for missile guidance
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send the missile to an area rather than a specific target, and target selection is
made when the missile reaches the area based on locally acquired image data.
Modern military concepts, such as battlefield awareness, imply that various
sensors, including image sensors, provide a rich set of information about a
combat scene which can be used to support strategic decisions. In this case,
automatic processing of the data is used to reduce complexity and to fuse
information from multiple sensors to increase reliability.

One of the newer application areas is autonomous vehicles, which include sub-
mersibles, land-based vehicles (small robots with wheels, cars or trucks), and
aerial vehicles. An unmanned aerial vehicle is often denoted UAV. The level
of autonomy ranges from fully autonomous (unmanned) vehicles to vehicles
where computer vision based systems support a driver or a pilot in various
situations. Fully autonomous vehicles typically use computer vision for navi-
gation, i.e. for knowing where it is, or for producing a map of its environment
(SLAM) and for detecting obstacles. It can also be used for detecting cer-
tain task specific events, e. g., a UAV looking for forest fires. Examples of
supporting system are obstacle warning systems 21 24 in cars and systems
for autonomous landing of aircraft. Several car manufacturers have demon-
strated systems for autonomous driving of cars, but this technology has still
not reached a level where it can be put on the market. There are ample ex-
amples of military autonomous vehicles ranging from advanced missiles to
UAVs for recon missions or missile guidance. Space exploration is already be-
ing made with autonomous vehicles using computer vision, e. g., NASAs Mars
Exploration Rover.

Other application areas include the creation of visual effects for cinema and
broadcast, e.g., camera tracking or matchmoving, and surveillance.

8.2.3 Typical tasks of computer vision

Object recognition

Detecting the presence of known objects or living beings in an image, possibly
together with estimating the pose of these objects.

Examples: Searching in digital images for specific content (content-based im-
age retrieval) Recognizing human faces and their location in images. Estima-
tion of the three-dimensional pose of humans and their limbs Detection of
objects which are passing through a manufacturing process, e.g., on a con-
veyor belt, and estimation of their pose so that a robot arm can pick up the
objects from the belt. Optical character recognition OCR (optical character
recognition) takes pictures of printed or handwritten text and converts it into
computer readable text such as ASCII or Unicode. In the past images were
acquired with a computer scanner, however more recently some software can
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also read text from pictures taken with a digital camera.

Tracking

Tracking known objects through an image sequence.

Examples: Tracking a single person walking through a shopping center. Track-
ing of vehicles moving along a road.

Scene interpretation

Creating a model from an image/video.

Examples: Creating a model of the surrounding terrain from images, which
are being taken by a robot-mounted camera. Anticipating the pattern of the
image to determine size and density to estimate the volume using tomography
like device. The cloud recognition is one the government project using this
method.

Egomotion

The goal of egomotion computation is to describe the motion of an object
with respect to an external reference system, by analyzing data acquired by
sensors onboard on the object. i.e. the camera itself.

Examples: Given two images of a scene, determine the 3d rigid motion of the
camera between the two views.

8.2.4 Computer vision systems

A typical computer vision system can be divided in the following subsystems:

Image acquisition

The image or image sequence is acquired with an imaging system (camera,
radar, lidar, tomography system). Often the imaging system has to be cali-
brated before being used.

Preprocessing

In the preprocessing step, the image is being treated with low-level-operations.
The aim of this step is to do noise reduction on the image (i.e. to dissociate
the signal from the noise) and to reduce the overall amount of data. This is
typically being done by employing different (digital)image processing meth-
ods such as: Downsampling the image. Applying digital filters convolutions,
computing a scale space representation Correlations or linear shift invariant
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filters Sobel operator Computing the x- and y-gradient (possibly also the time-
gradient). Segmenting the image. Pixelwise thresholding. Performing an eigen-
transform on the image Fourier transform Doing motion estimation for local
regions of the image (also known as optical flow estimation). Estimating dis-
parity in stereo images.

Feature extraction

The aim of feature extraction is to further reduce the data to a set of features,
which ought to be invariant to disturbances such as lighting conditions, camera
position, noise and distortion. Examples of feature extraction are: Performing
edge detection or estimation of local orientation. Extracting corner features.
Detecting blob features. Extracting spin images from depth maps. Extracting
geons or other three-dimensional primitives, such as superquadrics. Acquiring
contour lines and maybe curvature zero crossings. Generating features with
the Scale-invariant feature transform.

Registration

The aim of the registration step is to establish correspondence between the
features in the acquired set and the features of known objects in a model-
database and/or the features of the preceding image. The registration step
has to bring up a final hypothesis. To name a few methods: Least squares
estimation Hough transform in many variations Geometric hashing Particle
filtering RANdom SAmple Consensus.
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8.3 Traffic sign recognition mobile mapping acquisition

The Traffic Sign Recognition (TSR) is a field of applied computer vision re-
search concerned with the automatical detection and classification of traffic
signs in traffic scene images acquired from a moving car. Most part of the work
done in this field is enclosed in the problem of the Intelligent Transportation
Systems (ITS), which aim is to provide Driver Support Systems (DSS) with
the ability to understand its neighborhood environment and so permit ad-
vanced driver support such as collision prediction and avoidance. Driving is
a task based fully on visual information processing. The road signs and traf-
fic signals define a visual language interpreted by drivers. Road signs carry
many information necessary for successful driving - they describe current traf-
fic situation, define right-of-way, prohibit or permit certain directions, warn
about risky factors, etc. Road signs also help drivers with navigation. Two
basic applications of TSR are under consideration in the research community
- drivers aid (DSS) and automated surveillance of road traffic devices. It is
desirable to design smart car control systems in such a way to allow evolu-
tion of fully autonomous vehicles in the future. The TSR system is also being
considered as the valuable complement of the GPS-based navigation system.
The dynamical environmental map may be enriched by road sign types and
positions (acquired by TSR) and so help with the precision of current vehicle
position.

Mobile mapping: the Geomobil project on Mobile mapping is a useful tech-
nique used to compile cartographic information from a mobile vehicle. The
mobile vehicle is usually equipped with a set of sensors synchronized with an
orientation system in order to link the obtained information with its position
over the map. We are working with the mobile mapping system named Ge-
omobil. The Geomobil is a Land Based Mobile Mapping System (LBMMS)
developed by the Institut Cartogr‘afic de Catalunya (ICC) (fig.26). It is a
modular system that allows the direct orientation of any sensor mounted on a
roof platform. The Geomobil system is composed of the following subsystems:
orientation subsystem, image subsystem, laser ranging subsystem, synchro-
nization subsystem, power and environmental control subsystem. In our case
we only use information from the image and orientation subsystems, which
will be briefly explained in the rest of this point.

Geomobil system: the orientation subsystem is responsible for georeferencing
the images acquired by the Geomobil. Thus it provides the coordinates (posi-
tion) and the angles (attitude) of their projection centers. It is a system that
combines inertial and GPS observations at a high level of integration, where
the GPS derived trajectories are used to correct and calibrate the drifts of
the Inertial Measurement Unit (IMU) gyros and accelerometers so that the
position and velocity errors derived from inertial sensors are minimized. This
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combination of GPS and IMU systems allows the system to calculate the po-
sition even when the GPS satellites signals are blocked by terrain conditions
(buildings, bridges, tunnels,...). The image subsystem design has been driven
by two main requirements: to acquire images of at least 1Mpix and to get 10m
stereoscopic overlap at a 10m distance from the van.

Fig. 26. Geomobil system.

The stereo overlap is conditioned by two factors: getting the maximum stereo-
scopic overlap free of obstacles and preserving a B/D ratio (stereoscopic Base
- object Distance) as good as possible. The system links the captured im-
ages with their position and orientation data, and saves the information to
the discs. The acquisition frequency is limited by the storage system capacity,
and nowadays is programmed to take a stereo-pair of images each 10 meters
or a turn higher than 60 degrees, which corresponds to the camera field of
view

Fig. 27. Stereoscopic system diagram. We can see the relation between overlap zone
and distance.
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Fig. 28. Geovan camera characteristics.
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8.4 Artificial Intelligence History

8.4.1 Prehistory of AI

Humans have always speculated about the nature of mind, thought, and lan-
guage, and searched for discrete representations of their knowledge. Aristotle
tried to formalize this speculation by means of syllogistic logic, which remains
one of the key strategies of AI. The first is-a hierarchy was created in 260 by
Porphyry of Tyros. Classical and medieval grammarians explored more subtle
features of language that Aristotle shortchanged, and mathematician Bernard
Bolzano made the first modern attempt to formalize semantics in 1837.

Early computer design was driven mainly by the complex mathematics needed
to target weapons accurately, with analog feedback devices inspiring an ideal
of cybernetics. The expression ”artificial intelligence” was introduced as a
’digital’ replacement for the analog ’cybernetics’.

8.4.2 Development of AI theory

Much of the (original) focus of artificial intelligence research draws from an
experimental approach to psychology, and emphasizes what may be called
linguistic intelligence (best exemplified in the Turing test).

Approaches to Artificial Intelligence that do not focus on linguistic intelligence
include robotics and collective intelligence approaches, which focus on active
manipulation of an environment, or consensus decision making, and draw from
biology and political science when seeking models of how ”intelligent” behav-
ior is organized. AI also draws from animal studies, in particular with insects,
which are easier to emulate as robots (see artificial life), as well as animals with
more complex cognition, including apes, who resemble humans in many ways
but have less developed capacities for planning and cognition. Some researchers
argue that animals, which are apparently simpler than humans, ought to be
considerably easier to mimic. But satisfactory computational models for ani-
mal intelligence are not available.

Seminal papers advancing AI include ”A Logical Calculus of the Ideas Im-
manent in Nervous Activity” (1943), by Warren McCulloch and Walter Pitts,
and ”On Computing Machinery and Intelligence” (1950), by Alan Turing, and
”Man-Computer Symbiosis” by J.C.R. Licklider. See Cybernetics and Turing
test for further discussion. There were also early papers which denied the
possibility of machine intelligence on logical or philosophical grounds such as
”Minds, Machines and Godel” (1961) by John Lucas. With the development
of practical techniques based on AI research, advocates of 10 AI have argued
that opponents of AI have repeatedly changed their position on tasks such as

36



computer chess or speech recognition that were previously regarded as ”intel-
ligent” in order to deny the accomplishments of AI. Douglas Hofstadter, in
Godel, Escher, Bach, pointed out that this moving of the goalposts effectively
defines ”intelligence” as ”whatever humans can do that machines cannot”.
John von Neumann (quoted by E.T. Jaynes) anticipated this in 1948 by say-
ing, in response to a comment at a lecture that it was impossible for a machine
to think: ”You insist that there is something a machine cannot do. If you will
tell me precisely what it is that a machine cannot do, then I can always make
a machine which will do just that!”. Von Neumann was presumably alluding
to the Church-Turing thesis which states that any effective procedure can be
simulated by a (generalized) computer.

In 1969 McCarthy and Hayes started the discussion about the frame prob-
lem with their essay, ”Some Philosophical Problems from the Standpoint of
Artificial Intelligence”.

8.4.3 Experimental AI research

Artificial intelligence began as an experimental field in the 1950s with such
pioneers as Allen Newell and Herbert Simon, who founded the first artificial
intelligence laboratory at Carnegie Mellon University, and John McCarthy
and Marvin Minsky, who founded the MIT AI Lab in 1959. They all attended
the Dartmouth College summer AI conference in 1956, which was organized
by McCarthy, Minsky, Nathan Rochester of IBM and Claude Shannon.

Historically, there are two broad styles of AI research - the ”neats” and
”scruffies”. ”Neat”, classical or symbolic AI research, in general, involves
symbolic manipulation of abstract concepts, and is the methodology used in
most expert systems. Parallel to this are the ”scruffy”, or ”connectionist”,
approaches, of which artificial neural networks are the best-known example,
which try to ”evolve” intelligence through building systems and then improv-
ing them through some automatic process rather than systematically designing
something to complete the task. Both approaches appeared very early in AI
history.

Throughout the 1960s and 1970s scruffy approaches were pushed to the back-
ground, but interest was regained in the 1980s when the limitations of the
”neat” approaches of the time became clearer. However, it has become clear
that contemporary methods using both broad approaches have severe limita-
tions.

Artificial intelligence research was very heavily funded in the 1980s by the De-
fense Advanced Research Projects Agency in the United States and by the fifth
generation computer systems project in Japan. The failure of the work funded
at the time to produce immediate results, despite the grandiose promises of
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some AI practitioners, led to correspondingly large cutbacks in funding by
government agencies in the late 1980s, leading to a general downturn in ac-
tivity in the field known as AI winter. Over the following decade, many AI
researchers moved into related areas with more modest goals such as machine
learning, robotics, and computer vision, though research in pure AI continued
at reduced levels.

8.4.4 Micro-World AI

The real world is full of distracting and obscuring detail: generally science
progresses by focusing on artificially simple models of reality (in physics, fric-
tionless planes and perfectly rigid bodies, for example). In 1970 Marvin Minsky
and Seymour Papert, of the MIT AI Laboratory, proposed that AI research
should likewise focus on developing programs capable of intelligent behaviour
in artificially simple situations known as micro-worlds. Much research has fo-
cused on the so-called blocks world, which consists of coloured blocks of various
shapes and sizes arrayed on a flat surface.

8.4.5 Spinoffs

Whilst progress towards the ultimate goal of human-like intelligence has been
slow, many spinoffs have come in the process. Notable examples include the
languages LISP and Prolog, which were invented for AI research but are now
used for non-AI tasks. Hacker culture first sprang from AI laboratories, in
particular the MIT AI Lab, home at various times to such luminaries as John
McCarthy, Marvin Minsky, Seymour Papert (who developed Logo there) and
Terry Winograd (who abandoned AI after developing SHRDLU).

8.4.6 AI languages and programming styles

AI research has led to many advances in programming languages including
the first list processing language by Allen Newell et. al., Lisp dialects, Plan-
ner, Actors, the Scientific Community Metaphor, production systems, and
rule-based languages. GOFAI TEST research is often done in programming
languages such as Prolog or Lisp. Bayesian work often uses Matlab or Lush
(a numerical dialect of Lisp). These languages include many specialist prob-
abilistic libraries. Real-life and especially real-time systems are likely to use
C++. AI programmers are often academics and emphasise rapid development
and prototyping rather than bulletproof software engineering practices, hence
the use of interpreted languages to empower rapid command-line testing and
experimentation.

The most basic AI program is a single If-Then statement, such as ”If A,

38



then B.” If you type an ’A’ letter, the computer will show you a ’B’ letter.
Basically, you are teaching a computer to do a task. You input one thing, and
the computer responds with something you told it to do or say. All programs
have If-Then logic. A more complex example is if you type in ”Hello.”, and the
computer responds ”How are you today?” This response is not the computer’s
own thought, but rather a line you wrote into the program before. Whenever
you type in ”Hello.”, the computer always responds ”How are you today?”.
It seems as if the computer is alive and thinking to the casual observer, but
actually it is an automated response. AI is often a long series of If-Then (or
Cause and Effect) statements.

A randomizer can be added to this. The randomizer creates two or more
response paths. For example, if you type ”Hello”, the computer may respond
with ”How are you today?” or ”Nice weather” or ”Would you like to play a
game?” Three responses (or ’thens’) are now possible instead of one. There is
an equal chance that any one of the three responses will show. This is similar to
a pull-cord talking doll that can respond with a number of sayings. A computer
AI program can have thousands of responses to the same input. This makes
it less predictable and closer to how a real person would respond, arguably
because living people respond somewhat unpredictably. When thousands of
input (”if”) are written in (not just ”Hello.”) and thousands of responses
(”then”) are written into the AI program, then the computer can talk (or
type) with most people, if those people know the If statement input lines to
type.

Many games, like chess and strategy games, use action responses instead of
typed responses, so that players can play against the computer. Robots with
AI brains would use If-Then statements and randomizers to make decisions
and speak. However, the input may be a sensed object in front of the robot
instead of a ”Hello.” line, and the response may be to pick up the object
instead of a response line.

8.4.7 Chronological History

Historical Antecedents

Greek myths of Hephaestus and Pygmalion incorporate the idea of intelligent
robots. In the 5th century BC, Aristotle invented syllogistic logic, the first
formal deductive reasoning system.

Ramon Llull, Spanish theologian, invented paper ”machines” for discovering
nonmathematical truths through combinattions of words from lists in the 13th
century. By the 15th century and 16th century, clocks, the first modern mea-
suring machines, were first produced using lathes. Clockmakers extended their
craft to creating mechanical animals and other novelties. Rabbi Judah Loew
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ben Bezalel of Prague is said to have invented the Golem, a clay man brought
to life (1580).

Early in the 17th century, Rene Descartes proposed that bodies of animals
are nothing more than complex machines. Many other 17th century thinkers
offered variations and elaborations of Cartesian mechanism. Thomas Hobbes
published Leviathan, containing a material and combinatorial theory of think-
ing. Blaise Pascal created the second mechanical and first digital calculating
machine (1642). Gottfried Leibniz improved Pascal’s machine, making the
Stepped Reckoner to do multiplication and division (1673) and evisioned a
universal calculus of reasoning (Alphabet of human thought) by which argu-
ments could be decided mechanically.

The 18th century saw a profusion of mechanical toys, including the celebrated
mechanical duck of Jacques de Vaucanson and Wolfgang von Kempelen’s
phony chessplaying automaton, The Turk (1769).

Mary Shelley published the story of Frankenstein; or the Modern Prometheus
(1818).

19th and Early 20th Century

George Boole developed a binary algebra (Boolean algebra) representing (some)
”laws of thought.” Charles Babbage and Ada Lovelace worked on programmable
mechanical calculating machines.

In the first years of the 20th century Bertrand Russell and Alfred North White-
head published Principia Mathematica, which revolutionized formal logic.
Russell, Ludwig Wittgenstein, and Rudolf Carnap lead philosophy into log-
ical analysis of knowledge. Karel Capek’s play R.U.R. (Rossum’s Universal
Robots)) opens in London (1923). This is the first use of the word ”robot” in
English.

Mid 20th century and Early AI

Warren Sturgis McCulloch and Walter Pitts publish ”A Logical Calculus of the
Ideas Immanent in Nervous Activity” (1943), laying foundations for artificial
neural networks. Arturo Rosenblueth, Norbert Wiener and Julian Bigelow coin
the term ”cybernetics” in a 1943 paper. Wiener’s popular book by that name
published in 1948. Vannevar Bush published As We May Think (The Atlantic
Monthly, July 1945) a prescient vision of the future in which computers assist
humans in many activities.

The man widely acknowledged as the father of computer science, Alan Turing,
published ”Computing Machinery and Intelligence” (1950) which introduced
the Turing test as a way of operationalizing a test of intelligent behavior.
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Claude Shannon published a detailed analysis of chess playing as search (1950).
Isaac Asimov published his Three Laws of Robotics (1950).

1956: John McCarthy coined the term ”artificial intelligence” as the topic
of the Dartmouth Conference, the first conference devoted to the subject.
Demonstration of the first running AI program, the Logic Theorist (LT) writ-
ten by Allen Newell, J.C. Shaw and Herbert Simon (Carnegie Institute of
Technology, now Carnegie Mellon University).

1957: The General Problem Solver (GPS) demonstrated by Newell, Shaw and
Simon.

1952-1962: Arthur Samuel (IBM) wrote the first game-playing program, for
checkers (draughts), to achieve sufficient skill to challenge a world champion.
Samuel’s machine learning programs were responsible for the high performance
of the checkers player.

1958: John McCarthy (Massachusetts Institute of Technology or MIT) in-
vented the Lisp programming language. Herb Gelernter and Nathan Rochester
(IBM) described a theorem prover in geometry that exploits a semantic model
of the domain in the form of diagrams of ”typical” cases. Teddington Con-
ference on the Mechanization of Thought Processes was held in the UK and
among the papers presented were John McCarthy’s Programs with Common
Sense, Oliver Selfridge’s Pandemonium, and Marvin Minsky’s Some Methods
of Heuristic Programming and Artificial Intelligence.

Late 1950s and early 1960s: Margaret Masterman and colleagues at University
of Cambridge design semantic nets for machine translation.

1961: James Slagle (PhD dissertation, MIT) wrote (in Lisp) the first symbolic
integration program, SAINT, which solved calculus problems at the college
freshman level.

1962: First industrial robot company, Unimation, founded.

1963: Thomas Evans’ program, ANALOGY, written as part of his PhD work
at MIT, demonstrated that computers can solve the same analogy problems
as are given on IQ tests. Edward Feigenbaum and Julian Feldman published
Computers and Thought, the first collection of articles about artificial intelli-
gence.

1964: Danny Bobrow’s dissertation at MIT (technical report from MIT’s AI
group, Project MAC), shows that computers can understand natural language
well enough to solve algebra word problems correctly. Bert Raphael’s MIT
dissertation on the SIR program demonstrates the power of a logical repre-
sentation of knowledge for question-answering systems.
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1965: J. Alan Robinson invented a mechanical proof procedure, the Resolution
Method, which allowed programs to work efficiently with formal logic as a
representation language. Joseph Weizenbaum (MIT) built ELIZA (program),
an interactive program that carries on a dialogue in English language on any
topic. It was a popular toy at AI centers on the ARPANET when a version
that ”simulated” the dialogue of a psychotherapist was programmed.

1966: Ross Quillian (PhD dissertation, Carnegie Inst. of Technology, now
CMU) demonstrated semantic nets. First Machine Intelligence workshop at
Edinburgh: the first of an influential annual series organized by Donald Michie
and others. Negative report on machine translation kills much work in Natural
language processing (NLP) for many years.

1967: Dendral program (Edward Feigenbaum, Joshua Lederberg, Bruce Buchanan,
Georgia Sutherland at Stanford University) demonstrated to interpret mass
spectra on organic chemical compounds. First successful knowledge-based pro-
gram for scientific reasoning. Joel Moses (PhD work at MIT) demonstrated
the power of symbolic reasoning for integration problems in the Macsyma
program. First successful knowledge-based program in mathematics. Richard
Greenblatt (programmer) at MIT built a knowledge-based chess-playing pro-
gram, MacHack, that was good enough to achieve a class-C rating in tourna-
ment play.

1968: Marvin Minsky and Seymour Papert publish Perceptrons, demonstrating
limits of simple neural nets.

1969: Stanford Research Institute (SRI): Shakey the Robot, demonstrated
combining animal locomotion, perception and problem solving. Roger Schank
(Stanford) defined conceptual dependency model for natural language under-
standing. Later developed (in PhD dissertations at Yale University) for use in
story understanding by Robert Wilensky and Wendy Lehnert, and for use in
understanding memory by Janet Kolodner. Yorick Wilks (Stanford) developed
the semantic coherence view of language called Preference Semantics, embod-
ied in the first semantics-driven machine translation program, and the basis
of many PhD dissertations since such as Bran Boguraev and David Carter
at Cambridge. First International Joint Conference on Artificial Intelligence
(IJCAI) held at Stanford.

1970: Jaime Carbonell (Sr.) developed SCHOLAR, an interactive program for
computer assisted instruction based on semantic nets as the representation of
knowledge. Bill Woods described Augmented Transition Networks (ATN’s) as
a representation for natural language understanding. Patrick Winston’s PhD
program, ARCH, at MIT learned concepts from examples in the world of
children’s blocks. Early 70’s: Jane Robinson and Don Walker established an
influential Natural Language Processing group at SRI.
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1971: Terry Winograd’s PhD thesis (MIT) demonstrated the ability of comput-
ers to understand English sentences in a restricted world of children’s blocks,
in a coupling of his language understanding program, SHRDLU, with a robot
arm that carried out instructions typed in English.

1972: Prolog programming language developed by Alain Colmerauer.

1973: The Assembly Robotics Group at University of Edinburgh builds Freddy
Robot, capable of using visual perception to locate and assemble models. The
Lighthill report gives a largely negative verdict on AI research in Great Britain
and forms the basis for the decision by the British government to discontine
support for AI research in all but two universities.

1974: Ted Shortliffe’s PhD dissertation on the MYCIN program (Stanford)
demonstrated the power of rule-based systems for knowledge representation
and inference in the domain of medical diagnosis and therapy. Sometimes
called the first expert system. Earl Sacerdoti developed one of the first plan-
ning programs, ABSTRIPS, and developed techniques of hierarchical plan-
ning.

1975: Marvin Minsky published his widely-read and influential article on
Frames as a representation of knowledge, in which many ideas about schemas
and semantic links are brought together. The Meta-Dendral learning program
produced new results in chemistry (some rules of mass spectrometry) the first
scientific discoveries by a computer to be published in a referreed journal.

Mid 70’s: Barbara Grosz (SRI) established limits to traditional AI approaches
to discourse modeling. Subsequent work by Grosz, BonnieWebber and Can-
dace Sidner developed the notion of ”centering”, used in establishing focus of
discourse and anaphoric references in NLP. David Marr and MIT colleagues
describe the ”primal sketch” and its role in visual perception.

1976: Douglas Lenat’s AM program (Stanford PhD dissertation) demonstrated
the discovery model (loosely-guided search for interesting conjectures). Ran-
dall Davis demonstrated the power of meta-level reasoning in his PhD disser-
tation at Stanford.

Late 70’s: Stanford’s SUMEX-AIM resource, headed by Ed Feigenbaum and
Joshua Lederberg, demonstrates the power of the ARPAnet for scientific col-
laboration.

1978: Tom Mitchell, at Stanford, invented the concept of Version Spaces for
describing the search space of a concept formation program. Herbert Simon
wins the Nobel Prize in Economics for his theory of bounded rationality, one
of the cornerstones of AI known as ”satisficing”. The MOLGEN program,
written at Stanford by Mark Stefik and Peter Friedland, demonstrated that
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an object-oriented programming representation of knowledge can be used to
plan gene-cloning experiments.

1979: Bill VanMelle’s PhD dissertation at Stanford demonstrated the gener-
ality of MYCIN’s representation of knowledge and style of reasoning in his
EMYCIN program, the model for many commercial expert system ”shells”.
Jack Myers and Harry Pople at University of Pittsburgh developed INTERNIST,
a knowledge-based medical diagnosis program based on Dr. Myers’ clinical
knowledge. Cordell Green, David Barstow, Elaine Kant and others at Stanford
demonstrated the CHI system for automatic programming. The Stanford Cart,
built by Hans Moravec, becomes the first computer-controlled, autonomous
vehicle when it successfully traverses a chair-filled room and circumnavigates
the Stanford AI Lab. Drew McDermott and Jon Doyle at MIT, and John Mc-
Carthy at Stanford begin publishing work on nonmonotonic logics and formal
aspects of truth maintenance.

1980s: Lisp machines developed and marketed. First expert system shells and
commercial applications.

1980: Lee Erman, Rick Hayes-Roth, Victor Lesser and Raj Reddy published
the first description of the blackboard model, as the framework for the HEARSAY-
II speech understanding system. First National Conference of the American
Association for Artificial Intelligence (AAAI) held at Stanford.

1981: Danny Hillis designs the connection machine, a massively parallel archi-
tecture that brings new power to AI, and to computation in general. (Later
founds Thinking Machines, Inc.)

1982: The Fifth Generation Computer Systems project (FGCS), an initiative
by Japan’s Ministry of International Trade and Industry, begun in 1982, to cre-
ate a ”fifth generation computer” (see history of computing hardware) which
was supposed to perform much calculation utilizing massive parallelism.

1983: John Laird and Paul Rosenbloom, working with Allen Newell, complete
CMU dissertations on Soar (program). James F. Allen invents the Interval
Calculus, the first widely used formalization of temporal events.

Mid 80’s: Neural Networks become widely used with the Backpropagation
algorithm (first described by Paul Werbos in 1974).

1985: The autonomous drawing program, AARON, created by Harold Cohen,
is demonstrated at the AAAI National Conference (based on more than a
decade of work, and with subsequent work showing major developments).

1987: Marvin Minsky publishes The Society of Mind, a theoretical description
of the mind as a collection of cooperating agents.
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1989: Dean Pomerleau at CMU creates ALVINN (An Autonomous Land Ve-
hicle in a Neural Network), which grew into the system that drove a car
coast-to-coast under computer control for all but about 50 of the 2850 miles.

1990s: Major advances in all areas of AI, with significant demonstrations in
machine learning, intelligent tutoring, case-based reasoning, multi-agent plan-
ning, scheduling, uncertain reasoning, data mining, natural language under-
standing and translation, vision, virtual reality, games, and other topics. Rod-
ney Brooks’ MIT Cog project, with numerous collaborators, makes significant
progress in building a humanoid robot.

Early 90’s: TD-Gammon, a backgammon program written by Gerry Tesauro,
demonstrates that reinforcement (learning) is powerful enough to create a
championshiplevel game-playing program by competing favorably with world-
class players.

1997: The Deep Blue chess program (IBM) beats the world chess champion,
Garry Kasparov, in a widely followed match. First official RoboCup football
(soccer) match featuring table-top matches with 40 teams of interacting robots
and over 5000 spectators.

1998: Tim Berners-Lee published his Semantic Web Road map paper [2]. Late
90’s: Web crawlers and other AI-based information extraction programs be-
come essential in widespread use of the World Wide Web. Demonstration of
an Intelligent room and Emotional Agents at MIT’s AI Lab. Initiation of work
on the Oxygen architecture, which connects mobile and stationary computers
in an adaptive network.

2000: Interactive robopets (”smart toys”) become commercially available, re-
alizing the vision of the 18th century novelty toy makers. Cynthia Breazeal
at MIT publishes her dissertation on Sociable machines, describing Kismet
(robot), with a face that expresses emotions. The Nomad robot explores re-
mote regions of Antarctica looking for meteorite samples.

2004: OWL Web Ontology Language W3C Recommendation (10 February
2004).
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8.5 Apropa’t a la Ciència

8.5.1 Apropa’t a la ciència.De la Recerca a la Innovació

Fig. 29. Cartell de l’exposició

This information has been extracted directly from: [18]

Apropa’t a la ciència.De la Recerca a la Innovació (fig.29)

Inauguració: 11 d’octubre de 2006 a les 19 h Oberta al públic del 12 d’octubre
al 31 de juliol de 2007 L’exposició Com un exponent destacat del Pla de Re-
cerca i Innovació 2005 - 2008 de la Generalitat de Catalunya, i coincidint amb
Barcelona Ciència 2007, ”Apropa’t a la ciència” pretén acostar d’una manera
didàctica i atractiva la ciència als ciutadans; entesa aquesta en un sentit am-
pli. És a dir, com una eina útil per a la gent, malgrat el desconeixement de
molts dels seus aspectes, però de la qual se’n deriven evidents repercussions
socials i de millora per a la qualitat de vida, és a dir el RETORN SOCIAL
DE LA CIÈNCIA. També està adreada a fomentar l’interés dels més joves cap
a aquesta disciplina.
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Any de la ciència Sota el t́ıtol de Barcelona Ciència 2007 l’ajuntament de
Barcelona commemora el centenari del premi Nobel atorgat a Santiago Ramon
y Cajal. Engega un ampli programa cultural que posarà un accent especial en
el vincle entre les ciències, la cultura i la societat. A més a més, el 2007 es
commemora també el centenari de la creació de l’Institut d’Estudis Catalans
i el de la Junta de Ampliación de Estudios, institució precursora del Consejo
Superior de Investigaciones Cient́ıficas. Per tal de donar un impuls decisiu
a la poĺıtica en relació amb la promoció de la cultura cient́ıfica i crear una
definitiva major sensibilitat social i cultural cap a la ciència, aquest programa
cultural anuncia entre les seves ĺınies concretes d’acció la proposta que l’any
2007 sigui declarat ”Any de la Ciència” a la ciutat de Barcelona. [17]

L’exposició Apropat a la Ciència. De la recerca a la innovació ha estat dis-
senyada per donar a conèixer els plans de recerca i desenvolupament impulsats
per la Generalitat de Catalunya per tal de fer veure la relació entre els coneix-
ements cient́ıfics i la innovació tecnològica i promoure vocacions cient́ıfiques.
Se’ns ofereix en l’exposició amb exemples ben concrets i molt suggerents. En
ella no se’ns parla de res que recordi el contingut dels llibres de text (potser
perquè es reconeix de manera impĺıcita que, si ho fes, seria dif́ıcil l’apropament
del públic que es vol aconseguir), la seva finalitat no és fer comprendre con-
ceptes teòrics, fórmules ni equacions. Se’ns presenta, en canvi, una àmplia
panoràmica de l’activitat cient́ıfica real, la que es produeix en diversos con-
textos i impregna la vida de totes les persones. Per això, per la novetat que
representa i per les noves possibilitats educatives que ofereix, és molt impor-
tant donar aquest nou significat, d’empresa collectiva, a la paraula ’ciència’.

Anem del passat més remot, de quan encara no hi havia humans sobre la Terra
fins a l’avenir incert dels viatges espacials i dels robots. En Pau d’Hostalets
de Pierola ens proporciona una ocasió per a pensar en el lent procés que ha
donat lloc a l’emergència de l’espècie humana (una evolució afortunada de
la clav́ıcula que proporciona noves possibilitats de manipulació) i la cadira
Mares ens fa veure les dificultats d’adaptar un cos que ha de moure’s a la
inactivitat forosa en l’interior d’una nau espacial. Els robots ens fan pensar en
quines tasques faran en lloc nostre i com fer-les o no fer-les podrà afectar les
nostres pròpies capacitats. S’han ampliat les comunicacions, que connecten els
satèllits artificials, tan llunyans, amb els mòbils, tan propers. Les intervencions
humanes en el món són ara d’abast planetari i transformen la Natura, perquè
en són part. Les tecnologies per a l’aprofitament de l’energia (els molins de
vent), per a la conservació dels aliments, per a prevenir malalties o superar-ne
d’incurables (les vacunes i els trasplantaments), han de poder arribar a tot
arreu.. La mostra ocupa f́ısicament la sala 3 del Palau Robert dividida en
vuit àmbits, a més dels escenaris un d’entrada i un de sortida, en el primer
dels quals es fa una ràpida pinzellada a les aportacions realitzades pels grans
cient́ıfics de la història com ara Newton o Curie, entre molts d’altres. Aquesta
introducció inicial remet al darrer dels apartats de tancament de l’exposició,
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tot invitant les generacions futures a prendre el relleu cient́ıfic.

8.5.2 La robòtica i les seves aplicacions socials

Un futur de persones i robots. Tot i que per a la majoria de persones els
robots són una realitat confinada a les fàbriques i a la producció, el futur de la
robòtica no passa per les naus industrials. Si l’any 2000 els robots industrials
representaven el 95% dels 6.000 milions de dòlars del mercat global de la
robòtica, es calcula que durant el 2025 no passaran de ser el 20% d’aquest
mercat (situat als 65.000 milions de dòlars), perdent el seu lideratge en favor
dels robots personals i de serveis. Els seus usos es distribuiran en tres grans
apartats: - En el sector professional, des de l’agricultura a la cirurgia passant
pel transport i la construcció. L’aplicació de la robòtica en aquest sector,
en el que Europa manté un cert lideratge, constitueix l’evolució natural de la
robòtica tradicional i ha de permetre automatitzar processos fins ara exclusius
dels humans durant la seva vida professional. - En el sector domèstic, des de
la neteja de la casa fins a la cura de la gent gran o dels malalts. Aquestes
aplicacions, liderades actualment pels EUA i Corea, faran canviar la imatge
del robot amb forma de ”braç mecànic” que munta el vidre d’un cotxe a la
ĺınia de producció per un robot, en alguns casos antropomòrfic, que conviu i
actua a l’entorn domèstic de les persones fent tasques de suport a les persones.
- El sector de l’oci i l’entreteniment, des de les joguines robotitzades fins als
entrenadors personals d’algun esport. Aquest sector, liderat pel Japó, és ja
una realitat amb una gran capacitat de creixement que pot fins i tot superar
als jocs d’ordinador.

A l’exposició veurem el robot AIBO (fig.30) i les possibilitats que un progra-
mari especial té per a les persones amb discapacitats, persones grans, etc.
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Fig. 30. Stand de la fira
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