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Abstract
In volume visualization, the definition of the regions of interest is inherently an iterative trial-and-error process
finding out the best parameters to classify and render the final image. Generally, the user requires a lot of expertise
to analyze and edit these parameters through multi-dimensional transfer functions. In this paper, we present a
framework of intelligent methods to label on-demand multiple regions of interest. These methods can be split into
a two-level GPU-based labelling algorithm that computes in time of rendering a set of labelled structures using the
Machine Learning Error-Correcting Output Codes (ECOC) framework. In a pre-processing step, ECOC trains a
set of Adaboost binary classifiers from a reduced pre-labelled data set. Then, at the testing stage, each classifier is
independently applied on the features of a set of unlabelled samples and combined to perform multi-class labelling.
We also propose an alternative representation of these classifiers that allows to highly parallelize the testing stage.
To exploit that parallelism we implemented the testing stage in GPU-OpenCL. The empirical results on different
data sets for several volume structures shows high computational performance and classification accuracy.

Categories and Subject Descriptors (according to ACM CCS): http://www.acm.org/class/1998/ I.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling—Object hierarchies

1. Introduction

Knowledge expressiveness of scientific data is one of the
most important visualization goals. The abstraction process
the final user should carry out in order to convey rele-
vant information in the underlying data is normally a dif-
ficult task. User has to mentally process a large amount
of data contained in several hundreds of slices to find fea-
tures, boundaries between different structures, regions sur-
rounding pathological areas, semantic structures, and so on.
During the last few decades new means of outlining sig-
nificant features are being developed to gather visual in-
formation contained in the data, such as ghost views, Fo-
cus+Context approaches [APT08], importance-driven visu-
alizations and automatic viewpoint selections. Some of these
methods [VKG05] [KSW06] are useful for the exploration
of pre-classified data sets as well as non-classified ones.
However, most of them [BHW∗07,KBKG08] require to pre-
viously define the structures of interest.

In volume rendering literature, many papers addressed
classification by directly associating optical and importance
properties to the different data values considering their be-

longing to a particular structure [PLB∗01]. Most of them
are based on the edition of transfer functions (TF) [BPS97,
KD98]. One-dimensional TFs only take into account scalar
voxel values, but in some cases they could fail at accu-
rately detecting complex combinations of material bound-
aries. Multi-dimensional TFs consider vectorial values or
combinations of local measures of scalar values (e.g. po-
sition, statistical signatures, or derivatives [KD98]). How-
ever, the design complexity and the memory requirements
increase with the TFs dimensionality. In general, the user
coherently assigns similar optical properties to data values
corresponding to the same region. Selection of regions or
structures is indirectly defined by assigning to zero the opac-
ity since totally transparent samples do not contribute to the
final image. Then, the manual TF’s definition even by skilled
users becomes complicated. In this sense, many works have
focused on developing user friendly interfaces that make this
definition more intuitive. Special emphasis has been done in
the design of interfaces that deal with the definition of a TF
or partially automatize it [TM04,KKH01,MAB∗97]. Never-
theless, to recognize semantic structures that apply to iden-
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tify additional semantic information requires more sophisti-
cated techniques.

Automatic and user-guided segmentation strategies based
on image processing are used to obtain classified data sets.
Recently, some preliminary works using learning methods
have been published based on data driven and on image-
driven classification. These classification methods provide
users with a high level of information about data distribu-
tion and about the final visualization. Supervised methods
such as bayesian networks, neural networks [TLM03], de-
cision trees [FPT06] and non-supervised methods [TM04]
have been applied in different user interfaces of volume
applications. For instance, in [GMK∗92], clustering-based
supervised and non-supervised learning methods are com-
pared for classifying magnetic resonance data. An integra-
tion of interactive visual analysis and machine learning is
used in an intelligent interface to explore huge data sets
in [FWG09]. Still, the data driven classification problem as
a pattern recognition process is an open issue that has been
treated from different points of view: template matching, sta-
tistical, syntactic or structural, and neural [JDM00]. For in-
stance, supervised statistical learning deals with the classifi-
cation task by modeling the conditional probability distribu-
tion of the different pre-labelled data sample features.

Different Machine Learning (ML) approaches have been
recently implemented using GPGPU for binary classifica-
tions in image processing applications. Clustering strate-
gies and the computation of a k-nearest neighbor similar-
ity classifier is presented in [GDB08]. A Geometrical Sup-
port Vector Machine classifier has also been implemented
using GPGPU [HWS10]. It extends different GPGPU im-
plementations for Neural Networks [YSMR10]. Adaboost is
also a widely applied classifier. Based on a weak classifier,
Adaboost defines an additive model combining simple weak
classifiers to define a strong binary classifier with high gen-
eralization capability. Given its inherent parallel structure,
its high performance, and its simplicity in order to train –
Adaboost does not require tuning classifier parameters, Ad-
aboost has a high potential for GPU applications.

Most of the previous approaches are binary by definition
–they only learn to split from two possible labels†. In order
to deal with multi-class labelling, they need to be combined
in some way, for example, by means of a voting or a com-
mittee process. In this scope, the Error-Correcting Output
Codes (ECOC) is widely applied as a general framework in
the ML community in order to deal with multi-class catego-
rization problems. The ECOC framework allows to combine
any kind of classifiers, improving classification accuracy by
correcting errors caused by the bias and the variance of the
learning algorithm [DK95].

† Note that we use the terms classification and labelling indistinctly
to refer the assignment of labels to data samples.

In this paper, we propose a general framework of super-
vised statistical classification methods to label on-demand
multiple regions of interest (see Fig. 1). This provides an in-
teractive classification/segmentation generic framework that
could be used in several real applications, and it can be used
with any existing classification/segmentation state-of-the-art
method. The framework is composed by a pre-learning stage
and an on-demand testing stage included in the renderer. The
learning step gets a subset of pre-classified samples to train
a set of Adaboost classifiers, which are codified as TFs, and
combined in an ECOC design. Each classifier encodes a set
of relevant properties in a 1D texture. We deal with several
properties, such as density, gradient, space location, etc. of
the original data without increasing the dimensionality of the
classifier. Next, the testing stage multi-classifies and labels a
subset of volume classes based on user interaction. The la-
bel mapping defines clusters of the selected classes, and then
it assigns optical propeties and importance values to the fi-
nal output classes to be visualizated. The labels computed
in the testing step in the GPU memory can be used in sev-
eral volume visualization approaches: to skip non-selected
regions, to help computing importance values to different
context structures, or to select the focus of interest for au-
tomatic view selections, just to mention a few. The label
mapping reduces the edition of the TFs by only assigning
the optical properties of a label. In addition, the labels, as a
TF, can be applied directly to the voxels values, or alterna-
tively to the sampling points derived from the interpolation
of the nearby voxels. Up to now, the complexity of the learn-
ing process and the testing step of a large amount of data do
not allow their integration into an interactive classification
stage of the user-interface volume pipeline. In this sense, our
proposal improves the TF specification process by combin-
ing a pre-processing learning step and a rendering integrated
GPU-based testing method.

In summary, this paper brings four contributions: First, the
definition of a general framework for multi-classification of
volumes based on the ECOC approach; Second, the use and
parallelization of Adaboost as a case study of this general
framework; Third, the computation of an on-demand adap-
tive classification to a subset of features of interest; Finally,
the proposal of a GPGPU OpenCL implementation of the
testing stage of the multi-classifier integrated into the final
rendering. This work serves as a proof of concept for future
embedding of the training step in the visualization pipeline.
In this sense, online learning will be performed on-demand
in the rendering. Results on diferent volume data sets of the
current prototype show that this novel framework exploits
GPU capabilities at the same time that achieves high classi-
fication accuracy.

The rest of the paper is organized as follow: Next section
overviews the ECOC framework and the Adaboost classi-
fier. Section 3 presents the general framework for multi-class
volume labelling. Section 4 explains the GPGPU implemen-
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Figure 1: Overview of the ECOC-based visualization framework.

tation. Section 5 shows the experimental results, and finally,
Section 6 concludes the paper.

2. Background

Our automatic volume labelling system bases on the combi-
nation of a set of trained binary classifiers. We consider the
general ECOC framework to deal with multi-class labelling.
As a case study, we use Adaboost to train the sets of binary
classifiers. Next, we briefly review these two methodologies.

2.1. Error-Correcting Output Codes

Given a set of N classes (volume structures or regions with
certain properties) to be learnt in an ECOC framework, n
different bi-partitions (groups of classes) are formed, and
n binary problems over the partitions are trained. As a re-
sult, a codeword of length n is obtained for each class,
where each position (bit) of the code corresponds to a re-
sponse of a given classifier h (coded by +1 or -1 according
to their class set membership, or 0 if a particular class is not
considered for a given classifier). Arranging the codewords
as rows of a matrix, we define a coding matrix M, where
M ∈ {−1,0,+1}N×n. Fig. 2(a) and (b) show a volume
data set example and a coding matrix M, respectively. The
matrix is coded using 15 classifiers {h1, ...,h15} trained us-
ing a few voxel samples for each class of a 6-class problem
{c1, ...,c6} of respective codewords {y1, ...,y6}. The classi-
fiers h are trained by considering the pre-labelled training
data samples {(ρ1, l(ρ1)), ...,(ρk, l(ρk))}, for a set of k data
samples (voxels in our case), where ρ is a data sample and
l(ρk) its label. For example, the first classifier h1 is trained
to discriminate c1 against c2, without taking into account
the rest of classes. Some standard coding designs are one-
versus-all, one-versus-one, and random [ASS02]. Mainly,
they differ on the definition of the sub-groups of classes in
the partitions of each binary problem. Due to the huge num-
ber of bits involved in the traditional coding strategies, new
problem-dependent designs have been proposed [ETP∗08].
These strategies take into account the distribution of the data
in order to define the partitions of classes of the coding ma-
trix M.

During the decoding or testing process, applying the n bi-
nary classifiers, a code X is obtained for each data sample
ρ in the test set. This code is compared to the base code-
words (yi, i∈ [1, ..,N]) of each class defined in the matrix M,

and the data sample is assigned to the class with the clos-
est codeword (e.g. in terms of distance). In fig. 2(b), the new
code X is compared to the class codewords {y1, ...,y6} using
the Hamming Decoding [ASS02], HD(X ,yi) = ∑

n
j=1(1−

sign(x j · y j
i ))/2, where X j corresponds to the j-th value of

codeword X , and the test sample is classified by class c1
with a measure of 0.5. The decoding strategies most widely
applied are Hamming and Euclidean [ASS02], though other
decoding designs have been proposed [EPR10].

2.2. Adaboost classifier

In this work, we train the ECOC binary classifiers h using
Adaboost classifier. Adaboost is one of the main preferred
binary classifiers in the ML community based on the con-
cept of Boosting [FHT98]. Given a set of k training samples,
we define hi ∼ Fi(ρ) = ∑

M
m=1 cm fm(ρ), where each fm(ρ) is

a classifier producing values ±1 and cm are constants; the
corresponding classifier is sign(F(ρ)). The Adaboost proce-
dure trains the classifiers fm(ρ) on weighed versions of the
training sample, giving higher weights to cases that are cur-
rently misclassified [FHT98]. Then, the classifier is defined
to be a linear combination of the classifiers from each stage.
The binary Discrete Adaboost algorithm used in this work
is shown in Algorithm 2.2. Ew represents expectation over
the training data with weights w = (w1,w2, ..,wk), and 1(S)
is the indicator of the set S (1 or 0 if S is or not satisfied).
Finally, Algorithm 2.2 shows the testing of the final deci-
sion function F(ρ) = ∑

M
m=1 cm fm(ρ) using Adaboost with

Decision Stump "weak classifier". A Decision Stump is a
simple directional threshold over a particular feature value.
Each Decision Stump fm fits a threshold value Tm and a po-
larity (directionaly over the threshold) Pm over the selected
m-th feature. In testing time, ρ

m corresponds to the value of
the feature selected by fm(ρ) on a test sample ρ. Note that
cm value is subtracted from F(ρ) if the classifier fm(ρ) is
not satisfied on the test sample. Otherwise, positive values
of cm are accumulated. Finally decision on ρ is obtained by
sign(F(ρ)).

Algorithm 1 Discrete Adaboost training algorithm.

1: Start with weights wi = 1/k, i = 1, ..,k.
2: Repeat for m = 1,2, .., (M):

(a) Fit the classifier fm(ρ) ∈ −1,1 using weights wi on the
training data.
(b) Compute errm = Ew[1(l(ρ)6= f m(ρ)

],cm = log((1 −
errm)/errm).
(c) Set wi← wiexp[cm ·1(l(ρi)6= f m(ρi)

], i = 1,2, ..,k, and normal-
ize so that ∑i wi = 1.

3: Output the classifier F(ρ) = sign[∑Mm=1 cm fm(ρ)].

3. General framework for multi-class volum labelling

Here, we present our automatic system for multi-class vol-
ume labelling. The system performs the following stages: a)
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Algorithm 2 Discrete Adaboost testing algorithm.
1: Given a test sample ρ

2: F(ρ) = 0
3: Repeat for m = 1,2, ..,M:

(a) F(ρ) = F(ρ)+ cm(Pm ·ρm < Pm ·Tm);
4: Output sign(F(ρ))

All-pairs ECOC multi-class learning, b) ECOC submatrix
definition, c) Adaptive decoding, and d) Label mapping.

3.1. All-pairs multi-class learning

Given a set of pre-labelled samples for each volume struc-
ture, we choose the one-versus-one ECOC design of N(N−
1)/2 classifiers to train the set of all possible pairs of labels.
An example of a one-versus-one ECOC coding matrix for a
6-class foot problem is shown in Fig. 2(a) and (b). The po-
sitions of the coding matrix M coded by +1 are considered
as one class for its respective classifier h j, and the positions
coded by -1 are considered as the other one. For example,
the first classifier is trained to discriminate c1 against c2; the
second one classifies c1 against c3, etc., as follows:

h1(x) =
{

1 if X ∈ {c1}
−1 if X ∈ {c2}

, .., h15(x) =
{

1 if X ∈ {c5}
−1 if X ∈ {c6}

(1)

The selection of the one-versus-one design has two main
benefits for our purpose. First, though all pairs of labels have
to be split in a one-versus-one ECOC design, the individ-
ual problems that we need to train are significantly smaller
compared to other classical ECOC classifiers (such as one-
versus-all). As a consequence, the problems to be learnt are
usually easier since the classes have less overlap. Second,
as shown in Fig. 2, considering binary problems that split
individual labels allow us for combining groups of labels
on-demand just by the selection of a subgroup of previouly
trained classifiers, as we show next.

3.2. ECOC submatrix definition

Given a volume that can be decomposed into N differ-
ent possible labels, we want to visualize in rendering time
the set of labels requested by the user. For this purpose,
we use a small set of ground truth voxels described us-
ing spatial, value, and derivative features to train the set
of N(N − 1)/2 Adaboost binary problems that defines the
one-versus-one ECOC coding matrix M of size N × n.
Then, let us define the interaction of the user as the set
I = {I0, .., Iz} = {{ci, ..,c j}, ..{ck, ..,cl}}, where I, |I| ∈
{1, ..,N} is the set of groups of labels selected by the user,
and I0 contains the background (always referred as c1) plus
the rest of classes not selected for rendering, I0 = {ci},∀ci /∈
{I1, .., Iz},

⋃
ci∈I = {c1, ..,cN},

⋂
ci∈I = ∅. Then, the subma-

trix SM ∈ {−1,0,+1}N×Z is defined, where Z ≤ n is the

number of classifiers selected from M that satisfies the fol-
lowing constraint,

hi|∃ j,M ji ∈ {−1,1},c j ∈ I \ I0 (2)

For instance, in a 6-class problem of 15 one-versus-one
ECOC classifiers (see Fig. 2(b)), the user defines the in-
teraction {c3,c6}, resulting in the interaction model I =
{{c1,c2,c4,c5},{c3,c6}} in order to visualize two differ-
ent labels, one for background and other one for those vox-
els with label c3 or c6. Then, from the original matrix M ∈
{−1,0,+1}6×15, the submatrix SM ∈ {−1,0,+1}6×9 is de-
fined, as shown in Fig. 2(c). Note that the identifier i of each
classifier hi in SM refers to its original location in M.

3.3. Adaptive decoding

The proposed ECOC submatrix SM encodes the minimum
required number of binary classifiers from a one-versus-one
coding matrix M to label the sets of structures defined by
the user in I. However, this novel definition of ECOC sub-
matrices requires a readjustment of the decoding function δ

applied. For instance, if we look at the matrix M of Fig. 2(b),
one can see that each row (codeword) of M contains the same
number of positions coded by zero. If one applies a classi-
cal Hamming decoding, obviously a bias in the comparison
with a test and a matrix codeword is introduced to those po-
sitions comparing membership {−1,1} to 0. Note that the
zero value means that the class has not been considered, and
thus, it makes no sense to include a decoding value for those
positions. However, since in the one-versus-one design all
the codewords contain the same number of zeros, the bias
error introduced for each class is the same, and thus, the de-
coding measurements using classical decoding functions are
comparable. In our case, this constraint does not hold. Look
at the submatrix SM of Fig. 2(c). The selection of subma-
trices often defines coding matrices with different number
of positions coded to zero for different codewords. In order
to be able to successfully decode a submatrix SM we take
benefit from the recent Loss-Weighted proposal [EPR10],
which allows the decoding of ternary ECOC matrices avoid-
ing the error bias introduced by the different number of code-
word positions coded by zero. The Loss-Weighted decod-
ing is defined as a combination of normalized probabilities
that weights the decoding process. We define a weight ma-
trix MW by assigning to each position of the codeword cod-
ified by {−1,+1} a weight of 1

n−z , being z the number of
positions of the codeword coded by zero. Moreover, we as-
sign a weight of zero to those positions of the weight matrix
MW that contain a zero in the coding matrix M. In this way,
∑

n
j=1 MW (i, j) = 1,∀i = 1, ...,N. We assign to each position

(i, j) of a performance matrix H a continuous value that cor-
responds to the performance of the classifier h j classifying
the samples of class ci as shown in eq. 3. Note that this
equation makes H to have zero probability at those positions
corresponding to unconsidered classes. Then, we normalize
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(a) (b) (c) (d)

Figure 2: (a) True labels for a foot volume of six classes; (b) One-versus-one ECOC coding matrix M for the 6-class problem. An
input test codeword X is classified by class c1 using the Hamming Decoding; (c) Submatrix SM defined for an interaction set I =
{{c1,c2,c4,c5},{c3,c6}}; (d) Visualization in the new label space.

each row of the matrix H so that MW can be considered as
a discrete probability density function (eq. 5). In fig. 3, a
weight matrix MW for a 3-class toy problem of four classi-
fiers is estimated. Fig. 3(a) shows the coding matrix M. The
matrix H of Fig. 3(b) represents the accuracy of the classi-
fiers testing the instances of the training set. The normaliza-
tion of H results in a weight matrix MW shown in Fig. 3(c).
Once we compute the weight matrix MW , we include this
matrix in a loss-function decoding formulation, L(θ) = e−θ,
where θ corresponds to y j

i · f (ρ, j), weighted using MW , as
shown in eq. 6. The summarized algorithm is shown in ta-
ble 3.3.

Loss-Weighted strategy: Given a coding matrix M,
1) Calculate the performance matrix H,

H(i, j) =
1
mi

mi

∑
k=1

ϕ(h j(ρi
k), i, j) (3)

based on ϕ(x j, i, j) =
{

1, if X j = y j
i ,

0, otherwise.
(4)

2) Normalize H: ∑
n
j=1 MW (i, j) = 1, ∀i = 1, ...,N:

MW (i, j) =
H(i, j)

∑
n
j=1 H(i, j)

, ∀i ∈ [1, ...,N], ∀ j ∈ [1, ...,n]

(5)3) Given a test data sample ρ, decode based on,

δ(ρ, i) =
n

∑
j=1

MW (i, j)L(y j
i · f (ρ, j)) (6)

Table 1: Loss-Weighted algorithm.

3.4. Label mapping

Given the submatrix SM and the user interaction model I, af-
ter classification of a voxel ρ applying the Loss-Weighted
decoding function, the obtained classification label ci, i ∈
{1, ..N} is relabelled applying the mapping,

LM(I,ci) =


l1 if ci ∈ I1
...
lz if ci ∈ Iz

where li, i ∈ {1, ..,z} allows to assign RGBα or importance
values to all voxels that belong to the corresponding selected
classes in Ii. These functions are useful to provide flexibility

to our framework in order to be applied in several visualiza-
tion tasks, such as importance-driven visualizations or au-
tomatic viewpoint selections. As an example, applying the
interaction model I = {{c1,c2,c4,c5},{c3,c6}} for the 6-
class problem of Fig. 2(a), we obtain the submatrix SM of
Fig. 2(c). Applying the Loss-Weighted decoding over SW ,
and the mapping function {{c1,c2,c4,c5},{c3,c6}} −→
{0,1}, the new volume representation is shown n Fig. 2(d).

4. Implementation

Here, we describe our proposed classifier representation and
analyze its parallelization possibilities.

4.1. Adaboost Look up table representation

We propose to define a new and equivalent representation
of cm and |ρ| that facilitate the parallelization of the testing.
We define the matrix Vfm(ρ) of size 3× (|ρ| ·M), where |ρ|
corresponds to the dimensionality of the feature space. First
row of Vfm(ρ) codifies the values cm for the corresponding
features that have been considered during training. In this
sense, each position i of the first row of Vfm(ρ) contains the
value cm for the feature mod(i, |ρ|) if mod(i, |ρ|) 6= 0 or |ρ|,
otherwise. The next value of cm for that feature is found in
position i+ |ρ|. The positions corresponding to features not
considered during training are set to zero. The second and
third rows of Vfm(ρ) for column i contains the values of Pm
and Tm for the corresponding Decision Stump. Note that in
the representation of Vfm(ρ) we lose the information of the
order in which the Decision Stumps were fitted during the
training step. However, though in different order, all trained
"weak classifiers" are represented, and thus, the final addi-
tive decision model F(ρ) is equivalent. In our proposal, each
“weak classifier” is codified in a channel of a 1D-Texture.

4.2. GPU and Multi-core CPU implementations

In order to make the application useful in practice, we aim
to improve the testing stage execution times as much as pos-
sible. Our proposed Adaboost codification allows not only
a coarse or fine grain parallelization, but also exposes a big
amount of data independent operations, susceptible of being
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(a) (b) (c)

Figure 3: (a) Coding matrix of four classifiers for a 3-class toy problem, (b) Performance matrix, and (c) Weight matrix.

pipelined on the CPU. The critical section in our application
is a triple for-loop that traverses all the data. Each iteration
can be divided into two steps: a binary classification and a
multi-class final decision. The former is devoted to perform
the binary classification for each classifier. The latter is the
multi-class decision made by using the ECOC matrix and the
results of the initial step. Each iteration is data independent
with each other so they can be executed concurrently.

One of the languages we have considered is ANSI C +
OpenMP because not all computers have an OpenCL capa-
ble GPU. Additionally, depending on the configuration of
the system, it is possible to have a Multicore-CPU that is
faster than the GPU. OpenMP execution times can be af-
fected by other applications or threads running in the sys-
tem. For this reason, we have also considered testing Ap-
ple’s GCD (Grand Central Dispatch) [GCD] API, that passes
the management of the threads to the system and takes in
account the work load of the CPU cores to reduce context
switching. At the programmer level GCD substitutes the
threads with queues. It allows the programmer to only fo-
cus on deciding which part of the code will be synchronous
or not regarding the main program, using lots of lightweight
queues that will feed a few system controlled threads.

On the other hand, we have also analyzed OpenCL due to
the huge speedups it can deliver when running on GPU’s and
the possibility of OpenGL integration. Nevertheless, produc-
tivity continues to be a major concern. Then, CUDA could be
an option but we preferred to stick with OpenCL’s compat-
ibility and portability between GPU’s and CPU’s. Besides
effective GPU-memory bandwidth, one typical recommen-
dation for better performance is to use as much Work Items
as possible. However, this is true up to a certain extent. In our
case, the best solution has been to maintain a correlation of
one Work Item per one sample. It would have been feasible
to use more than a Work Item per sample in the above men-
tioned steps in order to achieve a more fine-grained paral-
lelization and a more scalable code. Nevertheless, the prob-
lem is that at the end of the two steps we only obtain a value
per sample. As a consequence, the extra Work Items need
to communicate through local memory and so, the perfor-
mance is drastically reduced. In addition, maintaining the
same Work Group and Work Item dimensions through all the
process allowed us to code a single kernel, skipping lots of
global and local memory reads and writes, and also integrate
an initial gradient calculation step following the Micikevi-
cius GPU-stencil algorithm [Mic09].

5. Simulations and Results

This section describes the experimental setup and shows the
performance evaluation in terms of classification accuracy
and execution time.

5.1. Setup

Data: We used three data sets, Thorax data set‡ of size
400×400×400 represents a MRI phantom human body; Foot and
Brain§ of sizes 128×128×128 and 256×256×159 are CT scans
of a human foot and a human brain, respectively.

Methods: We use the one-versus-one ECOC design, Discrete Ad-
aboost as the base classifier, and we test it with different number
of decision stumps. For each voxel sample ρ, we considered eight
features: x, y, z coordinates, the respective gradients, gx, gy, gz,
the gradient magnitude, |g| and the density value, v. The system
is compared in C++, OpenMP, GCD, and OpenCL codes.

Hardware/Software: The details of the different CPU and GPU
hardware configurations used in our simulations are shown in
Tables 2 and 3, respectively. The viewport size is 700×650.
We used the MoViBio software developed by the GIE Research
Group at the UPC university [mov].

Measurements: We compute the mean execution time from 500
code runs. For the accuracy analysis, we performed 50 runs of
cross-validation with a 5% stratified samplings.

CPU’s AMD Phenom 2 Intel Core 2 Intel Core
955 Duo P8800 i5 750

Frequency 3.2GHz 2.66GHz 2.66GHz to 3.2GHz
Cores 4 2 4
Threads per core 1 1 1
L3 cache 6MB 0MB 8MB
SSE level 4A 4.1 4.2

Table 2: Different CPU configurations used for evaluation.

GPU’s ATI NVIDIA

Processing Elements 720 448
Stream or CUDA cores 144 448
Compute Units 9 14
Max PE per WI 5f / 0d 1f / 1d
PE available per CU 80f / 0d 32f / 4d
Warp size 64 Work Items 32 Work Items
Memory type GDDR 5 GDDR 5
Global Memory size 1GB 1.28GB
Local Memory size 32KB 16KB or 48KB

Table 3: Different GPUs architectures used for evaluation,
where ’d’ and ’f’ stands for double and float, respectively.

‡ http://www.voreen.org
§ http://www.slicer.org/archives

c© 2011 The Author(s)
c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

2112



S. Escalera & A. Puig & O. Amoros & M. Salamó / Intelligent GPGPU Classification in Volume Visualization

Figure 4: Classification accuracies for the different data set structures and number of decision stumps in the Adaboost-ECOC framework.

(a)

(b) (c)

Figure 5: Comparison of the pre-labelled (left) and the classified data set (right) for (a) the Brain, (b) Foot, and (c) Thorax data sets,
respectively.

5.2. Classification accuracy analysis

Fig. 4 shows the classification accuracy of the framework
for the data sets considering different number of decision
stumpsM. The accuracies are shown individually for each
volume structure. From Fig 4 one can see that even for differ-
ent complexity of volume structures, most of the categories
obtain upon 90% of accuracy.

In the case of the Foot data set, accuracy achieves near
100% for all the categories. In Fig. 5(b), we show the same
section of the full pre-labelled Foot data set for six classes
and the obtained classification with our proposal. In Fig. 6,
we show selections and different shadings of the visualiza-
tions to demonstrate the flexibility of submatrix testing and
the label mapping for different interaction models I.

In case of the Brain data set, we have trained nine classes
of different structures of the brain that shares the same den-
sity and gradient values, achieving accuracies between 90%
and 100%, where the lowest value is for the classe c6, with
values near 90%. The highest accuracy corresponds to the
class c9. In Fig. 5(a), we show two sections of the pre-

Figure 6: Case study of the 6-class foot volume: c1 is the
background, c2, c3, c4 are the bone structures of the palm, an-
kle and tooth, repectively, and c5 and c6 are the soft tissue of the
palm/ankle and tooth, respectively. Color Plates show the user in-
teraction sets (from left to right) I = {{c1},{c2},{c4},{c5},{c6}},
I = {{c1},{c2,c3},{c5},{c6}}, and I = {{c1},{c2},{c3},{c4}},
respectively.

labelled brain structures together with the results obtained
by our multi-classifiers. Note that classification inaccuracies
do not present significant artifacts in the rendering. In Fig. 7
we also present some illustrative visualizations of this multi-
classified data set applying different user interactions I. Fi-
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nally, Fig. 5(c) shows an example of a full Thorax volume
classification for different structures¶.

Figure 7: Case study of the 9-class Brain volume: the classes
corresponds to different structures of the brain such as hemispheres,
optical nerves and cerebellum with different shading techniques.

5.3. Execution time analysis

We compared the time performance of our GPU parallelized
testing step in relation to the CPU-based implementations
based on sequential C-code, OpenMP and GCD approaches.
In table 4, for each implementation we show an averaged
time of the 500 executions. We employ different sized data
sets with several number of classes to be labelled and distinct
user-selections. Our proposed OpenCL-based optimization
has an average of speed up of 109x, 31.11x, and 31.14x over
the sequential C-coded algorithm, the OpenMP and the GCD
based algorithms, respectively. The results are remarkably
promising considering that the whole tested data sets fit in
the GPU memory card. We are planning to expand our im-
plementation using well-known bricking techniques. In ta-
ble 4, we can observe that time values are proportional to
three features: the data set sizes, the number of classes,N,
and the number of classifiers, Z, used for the selected classes.
Specifically, the most influential feature in the time value is
the size of the data set (see rows 6, 10 and 16 of table 4).
Thus, including more classifiers hardly affect the time per-
formance of the system. In addition, we obtain real-time in
the Foot data set.

In Table 5 we observe time values of our OpenCL imple-
mentation for different parallel platforms: the ATI Radeon,
the Nvidia Geforce GTX470, and the AMD Quad Core. We
conclude that the best performance is achieved on the Nvidia
graphic card whose time ranges from a few seconds in the
worst case to some miliseconds for the best one. In addi-
tion, we executed the OpenCL code in the AMD CPU and
we obtained speed ups of 1.02x, 1.06x, and 1.2x over the
corresponding OpenMP implementation for 9 classes and
36 classifiers of the three data sets, Foot, Brain and Thorax,
respectively. We observe that the greater dataset, the better
OpenCL performance.

¶ Note that the proposed multi-class GPU-ECOC framework is in-
dependent of the classification/segmentation strategy applied. Thus,
different feature sets as well as labelling strategies could be consid-
ered, obtaining differences in classification accuracy.

Data
set

N Sel.
classes

Z CPU OpenMP GCD OpenCL

Foot 3 2 2 0.387 0.111 0.111 0.008
3 3 3 0.577 0.165 0.165 0.002
4 3 5 0.948 0.271 0.271 0.020
4 4 6 1.139 0.325 0.325 0.038
6 6 15 4.986 0.760 0.769 0.062
9 9 36 8.319 1.787 1.777 0.091

Brain 9 2 15 39.396 11.190 11.177 0.358
9 4 26 68.485 19.475 19.615 0.649
9 6 33 87.558 24.947 24.875 0.848
9 9 36 96.859 27.642 27.557 1.263

Thorax 2 2 1 26.849 7.604 7.600 2.694
8 2 13 321.768 94.589 94.579 2.011
8 4 22 564.577 160.801 160.784 3.532
8 8 28 754.203 220.430 220.388 6.007
9 7 35 923.225 260.751 259.489 5.955
9 9 36 971.915 270.751 269.751 7.763

Table 4: Testing step times in seconds of the different datasets
using a submatrix SM depending on the subset of selected classes.
The whole matrix M is used when all classes are selected. The CPU,
OpenMP and GCD times are tested on a Intel Core i5 750 (see Ta-
ble 2). OpenCL times are tested on a GTX 470 (see Table 3).

6. Conclusions and future work

In volume visualization, users usually face with the prob-
lem of manually defining regions of interest. To cope with
this problem, we proposed an automatic framework for gen-
eral multi-class volume labelling on-demand. The system
is decomposed into a two-level GPU-based labelling algo-
rithm that computes in time of rendering voxel labels using
the ECOC framework with the Adaboost classifier. After a
training step using few volume voxel features from different
structures, the user is able to ask for different volume visual-
izations and optical properties. Additionally, to exploit the
inherent parallelism of the proposal, we implemented the
testing stage in C++, OpenMP, GCD, and GPU-OpenCL.
Our empirical results indicate that the proposal have the
potential to deliver worthwile accuracy and speeds up ex-
ecution time. Overall, the proposal of this paper presents a
novel, automatic, and general-purpose multi-decision frame-
work that performs real-time computation.

Data
set

N Selected
classes

Z ATI NVIDIA AMD Quad

Foot 3 2 2 0.028 0.008 0.236
4 3 5 0.066 0.020 0.495

Brain 9 2 15 1.498 0.358 7.114
9 4 26 2.636 0.649 12.393
9 6 33 3.403 0.848 16.047
9 9 36 3.818 0.959 18.446

Thorax 8 2 13 8.750 2.011 56.374
8 4 22 14.860 3.532 95.657
8 6 27 18.340 4.467 118.978
8 8 28 19.150 4.752 125.454

Table 5: Different timings for different parallel architectures ob-
tained by the ATI-Radeon, Nvidia GTX470 and AMD Phenom 2 955.

There exists several points in this novel framework that
deserve future analysis. We plan to analyze the effect of clas-
sifier generalization reducing the initial number of voxels in
the ground truth training set, look for different feature space
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representations including contextual information, study the
use of different base strategies in the ECOC framework from
both learning and segmentation points of view, as well as
new parallelization optimizations. In order to avoid possi-
ble memory usage limitations for larger volume data sets,
we will also analyze bricking strategies. Finally, we plan to
embed the training step in the visualization pipeline so that
online learning and forbidden steps can be performed on-
demand in the rendering.
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