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Spherical Blurred Shape Model for 3-D Object and
Pose Recognition: Quantitative Analysis and HCI

Applications in Smart Environments
Oscar Lopes, Miguel Reyes, Sergio Escalera, and Jordi Gonzàlez

Abstract—The use of depth maps is of increasing interest after
the advent of cheap multisensor devices based on structured
light, such as Kinect. In this context, there is a strong need
of powerful 3-D shape descriptors able to generate rich object
representations. Although several 3-D descriptors have been
already proposed in the literature, the research of discriminative
and computationally efficient descriptors is still an open issue.
In this paper, we propose a novel point cloud descriptor called
spherical blurred shape model (SBSM) that successfully encodes
the structure density and local variabilities of an object based on
shape voxel distances and a neighborhood propagation strategy.
The proposed SBSM is proven to be rotation and scale invariant,
robust to noise and occlusions, highly discriminative for mul-
tiple categories of complex objects like the human hand, and
computationally efficient since the SBSM complexity is linear to
the number of object voxels. Experimental evaluation in public
depth multiclass object data, 3-D facial expressions data, and
a novel hand poses data sets show significant performance im-
provements in relation to state-of-the-art approaches. Moreover,
the effectiveness of the proposal is also proved for object spotting
in 3-D scenes and for real-time automatic hand pose recognition
in human computer interaction scenarios.

Index Terms—Depth image analysis, human computer interac-
tion (HCI), image descriptors, object and pose recognition, smart
environments.

I. Introduction

COMPUTER vision research on 3-D point cloud analysis
has recently received a lot of attention because of the

availability of cheap multisensor devices based on structured
light, such as Kinect. This RGB-Depth camera is compact and
portable, so it can be easily installed in any environment to
understand 3-D scenes. This way there are multiple applica-
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tions which can benefit from the analysis of 3-D objects in
scenes [1], [17], [31], [33], [37]. However, recognition of 3-D
objects is still a challenging problem; in addition to the typical
issues tackled by 2-D object recognition approaches (such as
robustness to noise and occlusions, discriminate power, and
computational complexity), the captured sequences are usually
sampled at discrete points, so the finer details of the 3-D object
are usually lost.

Under these assumptions, there exists a strong interest for
designing new 3-D object descriptors [3], [18], [25], [34]. We
next revisit the literature by dividing the existing approaches
into those descriptors based on pure 3-D geometric prop-
erties and those extended from already existing 2-D object
descriptors.

Describing 3-D geometric information has been proven
to be useful when classifying everyday objects like cans,
glasses or doors, and for 3-D scene analysis. For example,
some approaches take into account the set of normals of
the surface defined by a given point and its neighbors [2],
[23]. As an example, the SHOT descriptor proposed in [35]
defines a surface representation based on point normals. It
is based on counting the points that fall into bins according
to a function of the angle between the normal at each point
within the corresponding part of the grid and the normal
at the feature point. However, in this case, the descriptor
is local and usually requires a previous keypoint detection
step, which complicates its adaptation to recognize nonrigid
shapes. The use of normals are useful to recognize 3-D objects
since they encode the implicit surface that neighboring points
define, although they depend on the density of the underlying
points and the smoothness of 3-D object surfaces to give
accurate results. Also, spherical harmonics [10] have been
used to design 3-D descriptors invariant to rotation [19] or
have been considered directly as features [29]. Conformal
factors have also been considered [6], measuring the relative
curvature of a vertex given the total curvature. The result can
be viewed as a vector which is not only invariant to rigid body
transformations, but also to changes in the pose. The point
feature histogram (PFH) local descriptor proposed in [28] is
used to recognize points conforming planes, cylinders, and
other geometric primitives. As an extension, the fast PFH
(FPFH) descriptor [26] is based on codifying angle relations
among 3-D points. FPFH optimizes the PFH computation to
make it usable in real-time 3-D registration applications. The
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viewpoint feature histogram (VFH) [27] combines an extended
version of FPFH with statistics between the viewpoint and the
surface normals on the 3-D object. Recently, Wohlkinger and
Vincze [36] have presented an ensemble of shape functions
(ESF) approach to describe 3-D objects, which benefits from
several combinations of histograms for codifying 3-D object
relations of angles, areas, and distances among points.

Unfortunately, the point clouds captured from Kinect-like
devices usually contain holes, since data are sampled at
discrete points. Consequently, in all the aforementioned ap-
proaches (which rely on an accurate computation of 3-D
geometric primitives) their performance is usually down-
graded. Alternatively, some recent 3-D regional descriptors
have been defined as an extension of classical derivative-
based 2-D features, such as HOG, SIFT, and SURF [20], [24].
For example, as a generalization of the 2-D shape context
descriptor presented in [5], Frome et al. [16] propose a 3-D
shape context descriptor which is compared with a classical
spin-image representation and a novel harmonic shape context
(HSC) descriptor for 3-D car model classification. Despite the
excellent results reported, these methods require the computa-
tion of a large number of shape points relations.

In this paper, we propose a novel 3-D object descrip-
tor, called spherical blurred shape model (SBSM). SBSM
is inspired in the blurred shape model (BSM) descriptor
presented in [15] and [14]. The novel SBSM descriptor
codifies the object structure density and local variabilities
in the 3-D space. Similar to the Zoning descriptor and 3-D
shape histograms of [4], SBSM bases on a linear computation
of spatial relation of shape points to 3-D bin centroid, but
including a propagation blurring degree to define a compact
and discriminative 3-D object descriptor. In this sense, Zoning
and the descriptor in [4] can be seen as an instance of the
proposed descriptor when the defined blurring degree is null.
As it is reported in the results, when increasing the blurring
factor the overall classification rate of the system is improved.
In addition to provide a 3-D generalization of BSM, SBSM
introduces the following enhancements; 1) a 3-D spherical
grid which partitions the 3-D space into 3-D shape bins,
2) a 3-D Gaussian-based weight propagation schema control-
ling the blurring level based on shape voxel distances, and
3) a quaternion-based rotation strategy based on sphere axis
densities to define a 3-D rotation invariant descriptor. As a
result, the proposed SBSM is a global descriptor that encodes
the shape of an object, being rotation and scale invariant,
computationally efficient, and highly discriminative.

We evaluate the descriptor on public and novel 3-D object
and hand poses data set, showing significant performance im-
provements in comparison to the state-of-the-art approaches.
We also test the descriptor in front of deformation in depth
coordinates and noise point removal. As a result, we can
show that the SBSM copes with the noise and occlusions
typically present in the point clouds acquired by range scanner
sensors. Additionally, we show four real applications where
we apply the descriptor. In the first, we perform object
spotting in public 3-D scenes. The last three applications cor-
respond to human computer interaction (HCI) scenarios. In the
second, we present a real-time fully-automatic HCI system for

medical image volume navigation, segmenting human hands,
and classifying multiple hand poses using the proposed SBSM
descriptor. In the third, the same approach is applied in a mul-
ticamera setup to perform intelligent retail. Finally, we present
a prototype for intelligent navigation through a repository of
books in a living lab which may represent the library of the
future. Although pointing recognition and gaze tracking in
multicamera setups for HCI has been previously addressed
in [12] and [38], here, we show how complex multicamera
setups can be avoided and recognition for interaction can be
improved within different HCI application contexts using the
proposed approach.1

The rest of the paper is organized as follows. Section II
presents the SBSM descriptor. SBSM is evaluated and
compared to the state-of-the-art approaches in Section III.
Section IV presents four real applications that uses the pro-
posed descriptor, including 3-D object spotting in real scenes
and different HCI scenarios. Finally, Section V concludes
the paper.

II. Method

In this section, we present the novel SBSM to describe 3-D
objects.

A. Spherical Blurred Shape Model

The SBSM is inspired in 3-D grid approaches and in the
discriminative power of SIFT and HOG descriptors to codify
object information based on the distribution of object gradients
and orientations. However, instead of performing computation
of 3-D object derivatives, SBSM just requires the computation
of object shape voxel distances between neighbors in order
to codify the object structure density and local variabilities
in the 3-D space. As a result, SBSM is a computationally
efficient descriptor, with a complexity linear to the number
of object voxels O(|P |), with an upper bound of 27 · |P |
simple operations for a point cloud P of |P | shape points
(defined based on a 26-connectivity of regions in the 3-D space
of bins).

As in the case of 2-D and 3-D object descriptors, an initial
grid is fitted to contain the region of interest to describe. In
our case, to describe 3-D regions, a spherical grid contain-
ing a set of 3-D bins is defined, which contain the set of
voxels P of the point cloud to be described. Our description
methodology computes for each voxel P contained in the grid
a set of voxel-bin spatial relations that are included in a global
region descriptor. Next, we describe in detail each step of the
description procedure.

In the first step, a discrete spherical grid partitions the 3-D
space in a set of bins, as shown in Fig. 1(a). Let P = {pi|pi ∈
R3}, C, NL, Nθ , Nφ, R, and σ define the set of voxels of the
point cloud, point cloud centroid, number of layers, number
of angular divisions for θ, number of angular divisions for
φ, radius length, and sigma value for the gaussian distance

1We include as supplemental material the SBSM descriptor code, the novel
ASL 3-D hand poses data set, and a demonstration video with the descriptor
running real-time in different HCI scenarios.
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Fig. 1. Illustration of SBSM descriptor computation. (a) Sphere bins. (b) Example of neighbor bins. (c) and (d) Example of the estimation of two main
quaternion to rotate feature vector in the 3-D space.

metric, respectively. Some of these parameters are illustrated
in Fig. 1(b). Then, dR = R/NL, dθ = 2π/Nθ , and dφ = 2π/Nφ

are computed as the distance between consecutive layers and
the degrees in θ and φ polar coordinates between consecutive
sectors, respectively. Using this division, we next define the
set B of sphere bins b{i,j,k} as follows:

B = {b{0,0,0}, ..., b{i,j,k}, ..., b{NL−1,Nθ−1,Nφ−1}}
∀i ∈ {0, 1, ..., NL − 1}∀j ∈ {0, 1, ..., Nθ − 1},
∀k ∈ {0, 1, ..., Nφ − 1} (1)

where bin b{i,j,k} is the 3-D bin defined as the cartesian product
of intervals [i · dR, (i + 1) · dR), [j · dθ, (j + 1) · dθ), and [k ·
dφ, (k + 1) · dφ) in relation to the center of the spherical grid,
θ, and φ, respectively. This way B defines a partition in R3

of the object of interest. Then, the centroid coordinates for all
each bin b∗

{i,j,k} ∈ B∗ are computed as follows:

b∗
{i,j,k} =

(
i · dR +

dR

2
, j · dθ +

dθ

2
, k · dφ +

dφ

2

)

∀i ∈ {0, 1, ..., NL − 1}, ∀j ∈ {0, 1, ..., Nθ − 1}
∀k ∈ {0, 1, ..., Nφ − 1}. (2)

An example of some 3-D bin neighbors of the spherical
descriptor is shown in Fig. 1(b). Once the 3-D spatial bins are
defined, the SBSM feature vector is initialized as

Wi = 0, ∀i ∈ {1, 2, ..., NL · Nθ · Nφ}. (3)

Subsequently, for each voxel in the point cloud pz ∈
{P |P ⊂ B}, the distance of that voxel to its neighbor bins
is estimated based on a Gaussian distance metric, and the
normalized weights are added to the corresponding descriptor
bin locations. For this task, let bz = b{i,j,k}|pz ⊂ b{i,j,k} be
the bin containing voxel pz. First, the lists containing bin
weights and index bins for pz are initialized to W∗ = {0}
and I∗ = {{i, j, k}}, respectively. Then, the iterative procedure
updates W∗ and I∗ for each b{i,j,k} ∈ N(bz), where N(bz) is
the set of neighbors bins of bz in a 27-neighborhood for inner
sphere bins and 18-neighborhood for external sphere surface
bins (including the reference bin). So the list of weights is
updated as

W∗ = W∗ ∪
{

e− ||pz−b∗
{i,j,k} ||

R·σ

}
(4)

and the list of indexes as

I∗ = I∗ ∪ {{i, j, k}}. (5)

As a result, the normalized weights for pz are added to its
corresponding positions of W as follows:

WI∗
i

= WI∗
i

+
W∗

i∑|W∗|
j=1 W∗

j

, ∀i ∈ {1, 2, .., |I∗|}. (6)

In this way, a new shape point of the point cloud will
include a weight to its belonging bin centroid and neighbor
centroid based on a Gaussian function of the distance and a
blurring level defined by σ. This values defines the degree of
influence of each neighbor bin for each point cloud voxel.
Note that when σ parameter is set to zero, the descriptor
is equivalent to a dense sampling of the point cloud as in
the classical state-of-the-art Zoning descriptor, but defined
in the 3-D space [14]. It is important to remark that the
voxels that are not contained within the spherical grid bins
are not considered in the descriptor computation. On the other
hand, the voxels that intersect with the spherical surface are c
onsidered as inner voxels and thus, considered in the descriptor
estimation. Fig. 2 shows an example of an hypothetical sphere
slice for φ = k and the analysis of a point cloud voxel to update
the SBSM descriptor.

Once the procedure is repeated for all points pz ∈ P , the
final feature vector W is normalized as follows:

Wi =
Wi

NL·Nθ ·Nφ∑
j=1

Wj

, ∀i ∈ {1, 2, .., NL · Nθ · Nφ}. (7)

Given that all the voxels within the point cloud where
the descriptor is computed contribute with the same cost and
that the final vector is normalized, it becomes scale invariant.
Thus, if different instances of a 3-D object category are fitted
with the spherical descriptor, even with different sizes, all the
descriptors are comparable and can be trained with the same
classifier.

B. 3-D Rotation Invariant SBSM

Once SBSM is computed based on the predefined number
of layers, bin orientations, and σ value for the Gaussian
function, the descriptor is able to encode the local density and
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Fig. 2. Example of point cloud voxel for an hypothetical sphere slice for
φ = k. Voxels of the point cloud visible on that slice are shown as red
dots. An example of a voxel estimation pz is shown in green. For this
point, neighbor bins centroids are shown as black dots. For each of these
relations (note that in the 3-D space a total of 27 relations will be computed),
equation 4 is computed, and the estimated value is added to descriptor position
corresponding to its corresponding bin.

Fig. 3. (a) Initial hand point cloud and computed center. (b) Sphere including
a point cloud corresponding to a 3-D hand pose. (c) Same sphere where SBSM
descriptor has been computed. The density of the green dots represents the
centroid bin values, and the whole descriptor has been rotated based on the
quaternion codified by two main descriptor axis densities. (d) Alternative view
of the computed SBSM descriptor.

spatial relations of 3-D shape points for a particular granularity
degree. Rotation invariance is achieved by considering the
main spherical axis densities to compute the main vector
orientations in quaternion coordinates as a reference axis that
rotates feature vector bins. As a result, this feature vector
reordering step makes the descriptor rotation invariant for
similar 3-D objects.

The use of unit quaternion instead of rotation matrices
provides a fast computation for rotation invariance, and at
the same time, it is simpler to enforce that quaternions
have unit magnitude than constrain rotation matrices to be
orthogonal [32]. The procedure is detailed next.

First, we compute the density of the descriptor for each axis
defined by the angles θ and φ as follows:

f (θ, φ) =
NL∑
r=1

W{r,θ,φ} (8)

and the two maximum axis densities are found

−→
T 1 = arg max

θ,φ
f (θ, φ), −→T 2 = arg max

θ,φ\−→T 1

f (θ, φ). (9)

Back to Cartesian coordinates, we compute the component
of −→

T 2 vertical to −→
T 1 by projecting −→

T 2 onto the plane
perpendicular to −→

T 1 as follows:
−→
T 2yz = −→

T 2 − −→
T T

1
−→
T 2

−→
T 1. (10)

Subsequently, we compute the rotation that aligns the axis−→
T 1, −→

T 2 with âx and ây, respectively. Where âx = [100]T

and ây = [010]T . The rotation quaternion q can be computed
as the combination of two quaternions q1 and q2, so that q =
q2q1, where q1 rotates −→

T 1 to âx and q2 aligns −→
T 2 with ây

[Fig. 1(d)].
Finally, the values of the bin locations are rotated based on

the quaternion q, such that each bin b∗r
i,j,k ∈ B∗ is computed

as

b∗r
i,j,k = qb∗

i,j,kq
∗ (11)

using the Hamilton product, where q∗ is the conjugate of the
quaternion q. Abusing of notation, b∗ and b∗r also denote
the corresponding pure quaternion to each bin. So, we take
advantage of this rotation order to obtain the rotation invariant
feature vector Wr

{i,j,k} = W{i,j,k}.
An example of the two main quaternions for an hypothet-

ical spherical toy problem is shown in Fig. 1(c) and (d),
respectively. In Fig. 3(a), a real example of a 3-D hand pose
is shown. Fig. 3(b) shows the centered point cloud within
the 3-D correlogram containing SBSM bins. The result after
computing the SBSM descriptor from hand point cloud and
performing rotation invariance is shown in Fig. 3(c) and (d)
for two different points of view.

III. Quantitative Analysis of SBSM

In order to present the results, we first describe the training
data and settings of the experiments.

A. Data Sets

We test our methodology on three data sets; a public 3-D
object category data set, a new 3-D hand pose data set, and a
public subject identification data set.

1) RGB-D Object Data Set: The RGB-D Object data set
is a large collection of 300 common household objects [21].
All these objects are organized into 51 categories arranged
using WordNet hypernym-hyponym relationships (similar to
ImageNet). This data set was recorded using a Kinect style
3-D camera that recorded a set of synchronized and aligned
640×480 RGB-D images at 30 Hz. Each object was placed
on a turntable, and the video sequences were captured for a
single, full rotation. For each object, three video sequences
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Fig. 4. RGB-Depth object data set category samples [21].

Fig. 5. American sign language data set categories.

were recorded with the camera mounted at different heights
so that the object could be viewed from different angles with
respect to the horizon. Example of segmented objects are
shown in Fig. 4.

2) American Signal Language Data Set: We have recorded
a novel 3-D hand poses data set based on the American sign
language vocabulary. The data set is composed of 23 categories
with around 47K instances of both hands. The Kinect device
was used to extract the hands and their point clouds data using
standard segmentation and detection algorithms. Also, both
hands were captured not only considering a frontal view but
also including variabilities in terms of scale, hand orientation,
and finger joint articulations. This way, the complexity and
variability of the overall data set was enriched. Examples of
hand categories are shown in Fig. 5.2

3) Bosphorus 3-D Face Expression Data Set: The Bospho-
rus 3-D faces data set [30] contains several users performing
nine natural facial expressions. From the Bosphorus face
dataset it was considered a subset of 21 individuals, including
1039 samples. For each individual, the original structure of
the dataset was kept, and all the corresponding nine facial
expressions were considered. Each sample of the original
Bosphorus dataset is composed by roughly 45000 points. For
performance issues, it was performed a down-sampling using a
Voxel grid filter, obtaining samples comprising approximately
9 000 points (some examples of the data set and the computed
point clouds are shown in Fig. 6).

2Data set included as supplemental material (∼1Gb).

B. Settings and Evaluation Metrics

A multiclass classifier is trained using the proposed SBSM
descriptor. Specifically, feature vectors are trained in a one-
versus-one SVM classifier using a RBF kernel, and optimizing
the parameters C and γ by means of cross-validation using
LibSVM [11]. SBSM descriptor size was experimentally set
to NL = 8, Nθ = 8, Nφ = 8 for all the experiments, with
a total descriptor length of 512. 3 We compare the SBSM
descriptor with different state-of-the-art methods on different
experiments [7], [8], [21], [22]. We also include in the compar-
ative the VFH [27] and ESF [36] descriptors by also training
the feature vectors with one-versus-one SVM classifier using
a RBF kernel and optimizing the parameters as in the case of
SBSM. VFH and ESF have been selected since they are recent,
representative, and robust well-known descriptors for shape
estimation and codification of normal vectors distribution.

We validate the object classification experiments by means
of recognition rate applying stratified ten-fold cross-validation
and estimating the confidence interval with a two-tailed t-test.
We also test and compare the descriptors against depth distor-
tions and noisy data to compute their statistical significance
based on Friedman and Nemenyi statistics [13].

C. Experiments

We next present the multiclass 3-D object categorization
performance using SBSM in the RGB-D object, sign language,
and 3-D facial expression data sets. Once we demonstrate
the performance of the proposed descriptor, we test it against
different 3-D object distortions.

1) Analysis of Classification Performance: For the RGB-D
object data set, we use the turntable data for both training and
evaluation, thus classifying 51 different 3-D object categories
using depth information only. For the object recognition exper-
iments on cropped images, we apply a leave-one-out strategy
as described in [21]. For comparison with the state-of-the-art,
we compare our SBSM performance with the previous results
provided on the same data set using the same data partitions
for evaluation [7], [8], [21], [22] and ESF [36] and VFH [27]
descriptors, as shown in Table I.

Subsequently, we show the importance of the weight prop-
agation strategy in the SBSM descriptor by setting σ = 1 and
σ = 0. These two values define the presence or absence of
the propagation step, respectively. 4 Based on the mean data
set samples volume radius length, we set R = 0.15. Results
reported in Table I show that the SBSM descriptor clearly
outperforms previous state-of-the-art results on this data set.
In particular, it is concluded that using neighbor propagation,
the performance improves by more than 16% the best result
reported in [8] for this data set. This experiment shows that
when a neighboring measure of the shape point is taken into
account to update neighbor bins, the local variations of shape
objects are better learnt by the classifier. Consequently, the
intraclass variability is reduced without the need of increasing
the computational complexity of the descriptor.

3The SBSM descriptor code is included as supplemental material.
4We also tested for different values of σ and experimentally found σ = 1

to obtain the best results.
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Fig. 6. Bosphorus 3-D face expression data set. Top: RGB samples. Bottom: corresponding point cloud samples.

TABLE I

Classification Performance on the RGB-Depth Data Set [21]

TABLE II

Classification Performance and Confidence Interval of the

Different Descriptors on the Novel American Sign Language

Data Set

We also show the performance of the VFH, ESF, and SBSM
on the novel ASL data set. The final performance is obtained
by applying a stratified ten-fold cross-validation and testing
the confidence interval with a two-tailed t-test. In this case,
the spherical grid size is fitted to the minimum spherical grid
size containing all the voxels for each data sample. Results
are shown in Table II. One can see how our descriptor obtains
better performances than using VFH or ESF, and that the best
performance is achieved when weight propagation is taken into
account.

Finally, we also compare the different descriptors on the
public Bosphorus 3-D face expression data set. In this exper-
iment, we perform user recognition from the set of 21 users
taking into account the nine different facial expressions as well
as the different head poses present in the data set. Applying
stratified 5-fold cross-validation, the recognition rate results
for ESF, VFH, and SBSM are shown in Table III. One can

TABLE III

Classification Performance and Confidence Interval of the

Different Descriptors on the Public Bosphorus 3-D Face

Expression Data Set

see that the proposed descriptor performs substantially better
than ESF and VFH counterparts. In addition, it is also shown
that considering the blurring degree to be 1 the performance of
the SBSM descriptor is improved. Looking at the confidence
intervals of Tables II and III, one can also see that SBSM
variance in the recognition rate is smaller in comparison to
the rest of methods, despite VFH and ESF which are kept
small for ASL data set.

2) Robustness to Noise and Deformations: In this section,
we demonstrate the robustness of the SBSM when describing
and classifying 3-D objects that suffer from noisy captures and
deformations due to different ambient conditions or deviations
captured by the sensor, as well as partial occlusions. To achieve
this goal, we designed two different settings. In the first one,
we analyze the robustness of the descriptor when objects suffer
from deviations in the depth dimension in a range from 0
up to 20 mm in both directions of the z-axis [Fig. 7(a)–(c)].
This distortion simulates non-accurate reading errors of the
sensors because of distance precision and ambient conditions.
In the second test we progressively remove shape points from
the point cloud from 0 up to 50% of the voxels for each
object sample [Fig. 7(d)–(f)]. This distortion simulated local
occlusions and reading errors that may produce the removal
of some voxel points of the region of interest. Thus, in the
depth distortion, the resulting point cloud has the same number
of available voxels, though they are distorted in the z-axis,
meanwhile in the removing distortion, the resulting point cloud
contains less voxel points based on the distortion percentage.
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Fig. 7. (a) Input point cloud for a hand pose instance. (b) Example of
distortion in the depth axis for (a). (c) For this distortion each voxel is
randomly displaced in the z-axis with a maximum distortion of 20 mm in
both directions of the axis. (d) Input point cloud for a hand pose instance.
(e) Example of cloud removal distortion for (d). (f) For this distortion, each
voxel of the original point cloud (top) is removed based on a probability value
defined by the distortion (bottom).

Fig. 8. Mean confusion matrix of the ASL data set using the SBSM
descriptor σ = 1. The five most confused categories are displayed.

We fixed this range of distortions to be representative of the
maximum distortion that we can find on recorded samples in
real scenarios under different conditions and errors produced
by different types of depth sensors.

In order to perform these analysis, we selected those five
categories from the novel 3-D human poses data set that
achieved the highest confusion in the previous section. The
chosen hand categories are displayed in the confusion matrix
of Fig. 8. In this image the confusion matrix is the mean
computed for SBSM on that particular data set.

We show the recognition rate results when applying distor-
tion in the depth axis in Fig. 9: for each degree of distortion,
the mean recognition rate and confidence interval for 10 runs
of ESF, VFH, and SBSM σ = 1 descriptors are computed.
At each iteration, the percentage of distortion is randomly
computed for each object voxel within different depth ranges

Fig. 9. Classification performance of different classification strategies under
different degrees of distortion in the depth axis on the five selected categories
in the ASL data set.

Fig. 10. Classification performance of different classification strategies un-
der different degrees of cloud removal on the five selected categories in the
ASL data set.

TABLE IV

Mean Rank for the Compared Descriptors Considering All the

Experiments

in millimeters. The maximum value was set to 20 mm since it
is hard to obtain higher deformations produced by the sensor.
As expected, the recognition rate for all three descriptors
decrease w.r.t. the depth distortion. One can see that for all
the different tests of this experiments and descriptors, SBSM
still obtains the best performance and VFH suffers the worst
decrease in recognition (around 4%).

In Fig. 10, we show the results when applying cloud
removal. For each percentage of removed voxels, the mean
recognition rate and confidence internal are shown. At each
iteration, a percentage of distortion is randomly generated,
and different voxels are removed at each time satisfying the
percentage of information to be removed. One can see that the
general performance ranking in recognition is SBSM, VFH
and finally ESF descriptor. Moreover, independently of the
percentage of removed number of shape points, the recognition
rate for the three methods is maintained in a small range of
performance.

3) Statistical Significance: In order to compare the per-
formances computed by the different experiments considered,
Table IV shows the mean rank for each descriptor considering
15 different experiments (three data sets and 6×2 distortion
experiments). The rankings are obtained by estimating each
particular ranking r

j
i for each data set and experiment i and

each descriptor strategy j, and computing the mean ranking R

for each configuration as Rj = 1
J

∑
i r

j
i , where J is the total

number of tests.
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Fig. 11. Object spotting in 3-D scenes. (a) Example of RGB image of a multimodal Berkeley data set. (b) Depth image of the same scene. (c) Computed
point cloud from the scene. (d) Bowl spotting using SBSM (first positive 3-D object prediction is shown based on minimum Euclidean distance).

Fig. 12. (a) Original 3-D Heart volume of http://thefree3dmodels.com. Automatic interaction with the volume with (b) translation, (c) rotation and (d) zoom
manipulation.

In order to reject the null hypothesis, i.e., measured ranks
may not differ from the mean rank and these may be also
affected by randomness in the results, we use the Friedman
test [13]. The Friedman statistic value is computed as follows:

X2
F =

12J

K(K + 1)

⎡
⎣∑

j

R2
j − K(K + 1)2

4

⎤
⎦ . (12)

In our case, since K = 3 descriptors are compared, X2
F =

25.74. This value is undesirable conservative, so Iman and
Davenport proposed a corrected statistic instead

FF =
(J − 1)X2

F

J(K − 1) − X2
F

. (13)

Applying this correction, we obtain FF = 84.76. With K=3
methods and J=15 experiments, FF is distributed according
to the F distribution with (K−1) = 2 and (K−1) · (J −1)=28
degrees of freedom. The critical value of F (2, 28) for 0.05 is
3.34. As the value of FF = 84.76 is clearly higher than 3.34,
we can reject the null hypothesis.

Once we have checked for the nonrandomness of the results,
we perform a post ad-hoc test to check if one of the config-
urations could be statistically singled out. For this purpose,
we use the Nemenyi test, in which the Nemenyi statistic is
obtained as follows:

CD = qα

√
K(K + 1)

6J
. (14)

In our case with K = 3 description strategies to compare
and J = 15 tests, the critical value for a 95% of confidence
(qα = 2.35) is CD = 0.85. As the ranking of the proposed
SBSM approach does not intersect with any rank for that value
of the CD, we can state that for the reported experiments our
results are statistically significant with respect to VFH and

Fig. 13. Mean relative execution time in the range [0, ..., 1] among ESF,
VFH, and SBSM descriptors. The relative execution time value is computed
in proportion to the slowest method (set to value 1).

ESF results. In the case of VFH and ESF descriptors, since
their rank intersect with the CD value we can not state that
there exists statistical differences between both strategies.

Finally, in order to compare the execution times of the con-
sidered ESF, VHF, and SBSM descriptors, Fig. 13 shows their
mean relative execution time considering all the performed
experiments. In order to compare the description complexity,
the relative execution times only considers the description step,
without taking into account the learning strategy. One can see
that the proposed SBSM descriptor does not only obtain the
best recognition rates, but also is more efficiently computed
than the methods in the comparative. In particular, SBSM is
more than four times faster in comparison to VFH and more
than two times faster in comparison to ESF.

IV. Qualitative Analysis of SBSM

In this section, we present four real applications that use the
proposed SBSM descriptor, object spotting in 3-D scenes and
three fully-functional applications for a real-time HCI: 3-D



IE
EE

Pr
oo

f

LOPES et al.: SPHERICAL BLURRED SHAPE MODEL FOR 3-D OBJECT AND POSE RECOGNITION 9

Fig. 14. HCI hand poses data set categories.

medical volume navigation, intelligent retail, and living labs;
the library of the future. For this task, an additional novel set of
hand poses for the HCI navigation applications was designed.

A. Object Spotting in 3-D Scenes

After showing the discriminative power and robustness of
our proposed descriptor, we next illustrate the generality of
SBSM when applied in real scenarios. To achieve this end, we
consider a single scene obtained in the public 3-D Berkeley
data set.5 The public RGB and corresponding depth map
for the selected 3-D scene are shown in Fig. 11(a) and (b),
respectively. Using these data, we computed the point cloud
scene shown in Fig. 11(c). In this particular case, we selected
one bowl object to describe it and perform object spotting
within the whole scene. We manually selected one bowl from a
training image, computed its SBSM descriptor, and performed
sliding window search over the three dimensions of the point
cloud shown Fig. 11(c) for different scale hypotheses of the
target object. SBSM descriptor size was set to NL = 8, Nθ = 8,

Nφ = 8, and σ = 1, with a total descriptor length of 512. The
radius of the sphere is set in the range 5 to 20 cm, with an
increment of 1 cm, and two voxel displacement increments
in the three axis among iterations of the sliding windows
approach. The first matched region of interest based on the best
score obtained by the minimum Euclidean distance among the
computed descriptors in the scene is shown in Fig. 11(d). Note
the accurate fitting of the captured 3-D bowl object in the test
3-D scene. Moreover, the system spends 13 s in a conventional
2.7 GHz 2Core 4 Gb RAM computer to run this experiment
for the tested scene. Given the performed exhaustive search
and that we ran the experiment iteratively without any kind
of parallelism, this experiment show the generality of the
descriptor to be applied for scene analysis purposes.

B. HCI Application for Medical Navigation

Given the high discriminative power and fast computation
of the proposed descriptor in comparison to the state-of-the-
art approaches, we also designed different fully-functional
applications to take benefit from it. The first application is an
automatic HCI system for medical volume navigation, which
is able to detect user, hands, poses, and gestures, manipulating
a medical volume of interest.

The application was developed based upon the MS Kinect
SDK to capture the RGB-D data stream from the depth sensor.
The depth maps were converted into world coordinates project-
ing the registered 3-D image by means of pin-hole model and

5http://kinectdata.com/

intrinsic camera parameters. Then, point cloud library (PCL) is
used to work with the point cloud, and VTK framework is used
for medical image visualization purposes. The hand detection
algorithm takes advantage of the Body Pose Skeleton to find
the hand wrist joints. Using this information, a fixed radius of
interest of 15 cm centered in each joint is defined to segment
hand point clouds. The usage of the skeleton also enables us
to define a heuristic to discard false positive hand poses in
the cases that the hands are near the body, or below the waist
line. In a later step, the detected hand point clouds within the
sphere are used to refine sphere center by computing center
of mass and relocating sphere center, and points are classified
using the proposed SBSM methodology. A reduced data set
of 18K samples for the six classes shown in Fig. 14 were
recorded and trained with SBSM and SVM for this purpose.

The detected pose label is then combined with the hand
movement (3-D object displacements in real coordinates), and
used as input of a hidden Markov model to obtain a hand
gesture classification. The system is able to recognize and
control zoom, rotation, and translation operations. In the user
interface, the user can visualize its detected hand point clouds
in real-time, having a feed-back with the displayed prototypes
of both recognized hand poses. Also, the user can visualize
the volumetric medical model and the real-time interactions
caused by the hand gestures. The overall application enables a
powerful and automatic volumetric medical model interaction
and visualization. Fig. 12 shows some examples of detected
poses, gestures, interactions, and visualizations on a public
3-D heart volume.6

C. HCI Application for Intelligent Retail

Based on the same procedure for hand pose recognition
than in the medical volume navigation approach, we designed
a fully-functional application for intelligent retail. In this
scenario, hands are tracked in a multidevice setup and two
main poses (open and close hand) are recognized. The user
can automatically interact with a set of products in an interface
designed with the Unity engine7 so that information about
the product and manipulation by 3-D rotation based on hand
trajectories on two main object axis can be performed. In this
scenario, given that we work with bigger displays and only one
Kinect may not cover most part of the pointcloud related to
one hand, we included an extra Kinects in order to recover
voxels of the same hand from near complementary views
and reconstruct a new hand with more voxel information.
Thanks to the fusion of two views, more information about
the tracked hand is available, and thus we make the descriptor
more discriminative to classify multiple hand poses useful for
interaction purposes.

In order to achieve registration of two Kinect cameras, we
have mounted two cameras in a rigid setup with a baseline
of 1.30 m and an angle of 18 degrees. In this way we
can acquire depth images and convert each pixel to real-
world coordinates by applying the intrinsic parameters of the
cameras. In order to complete the registration, we need the

6See the supplemental material video for a system demonstration.
7http://unity3-D.com/

http://kinectdata.com/
http://unity3D.com/
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Fig. 15. HCI for retail. (a) Designed 3-D retail scenario using Unity engine. (b) User interaction with the scenario. (c) User manipulation by 3-D rotation.

Fig. 16. (e) Hand reconstruction using (a) and (b) two Kinect views (RGB) and (c) and (d) point clouds.

Fig. 17. (a) Different HCI applications designed to implement within the Living Lab project. (b) Real scenario simulating the setup of the implementation
of the prototype.

extrinsic parameters between both depth cameras, represented
by a rotation matrix and a translation vector that allows us
to convert Kinect2 depth points to Kinect1 depth coordinate
system. Intrinsic and extrinsic parameters can be obtained by
doing a stereo calibration. In our case, we use the Camera
Calibration Toolbox [9], that gives us a rotation vector related
through the rodrigues formula and a translation vector. For this
procedure we only need few images from both depth cameras
looking at the same planar checker-board pattern. Once the
calibration is performed we can related Kinect1 and Kinect2
depth points as follows:

Preference = RP + T

being Kinect1 be the camera reference, Preference =
(Xref ,Yref ,Zref ) a point in the camera reference coordinate
system, R the rotation matrix obtained in calibration step, P
a point of the Kinect2, and T = (X ,Y,Z) the translation
vector obtained in calibration step.

Fig. 16 shows an example of a hand reconstruction by two
different views. From the 3-D reconstructed hand, SBSM is
computed, and the automatic interactive process is performed.

The designed 3-D scenario and real-time use case scenarios
are shown in Fig. 15. In this case we found that increasing
the point of view of the hand because of the use of two
cameras allowed for a more natural movements of the user
while keeping the recognition rate of the system.8

D. HCI Application in Living Labs

For this last scenario, we designed a first prototype for
intelligent interaction in a virtual repository of books within
a Smart Environment or Libing Lab corresponding to a new
generation of libraries (VL3 6Volpelleres Library Living Labs’
project). For this scenario, a one Kinect camera setup was
designed, and the same recognition procedure than in the
retail scenario was performed. The 3-D scenario was designed
with the Unity engine. The real environment to implement
the prototype is shown in Fig. 17, which is located in the
region of Volpelleres in Barcelona. In this prototype, the user
is able to navigate through a catalogue of books and read the
selected ones. The designed 3-D scenario and real-time use
case scenarios are shown in Fig. 18.

8See the supplemental material video for a system demonstration.
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Fig. 18. HCI Living lab prototype use case scenarios. (a) Designed 3-D Unity library environments. (b) Book appears on the scene and the user can open
the hand and move through different books. (c) When close hand pose is performed, the book is selected and opened for reading.

Finally, it is important to remark that the Kinect acquired
a variable frame rate between the range 20–30 FPS. Our
procedure works real time for all the presented HCI applica-
tions, and thus, we are able to process (segment, describe, and
classify segmented point clouds from the region of interest)
for all the frames acquired by the Kinect device.

V. Conclusion

We presented the SBSM descriptor. SBSM is computa-
tionally efficient and highly discriminative. The computed
descriptor codifies the spatial relations among object voxels
and spherical bins given a granularity degree and a blur-
ring factor defined by a Gaussian-based weight propagation
function. The descriptor is rotation invariant by relocating
descriptor bins using the two main quaternion based on the
two major 3-D descriptor axis densities. In our experimental
evaluation, we found that our methodology outperformed state-
of-the-art results up to 16.7% on public depth multiclass
object recognition data, also obtaining significant performance
improvements in other two data sets; a novel ASL multiclass
data set and a public 3-D face expression data set. Moreover,
we tested the descriptor against different 3-D data distortions,
obtaining high recognition rates and significant performance
improvements in relation to standard approaches.

We also tested the descriptors in four real scenarios: object
spotting in 3-D scenes, within a probabilistic gesture recogni-
tion pipeline for real-time HCI in medical volume navigation
scenarios, HCI for intelligent retail in a multicamera setup,
and within a prototype for catalogue navigation in a living
lab library, showing the high discriminative power, efficiency
and generality of the proposed descriptor to be applied in new
generation of HCI applications and smart environments.
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Spherical Blurred Shape Model for 3-D Object and
Pose Recognition: Quantitative Analysis and HCI

Applications in Smart Environments
Oscar Lopes, Miguel Reyes, Sergio Escalera, and Jordi Gonzàlez

Abstract—The use of depth maps is of increasing interest after
the advent of cheap multisensor devices based on structured
light, such as Kinect. In this context, there is a strong need
of powerful 3-D shape descriptors able to generate rich object
representations. Although several 3-D descriptors have been
already proposed in the literature, the research of discriminative
and computationally efficient descriptors is still an open issue.
In this paper, we propose a novel point cloud descriptor called
spherical blurred shape model (SBSM) that successfully encodes
the structure density and local variabilities of an object based on
shape voxel distances and a neighborhood propagation strategy.
The proposed SBSM is proven to be rotation and scale invariant,
robust to noise and occlusions, highly discriminative for mul-
tiple categories of complex objects like the human hand, and
computationally efficient since the SBSM complexity is linear to
the number of object voxels. Experimental evaluation in public
depth multiclass object data, 3-D facial expressions data, and
a novel hand poses data sets show significant performance im-
provements in relation to state-of-the-art approaches. Moreover,
the effectiveness of the proposal is also proved for object spotting
in 3-D scenes and for real-time automatic hand pose recognition
in human computer interaction scenarios.

Index Terms—Depth image analysis, human computer interac-
tion (HCI), image descriptors, object and pose recognition, smart
environments.

I. Introduction

COMPUTER vision research on 3-D point cloud analysis
has recently received a lot of attention because of the

availability of cheap multisensor devices based on structured
light, such as Kinect. This RGB-Depth camera is compact and
portable, so it can be easily installed in any environment to
understand 3-D scenes. This way there are multiple applica-
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tions which can benefit from the analysis of 3-D objects in
scenes [1], [17], [31], [33], [37]. However, recognition of 3-D
objects is still a challenging problem; in addition to the typical
issues tackled by 2-D object recognition approaches (such as
robustness to noise and occlusions, discriminate power, and
computational complexity), the captured sequences are usually
sampled at discrete points, so the finer details of the 3-D object
are usually lost.

Under these assumptions, there exists a strong interest for
designing new 3-D object descriptors [3], [18], [25], [34]. We
next revisit the literature by dividing the existing approaches
into those descriptors based on pure 3-D geometric prop-
erties and those extended from already existing 2-D object
descriptors.

Describing 3-D geometric information has been proven
to be useful when classifying everyday objects like cans,
glasses or doors, and for 3-D scene analysis. For example,
some approaches take into account the set of normals of
the surface defined by a given point and its neighbors [2],
[23]. As an example, the SHOT descriptor proposed in [35]
defines a surface representation based on point normals. It
is based on counting the points that fall into bins according
to a function of the angle between the normal at each point
within the corresponding part of the grid and the normal
at the feature point. However, in this case, the descriptor
is local and usually requires a previous keypoint detection
step, which complicates its adaptation to recognize nonrigid
shapes. The use of normals are useful to recognize 3-D objects
since they encode the implicit surface that neighboring points
define, although they depend on the density of the underlying
points and the smoothness of 3-D object surfaces to give
accurate results. Also, spherical harmonics [10] have been
used to design 3-D descriptors invariant to rotation [19] or
have been considered directly as features [29]. Conformal
factors have also been considered [6], measuring the relative
curvature of a vertex given the total curvature. The result can
be viewed as a vector which is not only invariant to rigid body
transformations, but also to changes in the pose. The point
feature histogram (PFH) local descriptor proposed in [28] is
used to recognize points conforming planes, cylinders, and
other geometric primitives. As an extension, the fast PFH
(FPFH) descriptor [26] is based on codifying angle relations
among 3-D points. FPFH optimizes the PFH computation to
make it usable in real-time 3-D registration applications. The

2168-2267 c© 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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viewpoint feature histogram (VFH) [27] combines an extended
version of FPFH with statistics between the viewpoint and the
surface normals on the 3-D object. Recently, Wohlkinger and
Vincze [36] have presented an ensemble of shape functions
(ESF) approach to describe 3-D objects, which benefits from
several combinations of histograms for codifying 3-D object
relations of angles, areas, and distances among points.

Unfortunately, the point clouds captured from Kinect-like
devices usually contain holes, since data are sampled at
discrete points. Consequently, in all the aforementioned ap-
proaches (which rely on an accurate computation of 3-D
geometric primitives) their performance is usually down-
graded. Alternatively, some recent 3-D regional descriptors
have been defined as an extension of classical derivative-
based 2-D features, such as HOG, SIFT, and SURF [20], [24].
For example, as a generalization of the 2-D shape context
descriptor presented in [5], Frome et al. [16] propose a 3-D
shape context descriptor which is compared with a classical
spin-image representation and a novel harmonic shape context
(HSC) descriptor for 3-D car model classification. Despite the
excellent results reported, these methods require the computa-
tion of a large number of shape points relations.

In this paper, we propose a novel 3-D object descrip-
tor, called spherical blurred shape model (SBSM). SBSM
is inspired in the blurred shape model (BSM) descriptor
presented in [15] and [14]. The novel SBSM descriptor
codifies the object structure density and local variabilities
in the 3-D space. Similar to the Zoning descriptor and 3-D
shape histograms of [4], SBSM bases on a linear computation
of spatial relation of shape points to 3-D bin centroid, but
including a propagation blurring degree to define a compact
and discriminative 3-D object descriptor. In this sense, Zoning
and the descriptor in [4] can be seen as an instance of the
proposed descriptor when the defined blurring degree is null.
As it is reported in the results, when increasing the blurring
factor the overall classification rate of the system is improved.
In addition to provide a 3-D generalization of BSM, SBSM
introduces the following enhancements; 1) a 3-D spherical
grid which partitions the 3-D space into 3-D shape bins,
2) a 3-D Gaussian-based weight propagation schema control-
ling the blurring level based on shape voxel distances, and
3) a quaternion-based rotation strategy based on sphere axis
densities to define a 3-D rotation invariant descriptor. As a
result, the proposed SBSM is a global descriptor that encodes
the shape of an object, being rotation and scale invariant,
computationally efficient, and highly discriminative.

We evaluate the descriptor on public and novel 3-D object
and hand poses data set, showing significant performance im-
provements in comparison to the state-of-the-art approaches.
We also test the descriptor in front of deformation in depth
coordinates and noise point removal. As a result, we can
show that the SBSM copes with the noise and occlusions
typically present in the point clouds acquired by range scanner
sensors. Additionally, we show four real applications where
we apply the descriptor. In the first, we perform object
spotting in public 3-D scenes. The last three applications cor-
respond to human computer interaction (HCI) scenarios. In the
second, we present a real-time fully-automatic HCI system for

medical image volume navigation, segmenting human hands,
and classifying multiple hand poses using the proposed SBSM
descriptor. In the third, the same approach is applied in a mul-
ticamera setup to perform intelligent retail. Finally, we present
a prototype for intelligent navigation through a repository of
books in a living lab which may represent the library of the
future. Although pointing recognition and gaze tracking in
multicamera setups for HCI has been previously addressed
in [12] and [38], here, we show how complex multicamera
setups can be avoided and recognition for interaction can be
improved within different HCI application contexts using the
proposed approach.1

The rest of the paper is organized as follows. Section II
presents the SBSM descriptor. SBSM is evaluated and
compared to the state-of-the-art approaches in Section III.
Section IV presents four real applications that uses the pro-
posed descriptor, including 3-D object spotting in real scenes
and different HCI scenarios. Finally, Section V concludes
the paper.

II. Method

In this section, we present the novel SBSM to describe 3-D
objects.

A. Spherical Blurred Shape Model

The SBSM is inspired in 3-D grid approaches and in the
discriminative power of SIFT and HOG descriptors to codify
object information based on the distribution of object gradients
and orientations. However, instead of performing computation
of 3-D object derivatives, SBSM just requires the computation
of object shape voxel distances between neighbors in order
to codify the object structure density and local variabilities
in the 3-D space. As a result, SBSM is a computationally
efficient descriptor, with a complexity linear to the number
of object voxels O(|P |), with an upper bound of 27 · |P |
simple operations for a point cloud P of |P | shape points
(defined based on a 26-connectivity of regions in the 3-D space
of bins).

As in the case of 2-D and 3-D object descriptors, an initial
grid is fitted to contain the region of interest to describe. In
our case, to describe 3-D regions, a spherical grid contain-
ing a set of 3-D bins is defined, which contain the set of
voxels P of the point cloud to be described. Our description
methodology computes for each voxel P contained in the grid
a set of voxel-bin spatial relations that are included in a global
region descriptor. Next, we describe in detail each step of the
description procedure.

In the first step, a discrete spherical grid partitions the 3-D
space in a set of bins, as shown in Fig. 1(a). Let P = {pi|pi ∈
R3}, C, NL, Nθ , Nφ, R, and σ define the set of voxels of the
point cloud, point cloud centroid, number of layers, number
of angular divisions for θ, number of angular divisions for
φ, radius length, and sigma value for the gaussian distance

1We include as supplemental material the SBSM descriptor code, the novel
ASL 3-D hand poses data set, and a demonstration video with the descriptor
running real-time in different HCI scenarios.
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Fig. 1. Illustration of SBSM descriptor computation. (a) Sphere bins. (b) Example of neighbor bins. (c) and (d) Example of the estimation of two main
quaternion to rotate feature vector in the 3-D space.

metric, respectively. Some of these parameters are illustrated
in Fig. 1(b). Then, dR = R/NL, dθ = 2π/Nθ , and dφ = 2π/Nφ

are computed as the distance between consecutive layers and
the degrees in θ and φ polar coordinates between consecutive
sectors, respectively. Using this division, we next define the
set B of sphere bins b{i,j,k} as follows:

B = {b{0,0,0}, ..., b{i,j,k}, ..., b{NL−1,Nθ−1,Nφ−1}}
∀i ∈ {0, 1, ..., NL − 1}∀j ∈ {0, 1, ..., Nθ − 1},
∀k ∈ {0, 1, ..., Nφ − 1} (1)

where bin b{i,j,k} is the 3-D bin defined as the cartesian product
of intervals [i · dR, (i + 1) · dR), [j · dθ, (j + 1) · dθ), and [k ·
dφ, (k + 1) · dφ) in relation to the center of the spherical grid,
θ, and φ, respectively. This way B defines a partition in R3

of the object of interest. Then, the centroid coordinates for all
each bin b∗

{i,j,k} ∈ B∗ are computed as follows:

b∗
{i,j,k} =

(
i · dR +

dR

2
, j · dθ +

dθ

2
, k · dφ +

dφ

2

)

∀i ∈ {0, 1, ..., NL − 1}, ∀j ∈ {0, 1, ..., Nθ − 1}
∀k ∈ {0, 1, ..., Nφ − 1}. (2)

An example of some 3-D bin neighbors of the spherical
descriptor is shown in Fig. 1(b). Once the 3-D spatial bins are
defined, the SBSM feature vector is initialized as

Wi = 0, ∀i ∈ {1, 2, ..., NL · Nθ · Nφ}. (3)

Subsequently, for each voxel in the point cloud pz ∈
{P |P ⊂ B}, the distance of that voxel to its neighbor bins
is estimated based on a Gaussian distance metric, and the
normalized weights are added to the corresponding descriptor
bin locations. For this task, let bz = b{i,j,k}|pz ⊂ b{i,j,k} be
the bin containing voxel pz. First, the lists containing bin
weights and index bins for pz are initialized to W∗ = {0}
and I∗ = {{i, j, k}}, respectively. Then, the iterative procedure
updates W∗ and I∗ for each b{i,j,k} ∈ N(bz), where N(bz) is
the set of neighbors bins of bz in a 27-neighborhood for inner
sphere bins and 18-neighborhood for external sphere surface
bins (including the reference bin). So the list of weights is
updated as

W∗ = W∗ ∪
{

e− ||pz−b∗
{i,j,k} ||

R·σ

}
(4)

and the list of indexes as

I∗ = I∗ ∪ {{i, j, k}}. (5)

As a result, the normalized weights for pz are added to its
corresponding positions of W as follows:

WI∗
i

= WI∗
i

+
W∗

i∑|W∗|
j=1 W∗

j

, ∀i ∈ {1, 2, .., |I∗|}. (6)

In this way, a new shape point of the point cloud will
include a weight to its belonging bin centroid and neighbor
centroid based on a Gaussian function of the distance and a
blurring level defined by σ. This values defines the degree of
influence of each neighbor bin for each point cloud voxel.
Note that when σ parameter is set to zero, the descriptor
is equivalent to a dense sampling of the point cloud as in
the classical state-of-the-art Zoning descriptor, but defined
in the 3-D space [14]. It is important to remark that the
voxels that are not contained within the spherical grid bins
are not considered in the descriptor computation. On the other
hand, the voxels that intersect with the spherical surface are c
onsidered as inner voxels and thus, considered in the descriptor
estimation. Fig. 2 shows an example of an hypothetical sphere
slice for φ = k and the analysis of a point cloud voxel to update
the SBSM descriptor.

Once the procedure is repeated for all points pz ∈ P , the
final feature vector W is normalized as follows:

Wi =
Wi

NL·Nθ ·Nφ∑
j=1

Wj

, ∀i ∈ {1, 2, .., NL · Nθ · Nφ}. (7)

Given that all the voxels within the point cloud where
the descriptor is computed contribute with the same cost and
that the final vector is normalized, it becomes scale invariant.
Thus, if different instances of a 3-D object category are fitted
with the spherical descriptor, even with different sizes, all the
descriptors are comparable and can be trained with the same
classifier.

B. 3-D Rotation Invariant SBSM

Once SBSM is computed based on the predefined number
of layers, bin orientations, and σ value for the Gaussian
function, the descriptor is able to encode the local density and
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Fig. 2. Example of point cloud voxel for an hypothetical sphere slice for
φ = k. Voxels of the point cloud visible on that slice are shown as red
dots. An example of a voxel estimation pz is shown in green. For this
point, neighbor bins centroids are shown as black dots. For each of these
relations (note that in the 3-D space a total of 27 relations will be computed),
equation 4 is computed, and the estimated value is added to descriptor position
corresponding to its corresponding bin.

Fig. 3. (a) Initial hand point cloud and computed center. (b) Sphere including
a point cloud corresponding to a 3-D hand pose. (c) Same sphere where SBSM
descriptor has been computed. The density of the green dots represents the
centroid bin values, and the whole descriptor has been rotated based on the
quaternion codified by two main descriptor axis densities. (d) Alternative view
of the computed SBSM descriptor.

spatial relations of 3-D shape points for a particular granularity
degree. Rotation invariance is achieved by considering the
main spherical axis densities to compute the main vector
orientations in quaternion coordinates as a reference axis that
rotates feature vector bins. As a result, this feature vector
reordering step makes the descriptor rotation invariant for
similar 3-D objects.

The use of unit quaternion instead of rotation matrices
provides a fast computation for rotation invariance, and at
the same time, it is simpler to enforce that quaternions
have unit magnitude than constrain rotation matrices to be
orthogonal [32]. The procedure is detailed next.

First, we compute the density of the descriptor for each axis
defined by the angles θ and φ as follows:

f (θ, φ) =
NL∑
r=1

W{r,θ,φ} (8)

and the two maximum axis densities are found

−→
T 1 = arg max

θ,φ
f (θ, φ), −→T 2 = arg max

θ,φ\−→T 1

f (θ, φ). (9)

Back to Cartesian coordinates, we compute the component
of −→

T 2 vertical to −→
T 1 by projecting −→

T 2 onto the plane
perpendicular to −→

T 1 as follows:
−→
T 2yz = −→

T 2 − −→
T T

1
−→
T 2

−→
T 1. (10)

Subsequently, we compute the rotation that aligns the axis−→
T 1, −→

T 2 with âx and ây, respectively. Where âx = [100]T

and ây = [010]T . The rotation quaternion q can be computed
as the combination of two quaternions q1 and q2, so that q =
q2q1, where q1 rotates −→

T 1 to âx and q2 aligns −→
T 2 with ây

[Fig. 1(d)].
Finally, the values of the bin locations are rotated based on

the quaternion q, such that each bin b∗r
i,j,k ∈ B∗ is computed

as

b∗r
i,j,k = qb∗

i,j,kq
∗ (11)

using the Hamilton product, where q∗ is the conjugate of the
quaternion q. Abusing of notation, b∗ and b∗r also denote
the corresponding pure quaternion to each bin. So, we take
advantage of this rotation order to obtain the rotation invariant
feature vector Wr

{i,j,k} = W{i,j,k}.
An example of the two main quaternions for an hypothet-

ical spherical toy problem is shown in Fig. 1(c) and (d),
respectively. In Fig. 3(a), a real example of a 3-D hand pose
is shown. Fig. 3(b) shows the centered point cloud within
the 3-D correlogram containing SBSM bins. The result after
computing the SBSM descriptor from hand point cloud and
performing rotation invariance is shown in Fig. 3(c) and (d)
for two different points of view.

III. Quantitative Analysis of SBSM

In order to present the results, we first describe the training
data and settings of the experiments.

A. Data Sets

We test our methodology on three data sets; a public 3-D
object category data set, a new 3-D hand pose data set, and a
public subject identification data set.

1) RGB-D Object Data Set: The RGB-D Object data set
is a large collection of 300 common household objects [21].
All these objects are organized into 51 categories arranged
using WordNet hypernym-hyponym relationships (similar to
ImageNet). This data set was recorded using a Kinect style
3-D camera that recorded a set of synchronized and aligned
640×480 RGB-D images at 30 Hz. Each object was placed
on a turntable, and the video sequences were captured for a
single, full rotation. For each object, three video sequences
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Fig. 4. RGB-Depth object data set category samples [21].

Fig. 5. American sign language data set categories.

were recorded with the camera mounted at different heights
so that the object could be viewed from different angles with
respect to the horizon. Example of segmented objects are
shown in Fig. 4.

2) American Signal Language Data Set: We have recorded
a novel 3-D hand poses data set based on the American sign
language vocabulary. The data set is composed of 23 categories
with around 47K instances of both hands. The Kinect device
was used to extract the hands and their point clouds data using
standard segmentation and detection algorithms. Also, both
hands were captured not only considering a frontal view but
also including variabilities in terms of scale, hand orientation,
and finger joint articulations. This way, the complexity and
variability of the overall data set was enriched. Examples of
hand categories are shown in Fig. 5.2

3) Bosphorus 3-D Face Expression Data Set: The Bospho-
rus 3-D faces data set [30] contains several users performing
nine natural facial expressions. From the Bosphorus face
dataset it was considered a subset of 21 individuals, including
1039 samples. For each individual, the original structure of
the dataset was kept, and all the corresponding nine facial
expressions were considered. Each sample of the original
Bosphorus dataset is composed by roughly 45000 points. For
performance issues, it was performed a down-sampling using a
Voxel grid filter, obtaining samples comprising approximately
9 000 points (some examples of the data set and the computed
point clouds are shown in Fig. 6).

2Data set included as supplemental material (∼1Gb).

B. Settings and Evaluation Metrics

A multiclass classifier is trained using the proposed SBSM
descriptor. Specifically, feature vectors are trained in a one-
versus-one SVM classifier using a RBF kernel, and optimizing
the parameters C and γ by means of cross-validation using
LibSVM [11]. SBSM descriptor size was experimentally set
to NL = 8, Nθ = 8, Nφ = 8 for all the experiments, with
a total descriptor length of 512. 3 We compare the SBSM
descriptor with different state-of-the-art methods on different
experiments [7], [8], [21], [22]. We also include in the compar-
ative the VFH [27] and ESF [36] descriptors by also training
the feature vectors with one-versus-one SVM classifier using
a RBF kernel and optimizing the parameters as in the case of
SBSM. VFH and ESF have been selected since they are recent,
representative, and robust well-known descriptors for shape
estimation and codification of normal vectors distribution.

We validate the object classification experiments by means
of recognition rate applying stratified ten-fold cross-validation
and estimating the confidence interval with a two-tailed t-test.
We also test and compare the descriptors against depth distor-
tions and noisy data to compute their statistical significance
based on Friedman and Nemenyi statistics [13].

C. Experiments

We next present the multiclass 3-D object categorization
performance using SBSM in the RGB-D object, sign language,
and 3-D facial expression data sets. Once we demonstrate
the performance of the proposed descriptor, we test it against
different 3-D object distortions.

1) Analysis of Classification Performance: For the RGB-D
object data set, we use the turntable data for both training and
evaluation, thus classifying 51 different 3-D object categories
using depth information only. For the object recognition exper-
iments on cropped images, we apply a leave-one-out strategy
as described in [21]. For comparison with the state-of-the-art,
we compare our SBSM performance with the previous results
provided on the same data set using the same data partitions
for evaluation [7], [8], [21], [22] and ESF [36] and VFH [27]
descriptors, as shown in Table I.

Subsequently, we show the importance of the weight prop-
agation strategy in the SBSM descriptor by setting σ = 1 and
σ = 0. These two values define the presence or absence of
the propagation step, respectively. 4 Based on the mean data
set samples volume radius length, we set R = 0.15. Results
reported in Table I show that the SBSM descriptor clearly
outperforms previous state-of-the-art results on this data set.
In particular, it is concluded that using neighbor propagation,
the performance improves by more than 16% the best result
reported in [8] for this data set. This experiment shows that
when a neighboring measure of the shape point is taken into
account to update neighbor bins, the local variations of shape
objects are better learnt by the classifier. Consequently, the
intraclass variability is reduced without the need of increasing
the computational complexity of the descriptor.

3The SBSM descriptor code is included as supplemental material.
4We also tested for different values of σ and experimentally found σ = 1

to obtain the best results.
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Fig. 6. Bosphorus 3-D face expression data set. Top: RGB samples. Bottom: corresponding point cloud samples.

TABLE I

Classification Performance on the RGB-Depth Data Set [21]

TABLE II

Classification Performance and Confidence Interval of the

Different Descriptors on the Novel American Sign Language

Data Set

We also show the performance of the VFH, ESF, and SBSM
on the novel ASL data set. The final performance is obtained
by applying a stratified ten-fold cross-validation and testing
the confidence interval with a two-tailed t-test. In this case,
the spherical grid size is fitted to the minimum spherical grid
size containing all the voxels for each data sample. Results
are shown in Table II. One can see how our descriptor obtains
better performances than using VFH or ESF, and that the best
performance is achieved when weight propagation is taken into
account.

Finally, we also compare the different descriptors on the
public Bosphorus 3-D face expression data set. In this exper-
iment, we perform user recognition from the set of 21 users
taking into account the nine different facial expressions as well
as the different head poses present in the data set. Applying
stratified 5-fold cross-validation, the recognition rate results
for ESF, VFH, and SBSM are shown in Table III. One can

TABLE III

Classification Performance and Confidence Interval of the

Different Descriptors on the Public Bosphorus 3-D Face

Expression Data Set

see that the proposed descriptor performs substantially better
than ESF and VFH counterparts. In addition, it is also shown
that considering the blurring degree to be 1 the performance of
the SBSM descriptor is improved. Looking at the confidence
intervals of Tables II and III, one can also see that SBSM
variance in the recognition rate is smaller in comparison to
the rest of methods, despite VFH and ESF which are kept
small for ASL data set.

2) Robustness to Noise and Deformations: In this section,
we demonstrate the robustness of the SBSM when describing
and classifying 3-D objects that suffer from noisy captures and
deformations due to different ambient conditions or deviations
captured by the sensor, as well as partial occlusions. To achieve
this goal, we designed two different settings. In the first one,
we analyze the robustness of the descriptor when objects suffer
from deviations in the depth dimension in a range from 0
up to 20 mm in both directions of the z-axis [Fig. 7(a)–(c)].
This distortion simulates non-accurate reading errors of the
sensors because of distance precision and ambient conditions.
In the second test we progressively remove shape points from
the point cloud from 0 up to 50% of the voxels for each
object sample [Fig. 7(d)–(f)]. This distortion simulated local
occlusions and reading errors that may produce the removal
of some voxel points of the region of interest. Thus, in the
depth distortion, the resulting point cloud has the same number
of available voxels, though they are distorted in the z-axis,
meanwhile in the removing distortion, the resulting point cloud
contains less voxel points based on the distortion percentage.
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Fig. 7. (a) Input point cloud for a hand pose instance. (b) Example of
distortion in the depth axis for (a). (c) For this distortion each voxel is
randomly displaced in the z-axis with a maximum distortion of 20 mm in
both directions of the axis. (d) Input point cloud for a hand pose instance.
(e) Example of cloud removal distortion for (d). (f) For this distortion, each
voxel of the original point cloud (top) is removed based on a probability value
defined by the distortion (bottom).

Fig. 8. Mean confusion matrix of the ASL data set using the SBSM
descriptor σ = 1. The five most confused categories are displayed.

We fixed this range of distortions to be representative of the
maximum distortion that we can find on recorded samples in
real scenarios under different conditions and errors produced
by different types of depth sensors.

In order to perform these analysis, we selected those five
categories from the novel 3-D human poses data set that
achieved the highest confusion in the previous section. The
chosen hand categories are displayed in the confusion matrix
of Fig. 8. In this image the confusion matrix is the mean
computed for SBSM on that particular data set.

We show the recognition rate results when applying distor-
tion in the depth axis in Fig. 9: for each degree of distortion,
the mean recognition rate and confidence interval for 10 runs
of ESF, VFH, and SBSM σ = 1 descriptors are computed.
At each iteration, the percentage of distortion is randomly
computed for each object voxel within different depth ranges

Fig. 9. Classification performance of different classification strategies under
different degrees of distortion in the depth axis on the five selected categories
in the ASL data set.

Fig. 10. Classification performance of different classification strategies un-
der different degrees of cloud removal on the five selected categories in the
ASL data set.

TABLE IV

Mean Rank for the Compared Descriptors Considering All the

Experiments

in millimeters. The maximum value was set to 20 mm since it
is hard to obtain higher deformations produced by the sensor.
As expected, the recognition rate for all three descriptors
decrease w.r.t. the depth distortion. One can see that for all
the different tests of this experiments and descriptors, SBSM
still obtains the best performance and VFH suffers the worst
decrease in recognition (around 4%).

In Fig. 10, we show the results when applying cloud
removal. For each percentage of removed voxels, the mean
recognition rate and confidence internal are shown. At each
iteration, a percentage of distortion is randomly generated,
and different voxels are removed at each time satisfying the
percentage of information to be removed. One can see that the
general performance ranking in recognition is SBSM, VFH
and finally ESF descriptor. Moreover, independently of the
percentage of removed number of shape points, the recognition
rate for the three methods is maintained in a small range of
performance.

3) Statistical Significance: In order to compare the per-
formances computed by the different experiments considered,
Table IV shows the mean rank for each descriptor considering
15 different experiments (three data sets and 6×2 distortion
experiments). The rankings are obtained by estimating each
particular ranking r

j
i for each data set and experiment i and

each descriptor strategy j, and computing the mean ranking R

for each configuration as Rj = 1
J

∑
i r

j
i , where J is the total

number of tests.
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Fig. 11. Object spotting in 3-D scenes. (a) Example of RGB image of a multimodal Berkeley data set. (b) Depth image of the same scene. (c) Computed
point cloud from the scene. (d) Bowl spotting using SBSM (first positive 3-D object prediction is shown based on minimum Euclidean distance).

Fig. 12. (a) Original 3-D Heart volume of http://thefree3dmodels.com. Automatic interaction with the volume with (b) translation, (c) rotation and (d) zoom
manipulation.

In order to reject the null hypothesis, i.e., measured ranks
may not differ from the mean rank and these may be also
affected by randomness in the results, we use the Friedman
test [13]. The Friedman statistic value is computed as follows:

X2
F =

12J

K(K + 1)

⎡
⎣∑

j

R2
j − K(K + 1)2

4

⎤
⎦ . (12)

In our case, since K = 3 descriptors are compared, X2
F =

25.74. This value is undesirable conservative, so Iman and
Davenport proposed a corrected statistic instead

FF =
(J − 1)X2

F

J(K − 1) − X2
F

. (13)

Applying this correction, we obtain FF = 84.76. With K=3
methods and J=15 experiments, FF is distributed according
to the F distribution with (K−1) = 2 and (K−1) · (J −1)=28
degrees of freedom. The critical value of F (2, 28) for 0.05 is
3.34. As the value of FF = 84.76 is clearly higher than 3.34,
we can reject the null hypothesis.

Once we have checked for the nonrandomness of the results,
we perform a post ad-hoc test to check if one of the config-
urations could be statistically singled out. For this purpose,
we use the Nemenyi test, in which the Nemenyi statistic is
obtained as follows:

CD = qα

√
K(K + 1)

6J
. (14)

In our case with K = 3 description strategies to compare
and J = 15 tests, the critical value for a 95% of confidence
(qα = 2.35) is CD = 0.85. As the ranking of the proposed
SBSM approach does not intersect with any rank for that value
of the CD, we can state that for the reported experiments our
results are statistically significant with respect to VFH and

Fig. 13. Mean relative execution time in the range [0, ..., 1] among ESF,
VFH, and SBSM descriptors. The relative execution time value is computed
in proportion to the slowest method (set to value 1).

ESF results. In the case of VFH and ESF descriptors, since
their rank intersect with the CD value we can not state that
there exists statistical differences between both strategies.

Finally, in order to compare the execution times of the con-
sidered ESF, VHF, and SBSM descriptors, Fig. 13 shows their
mean relative execution time considering all the performed
experiments. In order to compare the description complexity,
the relative execution times only considers the description step,
without taking into account the learning strategy. One can see
that the proposed SBSM descriptor does not only obtain the
best recognition rates, but also is more efficiently computed
than the methods in the comparative. In particular, SBSM is
more than four times faster in comparison to VFH and more
than two times faster in comparison to ESF.

IV. Qualitative Analysis of SBSM

In this section, we present four real applications that use the
proposed SBSM descriptor, object spotting in 3-D scenes and
three fully-functional applications for a real-time HCI: 3-D
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Fig. 14. HCI hand poses data set categories.

medical volume navigation, intelligent retail, and living labs;
the library of the future. For this task, an additional novel set of
hand poses for the HCI navigation applications was designed.

A. Object Spotting in 3-D Scenes

After showing the discriminative power and robustness of
our proposed descriptor, we next illustrate the generality of
SBSM when applied in real scenarios. To achieve this end, we
consider a single scene obtained in the public 3-D Berkeley
data set.5 The public RGB and corresponding depth map
for the selected 3-D scene are shown in Fig. 11(a) and (b),
respectively. Using these data, we computed the point cloud
scene shown in Fig. 11(c). In this particular case, we selected
one bowl object to describe it and perform object spotting
within the whole scene. We manually selected one bowl from a
training image, computed its SBSM descriptor, and performed
sliding window search over the three dimensions of the point
cloud shown Fig. 11(c) for different scale hypotheses of the
target object. SBSM descriptor size was set to NL = 8, Nθ = 8,

Nφ = 8, and σ = 1, with a total descriptor length of 512. The
radius of the sphere is set in the range 5 to 20 cm, with an
increment of 1 cm, and two voxel displacement increments
in the three axis among iterations of the sliding windows
approach. The first matched region of interest based on the best
score obtained by the minimum Euclidean distance among the
computed descriptors in the scene is shown in Fig. 11(d). Note
the accurate fitting of the captured 3-D bowl object in the test
3-D scene. Moreover, the system spends 13 s in a conventional
2.7 GHz 2Core 4 Gb RAM computer to run this experiment
for the tested scene. Given the performed exhaustive search
and that we ran the experiment iteratively without any kind
of parallelism, this experiment show the generality of the
descriptor to be applied for scene analysis purposes.

B. HCI Application for Medical Navigation

Given the high discriminative power and fast computation
of the proposed descriptor in comparison to the state-of-the-
art approaches, we also designed different fully-functional
applications to take benefit from it. The first application is an
automatic HCI system for medical volume navigation, which
is able to detect user, hands, poses, and gestures, manipulating
a medical volume of interest.

The application was developed based upon the MS Kinect
SDK to capture the RGB-D data stream from the depth sensor.
The depth maps were converted into world coordinates project-
ing the registered 3-D image by means of pin-hole model and

5http://kinectdata.com/

intrinsic camera parameters. Then, point cloud library (PCL) is
used to work with the point cloud, and VTK framework is used
for medical image visualization purposes. The hand detection
algorithm takes advantage of the Body Pose Skeleton to find
the hand wrist joints. Using this information, a fixed radius of
interest of 15 cm centered in each joint is defined to segment
hand point clouds. The usage of the skeleton also enables us
to define a heuristic to discard false positive hand poses in
the cases that the hands are near the body, or below the waist
line. In a later step, the detected hand point clouds within the
sphere are used to refine sphere center by computing center
of mass and relocating sphere center, and points are classified
using the proposed SBSM methodology. A reduced data set
of 18K samples for the six classes shown in Fig. 14 were
recorded and trained with SBSM and SVM for this purpose.

The detected pose label is then combined with the hand
movement (3-D object displacements in real coordinates), and
used as input of a hidden Markov model to obtain a hand
gesture classification. The system is able to recognize and
control zoom, rotation, and translation operations. In the user
interface, the user can visualize its detected hand point clouds
in real-time, having a feed-back with the displayed prototypes
of both recognized hand poses. Also, the user can visualize
the volumetric medical model and the real-time interactions
caused by the hand gestures. The overall application enables a
powerful and automatic volumetric medical model interaction
and visualization. Fig. 12 shows some examples of detected
poses, gestures, interactions, and visualizations on a public
3-D heart volume.6

C. HCI Application for Intelligent Retail

Based on the same procedure for hand pose recognition
than in the medical volume navigation approach, we designed
a fully-functional application for intelligent retail. In this
scenario, hands are tracked in a multidevice setup and two
main poses (open and close hand) are recognized. The user
can automatically interact with a set of products in an interface
designed with the Unity engine7 so that information about
the product and manipulation by 3-D rotation based on hand
trajectories on two main object axis can be performed. In this
scenario, given that we work with bigger displays and only one
Kinect may not cover most part of the pointcloud related to
one hand, we included an extra Kinects in order to recover
voxels of the same hand from near complementary views
and reconstruct a new hand with more voxel information.
Thanks to the fusion of two views, more information about
the tracked hand is available, and thus we make the descriptor
more discriminative to classify multiple hand poses useful for
interaction purposes.

In order to achieve registration of two Kinect cameras, we
have mounted two cameras in a rigid setup with a baseline
of 1.30 m and an angle of 18 degrees. In this way we
can acquire depth images and convert each pixel to real-
world coordinates by applying the intrinsic parameters of the
cameras. In order to complete the registration, we need the

6See the supplemental material video for a system demonstration.
7http://unity3-D.com/

http://kinectdata.com/
http://unity3D.com/
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Fig. 15. HCI for retail. (a) Designed 3-D retail scenario using Unity engine. (b) User interaction with the scenario. (c) User manipulation by 3-D rotation.

Fig. 16. (e) Hand reconstruction using (a) and (b) two Kinect views (RGB) and (c) and (d) point clouds.

Fig. 17. (a) Different HCI applications designed to implement within the Living Lab project. (b) Real scenario simulating the setup of the implementation
of the prototype.

extrinsic parameters between both depth cameras, represented
by a rotation matrix and a translation vector that allows us
to convert Kinect2 depth points to Kinect1 depth coordinate
system. Intrinsic and extrinsic parameters can be obtained by
doing a stereo calibration. In our case, we use the Camera
Calibration Toolbox [9], that gives us a rotation vector related
through the rodrigues formula and a translation vector. For this
procedure we only need few images from both depth cameras
looking at the same planar checker-board pattern. Once the
calibration is performed we can related Kinect1 and Kinect2
depth points as follows:

Preference = RP + T

being Kinect1 be the camera reference, Preference =
(Xref ,Yref ,Zref ) a point in the camera reference coordinate
system, R the rotation matrix obtained in calibration step, P
a point of the Kinect2, and T = (X ,Y,Z) the translation
vector obtained in calibration step.

Fig. 16 shows an example of a hand reconstruction by two
different views. From the 3-D reconstructed hand, SBSM is
computed, and the automatic interactive process is performed.

The designed 3-D scenario and real-time use case scenarios
are shown in Fig. 15. In this case we found that increasing
the point of view of the hand because of the use of two
cameras allowed for a more natural movements of the user
while keeping the recognition rate of the system.8

D. HCI Application in Living Labs

For this last scenario, we designed a first prototype for
intelligent interaction in a virtual repository of books within
a Smart Environment or Libing Lab corresponding to a new
generation of libraries (VL3 6Volpelleres Library Living Labs’
project). For this scenario, a one Kinect camera setup was
designed, and the same recognition procedure than in the
retail scenario was performed. The 3-D scenario was designed
with the Unity engine. The real environment to implement
the prototype is shown in Fig. 17, which is located in the
region of Volpelleres in Barcelona. In this prototype, the user
is able to navigate through a catalogue of books and read the
selected ones. The designed 3-D scenario and real-time use
case scenarios are shown in Fig. 18.

8See the supplemental material video for a system demonstration.
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Fig. 18. HCI Living lab prototype use case scenarios. (a) Designed 3-D Unity library environments. (b) Book appears on the scene and the user can open
the hand and move through different books. (c) When close hand pose is performed, the book is selected and opened for reading.

Finally, it is important to remark that the Kinect acquired
a variable frame rate between the range 20–30 FPS. Our
procedure works real time for all the presented HCI applica-
tions, and thus, we are able to process (segment, describe, and
classify segmented point clouds from the region of interest)
for all the frames acquired by the Kinect device.

V. Conclusion

We presented the SBSM descriptor. SBSM is computa-
tionally efficient and highly discriminative. The computed
descriptor codifies the spatial relations among object voxels
and spherical bins given a granularity degree and a blur-
ring factor defined by a Gaussian-based weight propagation
function. The descriptor is rotation invariant by relocating
descriptor bins using the two main quaternion based on the
two major 3-D descriptor axis densities. In our experimental
evaluation, we found that our methodology outperformed state-
of-the-art results up to 16.7% on public depth multiclass
object recognition data, also obtaining significant performance
improvements in other two data sets; a novel ASL multiclass
data set and a public 3-D face expression data set. Moreover,
we tested the descriptor against different 3-D data distortions,
obtaining high recognition rates and significant performance
improvements in relation to standard approaches.

We also tested the descriptors in four real scenarios: object
spotting in 3-D scenes, within a probabilistic gesture recogni-
tion pipeline for real-time HCI in medical volume navigation
scenarios, HCI for intelligent retail in a multicamera setup,
and within a prototype for catalogue navigation in a living
lab library, showing the high discriminative power, efficiency
and generality of the proposed descriptor to be applied in new
generation of HCI applications and smart environments.
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