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Abstract. In this work, we propose a novel Genetic Inspired Error Cor-
recting Output Codes (ECOC) Optimization, which looks for an efficient
problem-dependent encoding of the multi-class task with high generaliza-
tion performance. This optimization procedure is based on novel ECOC-
Compliant crossover, mutation, and extension operators, which guide the
optimization process to promising regions of the search space. The results
on several public datasets show significant performance improvements as
compared to state-of-the-art ECOC strategies.
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1 Introduction

A challenging task in Pattern Recognition is to develop efficient methodologies
to process huge amount of data. Concretely, classification procedures present a
lack of options when the number of categories is arbitrarily large. In this scope,
the Error Correcting Output Codes (ECOC) framework has shown great perfor-
mance results. At the ECOC coding step, a set of binary partitions of the original
problem are encoded in a matrix of codewords (one code per class, univocally
defined) which are learnt by binary classifiers. Then, at the ECOC decoding step
a final decision is obtained by comparing the set of binary predictions with every
class code, and choosing the class with the code at minimum ’distance’. Stan-
dard ECOC coding strategies need between N and

(
N
2

)
classifiers to deal with

a N−class problem (using the One vs. All and the One vs. One coding designs,
respectively). This implies a scalability problem when dealing with a large num-
ber of classes. Recently, some works applied Genetic Algorithms (GA) to find a
sub-optimal ECOC configuration. The underlying idea of GA is to reproduce the
natural evolution by means of computer programs, using a chromosome based
representation of the problems, and implementing from a functional point of
view the processes involved in nature (crossover and mutation). Various works



have treated the optimization of ECOC matrices with GA [2,6,5]. Nevertheless,
they fail in taking into account the ECOC constraints, implying an unnecessary
enlargement of the search space.

In this work, we propose a novel framework for treating the optimization of
an ECOC matrix inspired on GA. In this framework the operators have been
completely redefined in order to avoid non-valid individual generation, and thus,
minimizing the search space in relation to previous works. In addition, the code
length is reduced to be sub-linear in the number of categories, building both
reduced and high-performance codes. This novel procedure is tested on several
public datasets, obtaining significant performance improvements compared to
state-of-the-art ECOC approaches.

The paper is organized as follows: Section 2 presents the novel genetic ap-
proach. Section 3 shows the experimental results and Section 4 concludes the
paper .

2 ECOC-Compliant Genetic Algorithm

In this section we review the ECOC framework, its properties, and present the
Genetic-ECOC.

2.1 ECOC framework

The ECOC framework is composed of two different steps: coding and decoding [1].
At the coding step an ECOC coding matrix MN×n ∈ {−1,+1, 0} is constructed,
where N denotes the number of classes in the problem and n the number of
bi-partitions defined to discriminate the N classes. In this matrix, the rows (also
known as codewords) are univocally defined, since these are the identifiers of
each category in the multi-class problem. On the other hand, the columns of M
denote the set of bi-partitions, dichotomies, or meta-classes to be learnt by each
base classifier hj (also known as dichotomizer). Hence, classifier hj is responsible
for learning the bi-partition denoted on the j−th column of M 1. From the
learning point of view, the performance of the ECOC ensemble will increase as
more bi-partitions are taken into account. However, by taking into account the
problem idiosyncrasies the system is able to obtain great performance by using
few bi-partitions.

At the decoding step a new sample s is classified according to the N possible
categories. In order to perform the classification task, each dichotomizer predicts
a binary value for s whether it belongs to one of the bi-partitions defined by the
corresponding dichotomy. Once the set of predictions x(s) ∈ Rn is obtained, it
is compared to the codewords of M using a distance metric δ, known as the
decoding function.

1 For notation purposes we will refer to the entry of M at the i-th row and the j-th
column as Mi,j



2.2 ECOC Coding Matrix Properties

We define an ECOC coding matrix MN×n ∈ {−1,+1, 0} to be constrained by,
min(δAHD(y

i
, y

k
)) ≥ 1, ∀i, k : i ̸= k, i, k ∈ [1, . . . , N ] (1)

min(δHD(d
j
, d

l
)) ≥ 1, ∀j, l : j ̸= l, j, l ∈ [1, . . . , n] (2)

min(δHD(d
j
,−d

l
)) ≥ 1, ∀j, l : j ̸= l, j, l ∈ [1, . . . , n] (3)

where δAHD and δHD are the Attenuated Hamming Distance (AHD) and the
Hamming Distance (HD) are defined as in [4].

2.3 Genetic Inspired ECOC Optimization

In this section we present the novel Genetic-ECOC.

Problem encoding In order to consider the ECOC properties and obtain
smart heuristics to guide the optimization process, a novel representation of
ECOC individuals is proposed. ECOC individuals are represented as structures
I =< M,C,H, P,E, δ >, where the fields are defined as follows,

• The coding matrix, MN×n ∈ {−1,+1, 0} where n ≥ ⌈log2 N⌉. For the
initial population we fix n = ⌈log2 N⌉, where n can grow along generations.

•The confusion matrix, CN×N , over the validation subset. Let ci and cj

be two classes of our problem, then the entry of C at the i-th row and the j-th
column, defined as Ci,j , contains the number of examples of class ci classified as
examples of class cj .

• The set of dichotomizers H =< h1, . . . , hn >.
• The performance of each dichotomizer, P ∈ Rn, P = [p1, . . . , pn]. This

vector contains the proportion of correctly classified examples over a validation
subset for each dichotomizer in H.

• The error rate, E, over a validation subset. This scalar is the proportion
miss-classified samples of the validation subset using the Loss-Weighted decoding
[4]. Let the set of samples in the validation subset be V =< (s1, l(s1)), . . . , (sv, l(sv)) >,
then E is defined as,

E =
v∑

j=1

I(∆(M,xsj ), l(sj))/v, (4)

∆(M,x) = argmin
i

δ(yi, x), i ∈ {1, . . . , N} (5)

Fitness function The fitness function measures the environmental adaptation
of each individual, and thus, is the one to be optimized. Individuals are evaluated
according to the performance they obtain in the validation subset. Let EIK be
the error rate of individual IK and let nIK be the length of the coding matrix
M of IK , then, we define the fitness function as Ff (Ik) = EIk + λnIk .

2

2 This expression (similar to the one showed by regularized classifiers), serves us to
control the learning capacity of the ECOC matrix in order to not over-fit the training
data.



ECOC Crossover and Mutation Operators In this section we introduce
the novel ECOC crossover and mutation operators. These operators do not only
take into account the restrictions of the ECOC framework (see Equations 1, 2,
and 3) but also are carefully designed in order to avoid a premature convergence
to local minima without generating non-valid individuals, and thus, converging
to satisfying populations in fewer generations. In this sense, the crossover and
mutation operators have two variants. The Generic one, which provides us with
a tool to avoid premature convergence, and the Specific one, which guides the
optimization to promising regions of the search space.

• ECOC crossover algorithm

Assume a N -class problem to be learnt and let IF and IM be two individuals
encoded as shown in Section 2.3. Then, the crossover algorithm will generate
a new individual IS which coding matrix M IS

N×n, n = min(nIF , nIK ) contains
dichotomies of each parent. Therefore, the key aspect of this recombination is the
selection of which dichotomies of each parent are suitable to be combined. We
introduce a dichotomy selection algorithm that chooses those n dichotomies that
hold the constraints shown in Equations 1, 2, and 3. The dichotomy selection
algorithm generates a dichotomy selection order τ I ∈ Rn for each parent I.
Moreover, the selection algorithm checks if the separation between codewords
is congruent with the number of dichotomies left to be added. In this sense,
the (k − i)-th extension dichotomy will be only added if it splits the existing
codewords to define |Y | = r ≤ 2(k−i) codes at δAHD(ya, yb) = 0 ∀ ya, yb ∈ Y :
a ̸= b, where k is the final length of the ECOC matrix. The Generic and Specific
version of the ECOC crossover algorithm depend on how τ is defined. In the
Generic version, τ is randomly generated, while in the Specific version τ is a
classifier performance ranking.

In the crossover example shown in Figure 1 two individuals IM and IF are
combined to produce a new offspring IS . The crossover algorithm generates
a dichotomy selection order τ for each parent. The first parent from which a
dichotomy is taken is IM , and d3 is valid since r ≤ 2(3−1) = 4, and it only defines
three codes without separation (y1, y2, and y5). Once this step is performed, the
parent is changed, and the following dichotomy will be extracted from IF based
on its selection order τ IF . In this case, d4 is valid since r ≤ 2(3−2) = 2 and d3 of
IM together with d4 of IF define only two equivalent codewords (y1 and y5). In
the following iteration, the parent is changed again, and thus, IM is used. Since
δAHD(y1, y5) = 0, d1 can not be considered as an extension dichotomy, and
therefore, the next dichotomy to use is d2, which satisfies Equation 1 defining a
valid ECOC coding matrix.

• ECOC Mutation Algorithm

Picture an individual I encoded as shown in Section 2.3 to be transformed by
means of the mutation operator. This operator will select a set of positions µ =<
Mi,j , . . . ,Mk,l >, i, k ∈ {1, . . . , N}, j, l ∈ {1, . . . , n} of M I to be mutated. The
value of these positions is changed constrained to values in the set {−1,+1, 0}.
In the Generic version, the set of positions µ are those valued 0. Once µ is
defined, the positions are randomly recoded to one of the three possible values



Data: IF ,IM
Result: IS

1 n := min(MIF ,MIM ) // Minimum code length among parents

2 τIF ∈ Rn = selorder(IF ) // Dichotomy selection order of IF

3 τIM ∈ Rn = selorder(IM );
4 cp := IF // Current parent to be used

5 MIS := ∅ // Coding matrix of the offspring
6 for i ∈ {1, . . . , n} do
7 for j ∈ {1, . . . , ncp} : τcp

j ̸= ∅ do

8 f := 0 // Valid dichotomy search flag

9 if calcRepetitions (MIS , d
τ
cp
j ) ≤ 2(k−i) then

10 di := d
τ
cp
j // Inheritance of dichotomies

11 hi := h
τ
cp
j // Inheritance of dichotomizer

12 pi := p
τ
cp
j // Inheritance of performance

13 τcp
j := ∅ // Avoid using a dichotomy twice

14 f := 1 // Valid dichotomy found
15 break ;

16 end

17 end
18 if !f then

19 di := generateCol(MIS ) // If non ECOC matrix can be built

20 hi := ∅;
21 pi := ∅;
22 end
23 if cp = IF then
24 cp := IM // Dichotomy inheritance parent switch
25 else
26 cp := IF ;
27 end

28 end

Algorithm 1: ECOC Crossover.

in {−1,+1, 0}. In the Specific mutation algorithm, the set of positions µ is chosen
taking into account the confusion matrix C. Once these classes are obtained, the
algorithm will mutate the bits valued 0 of its codewords {yi, yj} in order to
increment the distance δAHD(yi, yj). The specific ECOC mutation algorithm is
shown in Algorithm 2.

In Figure 2 an example of the specific mutation algorithm is shown. Let IT
be an individual encoded as shown in Section 2.3. The confusion matrix CIT

has its non-diagonal maximum at C4,3 + C3,4. Then codewords y4 and y3 are
going to be mutated. The 0 valued bits of this codewords are changed in order
to increment δAHD(y4, y3), and thus, incrementing also the correction capability
between them. At the following iteration C4,3 is not taken into consideration and
the procedure will be repeated with y5 and y4 which are the following classes
that show confusion in C.

Problem-Dependent Extension Operator We propose an operator to ex-
tend ECOC designs based on the confusion matrix, focusing the extension of
dichotomies on those categories which are difficult to be split. This methodology
defines two types of extensions, the One vs. One extension (Generic extension)
and the Sparse extension (Specific extension), which have the same probability of
being executed along the optimization process. In the former, the ECOC coding
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Fig. 1. (a). An example of an ECOC coding matrix. (b) Example of the decoding
process. (c) Feature space and trained classifiers for parent IM . (d) Feature representa-
tion and boundaries for parent IF . (e) ECOC coding matrix of parent IM . (f) Coding
matrix of parent IF . (g) ECOC coding matrix composition steps for the offspring IS .
(h) Feature space and inherited classifiers for IS .

Data: IT ,mtc
// Individual and mutation control value
Result: IX

1 C
IT
N×N // Confusion matrix of IT

2 k := 0// Number of recoded bits of MIT

3 while k < mtc do
4 (ci, cj) := argmax

i,j
(Ci,j + Cj,i) ∀i, j : i ̸= j;

5 for b ∈ {1, . . . , n} do

6 if |yi
b| + |yj

b | ≤ 1 and k < mtc then

7 if yi
b = 0 and yj

b = 0 then

8 yi
b := +1 // Invert both bits valued 0

9 yj
b := −1;

10 else
11 if yi

b = 0 then

12 yi
b := −yj

b // Invert bit valued 0

13 else

14 yj
b := −yi

b;

15 end

16 end
17 k := k + 1;

18 end

19 end

20 C
IT
i,j := 0, C

IT
j,i := 0;

21 end

Algorithm 2: Specific ECOC-Compliant Mutation.

matrix MN×n will be extended with a dichotomy dn+1 which will be valued 0
except for those two positions di and dj corresponding to the maximum confused
classes (ci, cj) = argmax

i,j
(Ci,j + Cj,i), which will be inverse valued. The latter,
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Fig. 2. Mutation example for a 5-class toy problem. (a) Feature space and trained
dichotomizers for and individual IT . (b) ECOC coding matrix of IT . (c) Confusion
matrix of IT . (d) Mutated coding matrix. (e) Mutated feature space with trained
dichotomizers.

follows the scheme in which two categories {ci, cj} that maximize the confusion
are discriminated.

3 Experimental Results

In order to present the results, we first discuss the data, methods, and evaluation
measurements.

•Data: We consider five muti-class problems from the UCI Machine Learn-
ing Repository: Ecoli (8 classes), Vowel (11 classes), Yeast (10 classes), Shuttle
(7 classes), and Glass (7 classes). In addition, we test our methodology over 4
challenging Computer Vision multi-class problems: 70 visual object categories
from the MPEG dataset, 20 classes of the ARFace database, a real traffic sign
categorization problem of 36 classes, and 7 handwritten music cleafs classes [2].
Computer Vision datasets are described using PCA keeping 99,9% of informa-
tion.

• Methods: We compare the Genetic ECOC design with the One vs. All,
One vs. One, Dense Random [1], Forest [8] and DECOC [7] designs. The ECOC
base classifier is the libsvm implementation of a SVM with RBF kernel. The
SVM ζ and γ parameters are tuned via Genetic Algorithms for all the methods,
minimizing the classification error of a two-fold evaluation over a training sub-set
[2].

• GA settings and parameters: The number of generations of each GA
optimization process was set to 3N where N is the number of classes of each
particular classification problem. The number of individuals of the GA was set



to 5N . Furthermore, elitism was applied at each generation, and thus, the 10%
fitter individuals are automatically selected to form part of the next generation.
On the other hand, the specific and generic variants of the Crossover, Mutation
and Extension operators where equiproportional.

• Evaluation Measurements: The classification performance is obtained
by means of a stratified ten-fold cross-validation. Finally, we test for statistical
significance using Friedman and Nemenyi statistics at 95% of the confidence
interval [3]. The classification results are shown in Table 1. The table shows the
classification performance of each ECOC design on each dataset, the average
performance ranking, and the mean number of classifiers of the ensemble. In
order to compare the performances provided for each strategy, Table 2 shows
the mean rank of each ECOC design considering the 18 different experiments (9
dataset performances and 9 PC values).

Table 1. Classification results and number of classifiers per coding design.

Dataset Compact ECOC GA Ins. ECOC D. Random ECOC
Perf. Classif. Perf. Classif. Perf. Classif.

Ecoli 80.5±1.9 3 81.4±1.3 3.8 68.1±2.7 8
Vowel 48.6±3.5 3 54.4±4.3 3.2 42.8±1.1 7
Yeast 57.7±2.4 3 68.1±1.5 5.6 66.8±3.3 11
Shuttle 80.9±2.1 3 81.1±1.3 3.2 90.6±2.3 7
Glass 50.2±1.2 4 55.1±6.1 5 54.9±6.4 10
MPEG 90.8±4.1 6 95.3±3.2 6 83.3±1.0 36

ARFACE 61.5±3.2 5 86.3±1.2 6 73.0±1.3 20
TRAFFIC 81.2±1.2 3 96.3±2.4 4.2 82.3±1.1 7
CLEAFS 84.6±1.1 7 84.1±2.8 7 90.0±1.4 70

Mean Rank & #Class. 5.6 4.2 2.5 4.9 4.9 19.5

1vsAll 1vs1 DECOC FECOC
Perf. Classif Perf. Classif. Perf. Classif. Perf. Classif.

75.5±1.8 8 79.2±1.8 28 69.4±1.3 7 75.2±3.5 21
53.8±6.2 7 60.5±2.9 15 55.1±2.5 6 43.9±2.1 15
80.7±2.2 11 78.9±1.2 28 66.7±1.3 10 68.1±1.3 30
90.6±1.1 7 86.3±1.1 21 77.1±1.4 6 80.3±1.5 18
47.1±1.3 10 52.4±2.8 45 55.8±2.2 9 56.0±3.2 27
91.8±2.6 36 90.6±2.1 630 86.2±4.2 35 96.7±1.3 105
84.0±3.3 20 96.0±2.5 190 82.7±2.1 19 81.6±0.4 57
80.8±1.2 7 84.2±2.8 21 96.9±2.4 6 97.1±1.1 18
87.8±2.4 70 92.8±1.3 2415 83.4±1.5 69 81.9±2.3 207

3.9 19.5 1.5 377 5.2 18.5 4.8 55.3

Table 2. Mean rank per coding design.

Rank Compact ECOC GA ECOC Dense ECOC
Perf. rank 5.6 2.5 4.9

Perf. per Class rank 1 2 5
Mean rank 3.3 2.2 4.9

Rank 1vsAll 1vs1 DECOC FECOC
Perf. rank 3.9 1.5 5.2 4.8

Perf. per Class rank 4 7 3 6
Mean rank 3.9 4.2 4.1 5.4



We use the Nemenyi test to check if one of the techniques can be singled
out. In our case with k = 7 ECOC approaches to compare and N = 9 · 2 = 18

experiments, the critical value for a 90% of confidence is CD = 1.415 ·
√

56
108 =

1.0189. Since none of the methods ranks intersect with the GA Inspired ECOC
rank for CD = 1.0189, we can state that the proposed ECOC design significantly
improves the rest of methods performances at 90% of confidence.

4 Discussion and Conclusions

We presented the novel Genetic ECOC optimization procedure, which has been
carefully defined in order to take into account the ECOC properties. New ECOC
Crossover and Mutation operators have been defined to avoid non-valid coding
matrix generation, reducing the search space and the number of individuals
needed for convergence. Moreover, a new Extension ECOC operator has been
proposed, which allows the ECOC design to take benefit from error correction
in a problem dependent way. The methodology was tested on several public
Machine Learning and Computer Vision datasets, obtaining significant perfor-
mance improvements compared to state-of-the-art ECOC approaches using far
less number of dichotomizers, which results in a much more efficient coding.
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