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1 Introduction

Human pose recovery, or pose recovery in short, refers to the process of estimating
the underlying kinematic structure of a person from a sensor input [1]. Vision-based
approaches are often used to provide such a solution, using cameras as sensors [2]. Pose
recovery is an important issue for many computer vision applications such as video
indexing [3], surveillance [4], automotive safety [5] and behavior analysis [6], as well as
many other Human Computer Interaction applications [7, 8]. However, the location of
individual body parts is not required in some applications. When the whole body is
tracked as a single object, it is termed human tracking or detection [9].

Body pose estimation is a challenging problem because of the many degrees of free-
dom to be estimated. In addition, appearance of limbs highly varies due to changes in
clothing and body shape (with the extreme and usual case of self occlusions), as well as
changes in viewpoint manifested in 2D non-rigid deformations. Moreover, dynamically
changing backgrounds of real-world scenes make complex the data association among
different frames. These difficulties have been addressed in several ways depending on
the input data provided. Sometimes, 3D information is available because multiple cam-
eras could be installed in the scene. Nowadays, a number of human pose estimation
approaches from depth maps are also being published since the recent market release of
low cost depth cameras [10]. In both cases, the problem is still challenging but ambigu-
ities related to the 2D image projection are avoided since 3D data could be combined
with RGB information. In many applications, however, only one camera is available. In
such cases, either only RGB data is considered when still images are available, or they
can be combined with temporal information when input images are provided in a video
sequence.

The most of pose recovery approaches recover the human body pose in the image
plane. However, recent works go a step further and the human pose is estimated in
3D [11]. Probably, the most challenging issue in 3D pose estimation is the projection
ambiguity of 3D pose from 2D image evidences. This problem is particularly difficult
for cluttered and realistic scenes with multiple people, partially or fully occluded during
certain intervals of time.

Monocular data is the less informative input to address the 3D pose recovery problem,
and there is not a general solution for cluttered scenes. There exist different approaches,
depending on the activity that people in the video sequence are carrying out, as well as
global solutions with limited performance. However, we found a lack of works tacking
into account the activity, the task or the behavior to refine the general approach. In
Figure 1 it is summarized, in chronological order, some of the historical analyses that
have been performed during the last centuries in this particular field of research. Some
of them will be reviewed in the next sections.

From our point of view, full human pose recovery integrates five modules (shown
in Fig. 2): Appearence, Viewpoint, Spatial relations, Temporal relations and Behavior.
State-of-the-art approaches pay more or less attention in these different aspects, however,
directly or indirectly these modules are taken into account: Image evidence should be
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Figure 1: Chronology of Human Pose Recovery and Behavior Analysis, from their philo-
sophical and artistic beginnings, to the most recent applications.
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interpreted and related with the a priori knowledge of the human appearance; Depending
on the appearance detected, or due to spatio-temporal post processing, many works infer
a coarse or a refined viewpoint of the body, as well as other research restrict the possible
viewpoints detected in the training dataset; Since the body pose recovery task implies
the location of body parts in the image, it is common in the literature of pose recovery
to consider the spatial relations among body parts in the image; In the same way, when
a video sequence is available, motion of body parts is also studied to refine the body
pose or to analyze the behavior being carried out; the Behavior block is an extension to
temporal analysis, which can be directly taken into account by a jointly pose and task
classification, or indirectly, through the selection of a certain database.

Activities that humans perform are directly related with particular poses. Hence,
the main objective of this work is the estimation of the human pose using the feedback
between the pose and the task that is being performed. Moreover, spatio-temporal
relations among body parts will be also used, including feedback from appearance and
viewpoint. The rest of this Thesis proposal is organized as follows: Section 2 introduces
the state-of-the-art of human pose recovery, which is discussed in Section 3, together
with our initial hypotheses. In Section 4 the goals for this Thesis are proposed, followed
by the expected contributions itemized in Section 5.2. Section 5 details the suggested
project and the working plan for this Thesis proposal, Section 6 exposes the affiliations
and other resources and, finally, our current state of the research is reported in Section 7.

2 State of the Art

Human pose recovery refers to the process of estimating the configuration of the body
parts of a person, which is the case of 3D pose recovery, or the 2D projection of the
skeletal articulation into the image plane which correctly fits with the image evidence.
This process could be preceded by detection and tracking phases, typically used in
pedestrian detection applications. Though an initial detection phase usually reduce the
computation time of the system, it is achieved at the expense of limiting the possible
poses which can be estimated. For more information related to these topics refer to
surveys on human detection and tracking [5, 12, 13].

Pose estimation surveys also exit in the literature [9, 14], as well as more general
studies involving recent works on vision-based human motion analysis [15, 1]. All of
them, besides many woks on this topic, offers a taxonomy. Hence, research is divided in
two categories, 2D and 3D approaches, in [15], while [1] defines a taxonomy with three
categories: model-free, indirect model use, and direct model use. As far as we know,
work in [9] can be considered the most complete survey in the literature. They define
taxonomies for model building (i.e. the likelihood function, from human body model,
image descriptors, etc.) and estimation (i.e. finding the most plausible pose given a
likelihood function).

In order to update recent advances in the human pose recovery field and provide a
general and standard taxonomy to group state-of-the-art approaches, reviewed methods
are clustered according to the five main modules proposed in [14]: Appearence, View-
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Figure 2: Taxonomy for Human Pose Recovery.

point, Spatial relations, Temporal relations and Behavior. Furthermore, subgroups are
defined for each of the five main modules of the human pose recovery taxonomy. The
whole taxonomy used in the rest of the paper is illustrated in Figure 2.

2.1 Appearance

In order to obtain an accurate detection and tracking of the human body parts, prior
knowledge of pose and appearance is required. In this section, state-of-the-art approaches
that address the description of human appearance are reviewed. The appearance of
people in images varies among different lighting and clothing conditions, including dif-
ferences in appearance produced by changes in the point of view. Since the main goal
is the recovery of the kinematic configuration of a person, the system should generalize
over these kinds of variations. This generalization can be partially handled in the image
domain by extracting image descriptors. Typical image descriptors include silhouettes,
motion, edges, depth or templates, among others. For a better conceptual understand-
ing of the human appearance methodology, appearance taxonomy is divided into global,
local, pixel-based, and logical methods.

2.1.1 Global appearance

By global appearance we refer to descriptors or output of classifiers which codify full body
information about people in images, either from detection or segmentation. Main global
appearance descriptors are related to silhouettes/contours and global discriminative or
generative classifiers.

Silhouettes and contours Silhouettes and their boundaries (contours) provide powerful
descriptors invariant to changes of color and texture, as well as they can be extracted
in a robust way when background is mainly static. An example of using a synthesized
knowledge of the image to estimate the human pose is [16], where the 3D pose is mapped
directly from the silhouettes obtained by background subtraction (Figure 3(a)). A Mix-
ture of Experts is used to learn the pose from silhouette shape descriptors. Results
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Figure 3: a) Mapping proposed in [16]: Silhouette is extracted through background
subtraction, local shape contexts are computed on contour points to fill the histogram
description, and three-dimensional pose is obtained from this histogram; b) HOGmethod
introduced in [17]: Image of a person and its HOG descriptor, and this descriptor
weighted by the positive and negative classification areas; c) Vocabulary of basis parts
introduced in [18]; d) Graph cut approach of [19] for body and hands segmentation.

show walking motions with turns reconstructed from monocular video sequences. How-
ever, these methods suffer from bad segmentations in real-world scenes, as well as the
difficulty of recovering some Degrees of Freedom (DOF) because of the lack of depth
information. For these reasons, approaches based on silhouettes and contours are being
revisited because of the recent market release of non-expensive depth cameras. Silhou-
ettes from depth maps can be more robustly segmented, as much as they contain depth
information.

Global discriminative classifiers A common technique for detecting people in images con-
sists on firstly describing image regions using standard descriptors (i.e. Histogram of
Oriented Gradients (HOG) [17]), then training a discriminative classifier (e.g. Support
Vector Machines) as a global descriptor of human body [17] (Figure 3(b)) or as a multi-
part multi-view description, and finally learning parts [20] (Figure 4(b)). This technique
has been widely applied in the field of pedestrian detection in Advanced Driver Assis-
tance Systems (ADAS) (see [5] for a detailed review). Some authors have extended this
kind of approaches also including spatial relations between body parts descriptors in a
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second level discriminative classifier, as in the case of the poselets approach introduced
in [21]. These approaches are usually employed as an initialization technique of posterior
pose recovery methodologies.

Global generative classifiers As in the case of discriminative classifiers, generative ap-
proaches have been proposed to address people detection. However, in the case of gener-
ative approaches they use to deal with the problem of person segmentation. For instance,
the approach introduced in [22] learns a color model from an initial evidence of person
(or background objects) to optimize a probabilistic functional using Graph Cuts theory.

2.1.2 Local appearance

It is widely accepted that describing human body as an ensemble of parts improves
parsing approaches for human body recognition [20]. In this sense, most state-of-the-art
descriptors are used to describe human limbs as parts of the image and use the evidence
of the responses to perform a global spatial optimization. Next, we summarize standard
descriptors used for describing body parts.

Edges Gradient-based features are the most widely applied and invariant descriptors
to changes in the appearance of a person (i.e. the appearance because of different
clothes changes meanwhile external edges of body parts are maintained). In this sense,
HOG [17], SIFT [23], and wavelets features [24], among others, use to be considered.
Moreover, in order to make the local description of body parts invariant to rotation,
patch normalization, i.e. rotating the patch by means of gradient orientation [25], is
normally applied. A rich vocabulary of parts is constructed in [18], where body parts
are expressed as a linear combinations of small sets of parts basis, i.e. HOG filters
(Figure 3(c)). Results show improved performance and reduced overfitting in object
detection tasks [20], as well as in face detection [26] and body pose estimation [27].

Motion Optical flow [28], as well as a number of variants [29, 30], are the most typical
features calculated to model path motion and they can be used to classify human ac-
tivities [31]. Moreover, some other works track visual descriptors and codify the motion
provided by certain visual regions as an additional local cue [32]. In this sense, following
the same idea of HOG, Histogram of Optical Flow (HOF) can be constructed [31] to
describe regions, as well as body parts movements.

Color and texture Color information is usually codified by means of histograms or space
color models (i.e. Gaussian Mixture Model) meanwhile texture use to be an additional
cue for local description of body parts once regions of interest have been detected.
Texture is then described using, for example, Discrete Fourier Transform (DFT) [33] or
wavelets such as Gabor filters [24]. Color and texture are not often calculated as main
descriptors in the topic of human pose estimation because of the huge variability of the
human body in terms of clothes, skin color, and changing backgrounds, among others.

8



However, these descriptors are applied to perform soft identifications while tracking
processes, as shown in [11, 34].

Depth We can not forget about the most recent contributions in the field of visual
representation in computer vision. Recently, depth cues have been included in several
human pose recognition systems because of the depth maps provided by the multi-sensor
KinectTM . The new depth representation based on infrared maps offers an advantage
over traditional time-of-flight systems based on multi-camera systems, providing near 3D
information using a cheap sensor synchronized with RGB data. Based on this represen-
tation, new depth and multi-modal descriptors have been proposed, as well as classical
methods has been revisited taking advantage of new visual cues. Examples are Gabor
filters over depth maps for hand description [35] or the approach in [36], that proposes a
novel keypoint detector based on saliency of depth maps which is stable to certain human
poses. Interest points, based on identifying geodesic extrema on the surface mesh can
be classified as, e.g., hand, foot, or head using local shape descriptors. This approach
also provides a natural way of estimating a 3D orientation vector for a given interest
point. In [37], depth patches are described with a combination of two novel descrip-
tors endowing a description variant to 6 DOF. This description would help to normalize
the local shape descriptors to simplify the classification problem as well as to directly
estimate the orientation of the body parts in space. A similar descriptor mixed with
RGB and motion information is proposed in [38], which is used in a gesture recognition
framework [39]. The surveillance system proposed in [4] applies the orientation-invariant
Fast Point Feature Histogram [40] based on distribution of normal vectors to identify
the robbery of objects in outdoor and indoor environments.

Templates Example-based methods for human pose recovery have been proposed to
compare image evidences with a database of samples. One standard technique is to
apply a normalized cross-correlation measure among the stored template data set and a
query image. These approaches represent a mapping between image space and human
pose providing a powerful mechanism for directly estimating 3D pose [11]. However,
example-based approaches suffer from several restrictions, such as the huge amount of
data to exemplify the variability of the human poses from different viewpoints, and the
restriction to the variability of poses or motions used in training. Moreover, these issues
are difficult to be solved since a large database of poses may introduce ambiguities in
pose estimation.

Finally, it is worth noting that state-of-the-art local descriptors require from a previ-
ous detection of interest points or parts. In this sense, we refer the reader to [41] and [42]
for a fair list of region detectors and descriptors.

2.1.3 Pixel-based

Some pixel-based approaches have recently showed robust results for the segmentation
of human body. This is the case of the Random Forest approach in [43, 19], where
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simple random off-sets of pixel-based depth features are computed and learned in a
probabilistic forest of trees. As a result, a global segmentation of the human body is
provided (Figure 3(d)). In [22, 44] another pixel-based classification based on color
modeling is presented over RGB data with successful results.

2.1.4 Logical

Finally, for conceptual completeness about the state-of-the-art on appearance approaches
for human pose recovery, it is important to notice that new descriptors including logical
relations have been recently proposed. This is the case of the Group-lets approach [45],
where local features are codified using logical operators, increasing the discriminant ca-
pability of the classifiers and showing improved performance recognizing human actions
in still images in comparison to classical approaches.

2.2 Viewpoint

Viewpoint estimate is useful to determine the relative position and orientation between
objects (or human body) and camera (i.e. camera pose), and also allows to significantly
reduce ambiguities in 3D pose [11]. Note that in camera pose literature it is named pose
in short, however, in this section it will be explicitly named camera pose. The word pose
will keep the same meaning as in the rest of the document: human body posture.

Usually, body viewpoint is not directly estimated in human tracking or pose recovery
literature, however, it is indirectly considered because the possible viewpoints to be
detected are constrained, for example, in the training dataset. Many woks can be found
in upper body pose estimation and pedestrian detection literature, where only front or
side views are respectively studied. Just to say an example, while in [25] a detector is
presented which is able to detect people from arbitrary views, its performance has only
been evaluated on walking side views. Other works explicitly restrict the possible views,
for example, to frontal and lateral viewpoints [46].

Research where 3D viewpoint is explicitly estimated can be divided into discrete
classification and continuous viewpoint estimation. The discrete approach is treated as
a problem of viewpoint classification category, where the viewpoint of a query image is
classified into a limited set of possible initially known [47, 48] or unknown [49] views. In
these works, 3D geometry and appearance of objects is captured by clustering local fea-
tures and learning their relations. Image evidence can also be used to directly categorize
the viewpoint. In the first stage of [11] a rough viewpoint is estimated for pedestrians
by training 8 viewpoint-specific detectors. In the following stage, this classification is
used to refine the viewpoint in a continuous way, estimating the rotation angle of the
person around the vertical axis. Projections of 3D examples of body configurations are
evaluated under the previously detected 2D body parts, and the sample with the most
suitable projection is chosen as a 3D pose proposal. The continuous approach to view-
point estimation refers to computing the real valued viewpoint angles for an object or
human in 3D. In [50], discrete and continuous viewpoint estimation are treated, as well.
Discrete viewpoint is classified in a set of canonical views through a mixture-of-HOG
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approach, focusing on viewpoints instead of categories [20]. Assuming orthographic pro-
jection, continuous viewpoint is measured by extending the mixture model to deal with
offset viewpoint angles, with respect to the canonical orientations.

Continuous viewpoint estimation is widely studied in the field of shape registration,
which refers on finding correspondences between two sets of points and recovering the
transformation that maps one point set to the other. Monocular non-rigid shape regis-
tration [51] can be seen as a similar problem to body pose estimation, since points in
the deformable shape can be interpreted as body joints. Indeed, at least one approach
exists which provides a solution for both problems in a common framework [52]. Given
still images, simultaneous camera pose and shape estimation is studied for rigid sur-
faces [53], as well as for deformable shapes [54]. In both works, prior knowledge of the
camera is provided by modeling the possible camera poses as a Gaussian Mixture Model
(GMM), which consist on uniform camera poses [55] in certain regions around the mod-
eled surface. In [53], point correspondences and camera pose are iteratively established
by hypothesizing the projections of the known 3D rigid shape onto the different camera
priors. In [54], they go a step further by extending the previous work for deformable sur-
faces. Possible deformations of the shape are also modeled as a GMM. The simultaneous
camera pose, correspondences and non-rigid shape are estimated by the joint hypothesis
of both GMM. Following this work, in [56] is presented a probabilistic formulation for
video sequences, inspired on Simultaneous Localization And Mapping (SLAM).

In [57] and [58], the viewpoint of the head is estimated from depth data acquired
with range scanner and low cost depth cameras, respectively. Both works can deal with
partial occlusions and different facial expressions, since they first detect the parts of the
image belonging to the head using discriminative random regression forests. Moreover,
as it is explained in previous section (Section 2.1), camera pose estimation can be directly
estimated from image evidences because depth information allows to build descriptors
variant to 6 DOF.

2.3 Spatial models

Spatial models encode the structure of the human body. Though there exist approaches
which directly map the appearance to 3D pose (see Section 2.1), their performance is
limited to specific datasets. Human body models describe kinematic properties of the
body in a hard way (e.g. skeleton, bone lengths) or in a more soft manner (e.g. pictorial
structures, grammars). Usually, accurate kinematic constraints are modeled in 3D, as
well as degenerate projections of the human body in the image plane are usually modeled
by probabilistic assemblies of parts.

2.3.1 Probabilistic assemblies of parts

Probabilistic assemblies of parts consist on detecting likely locations of the different body
parts in a consistent configuration with the body structure, where such configuration is
not defined by physical constraints but also is described by soft restrictions which can
deal with the high variability of the body poses and viewpoints.
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Pictorial structures [59] are generative 2D assemblies of parts, where each part is
detected with its specific discriminative detector. Pictorial structures are a general
framework for object detection widely used for people detection [20, 25] and human
pose estimation [60, 25, 61]. Though the traditional structure for representation is a
graph [59], more recent approaches represent the underlying body model as a tree, due
to inference facilities studied in [60]. Constraints between parts are modeled follow-
ing Gaussian distributions, which seems does not match, for example, with a typical
walking movement between thigh and shank. However, Gaussian distribution does not
correspond to a restriction in the 2D image plane, and it is applied in a parametric space
where each part is represented by its position, orientation and scaling [60]. A general
approach for pedestrian detection and 2D body pose estimation is presented in [25],
where strong part detectors were discriminatively trained. Moreover, during the fitting
phase, margin of classifiers are used as likelihood in the generative model (shown in
Figure 4(a)).

Grammar models formalized in [62] provide a flexible and elegant framework for
object detection [20], also used to detect humans in [20, 63]. Compositional rules are
applied to represent objects as a combination of other objects. In this way, human body
could be represented as a composition of trunk, limbs and face; as well composed by eyes,
nose and mouth. Moreover, deformation rules leads to hierarchical deformations, allow-
ing the relative movement of parts at each level (e.g. eyes could be displaced with respect
to the face as well as its displacements are related to the whole body). Though deforma-
tion rules in [20] are treated as pictorial structures (shown in Figure 4(b)), which makes
grammars attractive is their structural variability. Grammar models allow to choice
among different subtypes for each part while deal with occlusions [63]. Following this
compositional idea, [64] is based on poselets [21] to represent the body as a hierarchical
combination of body “pieces” (shown in Figure 4(c)).

Probabilistic assembly of parts can also be performed in 3D when, for example, 3D
information is available using a multi-camera system [65]. A similar model to pictorial
structures is presented in [65], where temporal evolution is taken into account (shown in
Figure 4(d)). Joints are modeled following Mixture of Gaussian distributions, however
here is named “loose-limbed” model because of the loosely attachment between limbs.
Instead of a tree, a loopy graph is used where nodes represent 3D position and orientation
of body parts. Edges represent relative angle and position between adjacent nodes
in space and time (i.e. adjacent body parts in the same frame, and the same body
part in adjacent frames). The inference of 3D human pose is solved with a particle
filter extension for loopy graphs. However, the presented system requires a background
subtraction step. They overcome this issue in [66], where authors also deal with a
monocular image sequence. The human pose problem is divided in three stages: first
of all 2D body pose is estimated using their previous work, then 3D human pose is
reconstructed following the mapping approach explained above [16], and finally 3D poses
for walking people are refined through Bayesian inference.

A powerful and relatively unexplored graphical representation for human 2D pose es-
timation is AND-OR graph [67], which could be seen as a combination between Stochas-
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Figure 4: Examples of body models as a probabilistic assemblies of parts: a) Pictorial
structures presented in [25] estimating the human 2D pose (top) for different sports
from likelihoods of parts detectors (bottom); b) Human model proposed in [20]: coarse
filter (left), different part filters with higher resolution (middle), and model for spatial
locations of parts (right); c) Hierarchical composition of body “pieces” of [64]; d) Spatio-
temporal loopy graph proposed in [65]; e) Different trees obtained from the mixture of
parts presented in [27].

tic Context Free Grammar and multi level Markov Random Fields. Moreover, their
structure allows a rapid probabilistic inference with logical constrains [68]. A fully con-
nected graph to represent body models as a probabilistic assembly of parts is presented
in [69], also using discriminative part detectors. However, restrictions of the method,
such as absolute orientations of detected parts, only allows to be applied in upright
poses. In addition, fully connected graphs are difficult to optimize. A lot of research has
been developed in this area, optimizing algorithms to avoid local minima. Multi-view
trees could be an alternative because a global optimum can be found using dynamic
programming [27]. In this case, a mixture of parts with a tree as the underlying model
encode the spatial structure of a human body. Powerful descriptors are calculated and
learned jointly with relative positions between adjacent body parts. 2D pose is suc-
cessfully computed for different datasets, showing high flexibility and efficiency. They
exploit the fact that the parameters of tree models can be efficiently inferred, however
trees also suffer the well-known double-counting phenomena, which can be solved by
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considering hard pose priors [70] or branch and bound algorithms [71]. However, these
solutions are more susceptible to suffer overfitting for specific datasets.

In order to deal with high deformations of human body, as well as its changes in ap-
pearance, the parameters of the body model and appearance could be learned simultane-
ously [27]. Active Shape Models (ASM) [72] and Active Appearance Models (AAM) [73]
are labeled models which are able to deform their shape according to statistical param-
eters learned from 2D or 3D [74] training set. AAM, moreover, are able to learn the
appearance surrounding the anatomical landmarks, reliably labeled in the examples of
the training set. Though ASM and AAM learn models for the whole body [75], the local
appearance and deformations of body parts learned allow a 2D body pose estimation.
These approaches provide a solution versus example-based (see Section 2.1) approaches,
which compare the image evidence with a database of samples. While the body parts
detection in [11] is performed by multi-view pictorial structures, 3D reconstruction is
estimated by projecting 3D examples over the 2D image evidence.

2.3.2 Kinematic models

Due to the efficiency of trees and similarity between human body and acyclic graphs,
most of the body kinematic models are represented as a tree. Contrarily to trees ex-
plained above, whose nodes represent body parts, nodes in kinematic trees usually rep-
resent joints, each one parametrized with its degrees of freedom (DOF). In the same way
that probabilistic assemblies of parts are more used in 2D, accurate measures of kine-
matic models have more sense in a 3D representation. However, 2D kinematic model is
a reasonable tool for motions parallel to the image plane (e.g. gait analysis). For exam-
ple, though 3D data from multi-camera system is used in [46], only frontal and lateral
2D models are learned, limiting the performance of the system to both viewpoints. 2D
pose is also estimated in [76] from a degenerate 2D model learned from image projec-
tions. In this case, not only parallel movements are allowed, so different movements are
interpreted when walking in opposite directions.

3D recovery of human pose from monocular images is the most challenging situation
in human pose estimation due to projection ambiguities. Since information is lost during
the projection from real world to the image plane, several 3D poses match with 2D image
evidences [77]. Kinematic constraints on pose and movement are typically employed
to solve the inherent ambiguity in monocular human pose reconstruction. Therefore,
different works have focused on reconstruct the 3D pose given the 2D joint projections
from inverse kinematics [78, 79], as well as the subsequent tracking [80, 81]. In [80], the
human body is modeled as a kinematic chain, parametrized with twists and exponential
maps. Tracking is performed in 2D, from a manual initialization, projecting the 3D
model into the image plane under orthographic projection. This kinematic model is also
used in [82], adding a refinement with the shape of garment, providing a fully automatic
initialization and tracking. However this multi-camera system requires a 3D laser range
model of the subject which is being tracked. In [77], 3D pose is estimated projecting a
3D model onto the image plane in the most suitable view, through perspective image
projection. The computed kinematic model is based on hard constraints on angle limits
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and weak priors, such as penalties proportions and self collisions, inspired in a strong
human knowledge.

The recovered number of Degrees of Freedom (DOF) varies greatly among different
works, from 10 DOF for upper body pose estimation, to full-body with more than 50
DOF. The number of possible poses is very high, even for a model with few DOF and
a discrete parameter space. Hence, kinematic constraints such as joint angle limits are
typically applied over kinematic models. Other solutions rely on reducing the dimension-
ality by choosing characteristic poses [6] or using unsupervised techniques as Principal
Component Analysis (PCA). A set of distinctive pose priors is manually chosen in [6],
or learned from Motion Capture (MoCap) 3D data if available. For each different action
in database, keyposes are selected which result in discontinuities in pose energy. Then,
3D pose can be estimated by projecting pose priors onto the image evidence. In [46] it
is used a Hierarchical PCA depending on human pose, modeling the whole body as well
as body parts separately, allowing complex deformations. More sophisticated 3D models
could be used, where the human shape is modeled in addition to the kinematic structure.
Skin is modeled as rectangular or trapezoidal patches [83] and can be used for human
segmentation [84], however, these complex models use to need a manual initialization,
multi-camera systems or accurate 3D models [82].

2.4 Temporal Models

Temporal models can be seen as the temporal counterpart of spatial models. When a
video sequence is available, the motion of body parts may be incorporated to refine the
body pose or to analyze the behavior that is being carried out. The state-of-the-art of
temporal techniques is divided into tracking and motion models.

2.4.1 Tracking

Tracking is a temporal technique to ensure the coherence among poses over the time.
Tracking can be applied separately to all body parts, as well as only to a representative
position of the body. Moreover, 2D tracking can be performed to the pixel positions or
it can be considered that the person is moving in 3D. Tracking techniques can also be
divided according to the number of hypothesis, which can be one that is maintained over
the time or several hypotheses can be propagated in time. Other works achieve temporal
coherence through the minimization of pose changes along a sequence in batch.

Single tracking is applied in [46], where only the central part of the body is estimated
through a Hidden Markov Model (HMM), finally the 2D body pose is estimated from
the refined position of the whole body. Tracking is performed in 2D, however they
do not loose generality at these point since they work with movements parallel to the
image plane. In contrast, 3D tracking with multiple hypothesis is considered in [11].
First, the whole body is tracked in 2D, then 3D poses at each frame are estimated
and propagated along all the sequence, finally the results are refined with a Bayesian
framework, achieving consistent tracking and 3D pose estimation for all frames. Note
that joint 3D pose and tracking allow an implicit tracking of the body parts. In the topic
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of shape recovery, a probabilistic formulation is presented in [56] which simultaneously
solves the camera pose and the non-rigid shape of a mesh (i.e. body pose in this topic)
in batch. Possible positions of landmarks (i.e. body parts/joints) and their covariances
are propagated along all the sequence, optimizing the simultaneous 3D tracking for all
the points.

2.4.2 Motion models

The human body can perform a huge diversity of movements, however specific actions
could be defined by smaller sets of movements (e.g. in cyclic actions as walking). In
this way, a set of motion priors can describe the whole body movements when a single
action is performed, though hard restrictions on the possible motions recovered are as
well established. A potential issue of motion priors is that the variety of movements that
can be described highly depends on the amount and diversity of the training data.

Statistical motion models are widely applied for human tracking and 3D pose estima-
tion, usually learned from Motion Capture (MoCap) using multi camera systems. Since
human body motions tend to be highly non-linear, common methods cluster the state
space and specifically reduce the dimensionality in each region, where clusters are usu-
ally directly related to activities being performed in the database. Different approaches
differ on the state representation and clustering methods, as well as in procedures for
dimensionality reduction.

Consecutive 3D positions of each body joint are clustered in [81], clusters being
described with their principal eigenvectors using Singular Value Decomposition (SVD).
Here, the reduction of dimensionality of human gestures helps to estimate the 3D pose
at each frame. In [76], the state space represented by joint angles is also clustered, PCA
is applied over each cluster to reduce the dimensionality and a Gaussian auto regressive
process is applied in order to deal with non-linearities of the human body performing
different actions. However, the number of possible movements in the video sequence is a
critical parameter, since a same action seen from different viewpoints can be interpreted
as different movements. In [85], motion models are learned from MoCap sequences of
walking and running. A reduction of dimensionality is performed by applying PCA over
sequences of joint angles from different examples. This work is extended in [86] for
modeling golf swings from monocular images. Scaled Gaussian Process Latent Variable
Models (SGPLVM) can also represent more different human motions [87] such as walking
and golf-swings together from monocular image sequences.

A clear weakness of using priors is overfitting on the training data because they
can only generalize over a small set of specific movements. In [88], a general trajectory
based on the Discrete Cosine Transform (CDT) is introduced to reconstruct different
movements from, for example, faces and toys. In this case, trajectory model is combined
with spatial models of the tracked objects. Applications of such motion models related
to human pose can be found in [89], where it is achieved a 3D reconstruction of moving
points tracked from humans and scenes; as well in [90], where articulated trajectories
are reconstructed for upper body models.
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2.5 Behavior

The block of behavior refers in our taxonomy to those methods that take into account
particular activities or information about scene and context, to provide a feedback to
precedent pose recognition modules, improving the final recognition task. Most ap-
proaches previously described do not directly include this kind of extra information.
However, databases are usually organized by actions which are being performed (e.g.
walking, jogging, boxing [91]) and algorithms use to over-fit these actions (e.g. walk-
ing [11], golf swings [86]). From our point of view, the election of a specific training
dataset is a direct or indirect choice of the set of actions that the system will be able to
detect. It is important to point out that taxonomies in the literature for behavior, activ-
ity, gesture and sub-gesture, for example, are not broadly detailed. The term behavior
is used here as a general concept which includes actions and gestures.

Though is not usual, some works exist taking into account behavior or activity to
estimate a better body pose, learning different models depending on the action that is
being performed. Different subspaces are computed for each action in [76]. However,
the number of actions chosen is a critical parameter, since actions seen from different
viewpoints are interpreted as different movements. This phenomenon occurs because a
degenerate 2D model is learned from image projections, instead of building a 3D view
invariant model. Some works in the literature go a step forward and jointly recover pose
and behavior. In the work of [92], the authors include extra information about human
activity and its interaction with objects to improve final pose estimation of subjects and
activity recognition. This technique includes “the object” as an extra parameter in a
probabilistic graphical model. It was demonstrated that ambiguities among classes are
better discriminated, and better results are obtained. In [93], monocular 3D body pose
and viewpoint are estimated from an activity-specific manifold. However, though they
achieve good generalization among different body shapes, manifolds are learned from 2D
visual inputs for specific viewpoints and activities. So, the generalization to other motion
domains is not clear. Finally, the work in [6] takes profit from such joint estimation
of human pose and action being performed. Here, a set of pose priors is learned (or
manually chosen) for each action, as well as Gaussian distributions for each joint, to
deform the skeleton between pose priors. Then, after action estimation during test phase,
3D pose is accurately recovered using the specific pose priors of such action. Though a
joint approach for pose tracking and action recognition in cluttered scenes is presented
in this work, they do not consider any feedback between both estimations. In addition,
since Gausssian distributions represent the space search of each joint, they could improve
the performance of the system by projecting the covariances to the image plane, and
not just the 3D skeleton to fit 2D image evidences. Other interesting improvement of
this work could be the addition of motion models to pose priors, instead of Gaussian
distributions, in order to achieve a more accurate tracking.
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3 Initial hypothesis

Recovering the 3D pose of humans from monocular images is an ill-posed problem.
Some information is lost because 2D image evidence is a projection of the real world, i.e.
different human poses can have the same observations, as well as similar poses can result
in very different observations. In the literature, human pose is retrieved by constraining
the search space in appearance (e.g. learning strong filters for body parts [18]), limiting
the feasible viewpoints [11], and confining the body parts in certain regions [25, 27], as
well as restricting the possible configurations of these parts by kinematic constraints [76,
80, 77]. Temporal coherence is also taken into account [11], likewise motion of body
parts is restricted to be consistent with previously known human movements [87]. As
far as we know, though certain works jointly estimate pose and activity [92, 6], as well
as viewpoint [93], our Thesis proposal is the first approach for body estimation which
studies the possibilities of mixing all this multi-modal knowledge.

State-of-the-art presented in the previous section is divided in the five focus of interest
of this work, nevertheless, it is also important to take into account the relations among
them:

• The selection of reliable body part detectors is a key step in the most of approaches
that estimate human pose from monocular RGB cues [25, 27, 11, 20]. On the other
hand, promising works which do no pay enough attention to image evidences could
be seen their results improved by using better detectors [60]. Strong part detec-
tors reduce the dimensionality of the problem, relaxing the difficulties
resulting from cluttered scenes, while maintaining the useful informa-
tion to estimate the human pose.

• Unlike motion priors, pose priors are not often used in body pose estimation.
Though priors on body configuration are applied in the literature, they use to
learn pose deformations in 2D [76, 46]. Learning the 2D projection of a 3D object
deals to unrealistic kinematic constraints [76] or allows to estimate only natural
movements when such motions are parallel to the image plane [46]. By contrast,
2D models are learned from 3D objects in [74], as well as 3D pose priors are used
in [6] in an action recognition framework. However, 3D poses are chosen very dif-
ferent among them in order to cover the action-pose estate, instead of dealing with
an accurate kinematic reconstruction. Pose priors on 3D kinematic skele-
tons should decrease non-linearities of human body, usually magnified
by non-linearities due to camera projection, improving flexibility and
performance of kinematic models.

• Human pose can have many different observations, because of the variations be-
tween people in shape and appearance, as well as different environments and cam-
era viewpoints. Furthermore, different poses can result in the same observation.
In order to solve these problems, it makes sense the approach introduced in [54],
where the search space is restricted by combining possible camera poses and shape
model (i.e. body model). Moreover, camera poses and shape deformations (i.e.
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body poses) are learned separately. Hence, the potentially huge amount of data
resulting of all possible views combined with of all possible body poses is avoided.
Going a step further to [77], where a 3D skeleton is projected to the image plane,
the joint 3D body pose and camera viewpoint should decrease the non-
linearities of body pose and camera projection, achieving more accurate
results at the expense of increasing the computational time. Then, 3D
uncertainty of space search can be projected onto the 2D image plane [54], in order
to match with body parts detectors and accelerate the process.

• 3D body pose from monocular image sequences is a hard problem with well known
ambiguities [77]. Moreover, while body poses and camera poses are going to be
learned in 3D, certain restrictions could be needed to reduce the search space.
Temporal coherence in 3D [11] is a powerful tool to reduce the uncertainty, while
maintaining 3D information. However, in order to reduce more the state space, 3D
motion models can be learned for certain actions (e.g. walking). Hence, combined
spatio-temporal models should provide a robust framework to estimate
3D body pose from monocular image sequences in a small number of
frames.

• Both motion models and spatial models are attempts to explain spatio-temporal
deformations in different dimensions. Nevertheless, they are supposed to be in-
dependent and both learnings are performed separately. Therefore, important
information for human motion only noticed in a joint domain could be ignored
because of a poor relevance in temporal or in spatial domains separately. In ad-
dition, independent learning and application of both models leads to a bottleneck
of computational time and memory storage. To provide a solution to these issues,
jointly learned spatio-temporal models should decrease the stored data
and the estimation time, while providing similar or even better results.

• Motion priors [87, 88] and spatial priors [6] reduce the search space in spite of
limiting the human poses and movements which can be detected by the system.
In order to relax these restrictions on the possible detected behaviors, a variety of
activities can be added into the training and test databases [6]. However, an im-
portant drawback is the increasing of reconstruction ambiguities, because similar
poses or motions can be produced by different actions. Unsupervised learning over
pose and motion spaces could help to solve these problems. Choosing the spe-
cific model, depending on the pose or motion that is being performed,
should relax the hard prior constraints while maintaining the reduced
search space in multi-activity databases.

• Since different motion and pose models could improve the performance and flexibil-
ity of the system, a reliable mechanism for models selection shall be an important
focus of research. In this way, each model should have a direct relation
with the activity or behavior that is being detected, which leads to
jointly estimate behavior and human pose. Therefore, global solution could
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be refined by specific spatio-temporal models of activities in the training set, in a
simultaneous activity and human pose estimation framework.

4 Goals

The main goal of this Thesis proposal is to develop methods for estimating 3D human
pose in cluttered scenes, providing feedback from activity recognition. To this end,
self-contained goals are proposed in a staggered manner:

• Strong part detectors reduce the dimensionality of the human pose problem, re-
laxing the difficulties resulting from cluttered scenes, while maintaining the useful
information to estimate the human pose. Our work is not supposed to do research
on novel descriptors, therefore an intensive research on state-of-the-art body
part descriptors is required, complementing the research which have been done
yet.

• Since pose priors on 3D kinematic skeletons should decrease non-linearities of hu-
man body, improving the flexibility and performance of kinematic models, one
important objective of this work is the construction of 3D pose priors able
to deform the skeleton as humans do when performing certain tasks.

• Research proposed in this work requires a large amount of data to train and test
the final system. Consequently, it must be done an intensive research on avail-
able databases, as well as complementing the state-of-the-art with new
databases.

• The joint 3D body pose and camera viewpoint should decrease the non-linearities of
body pose and camera projection, achieving more accurate results at the expense of
increasing the computational time. Another important goal of this Thesis proposal
is the joint body pose and camera estimation from monocular image
sequences, given 3D priors of the skeleton and the camera poses.

• Combined spatio-temporal models should provide a robust framework to estimate
3D body pose from monocular image sequences in a small number of frames. There-
fore, it should be done an intensive study of the applicability of general mo-
tion models [88], as well as action specific motion priors [87], to be
jointly combined with 3D kinematic body models.

• Jointly learned spatio-temporal models should decrease the stored data and the
estimation time, while providing similar or even better results than both models
learned separately. In consequence, we will study the benefits of the joint
learning of motion priors and body pose priors for certain human ac-
tions.

• Unsupervised learning over pose and motion spaces could help to solve reconstruc-
tion ambiguities when using multi-activity databases. Choosing specific models,
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depending on the pose or motion that is being performed, should relax the hard
prior constraints while maintaining the reduced search space in such databases.
Therefore, it is required a strong study on clustering pose priors, as well
as motion priors, and the recursive optimization algorithm for finding
the pose which maximizes the cluster, while finding the best cluster to
reduce the search space.

• Since learned pose and motion models should have a direct relation with activity
or behavior being detected, the final goal proposed is the joint estimation of
behavior and human pose.

5 Project

The Thesis proposed here is referred to do research in the field of human pose estimation.
In previous sections, the state-of-the-art (Section 2) is presented, it is discussed and
initial hypotheses are presented (Section 3), and goals are proposed in Section 4. In the
incoming sections, an overview of the suggested framework will be exposed in Section 5.1,
followed by the expected contributions of this Thesis, itemized in Section 5.2, then, the
working plan of this project is detailed in Section 5.3, resources are listed in Section 6
and, finally, the current state of research is reported in Section 7.

5.1 Overview

This Thesis is devoted to explore the current limits of the state-of-the-art in the field
of human pose estimation and provide novel solutions to unsolved problems. Human
pose recovery is an important issue for many computer vision applications such as video
indexing, surveillance, automotive safety and behavior analysis, for example. However,
body pose estimation is a difficult problem because many degrees of freedom have to
be estimated, appearance of limbs highly varies due to changes in clothing and body
shape, as well as changes in 3D viewpoint are manifested as 2D non-rigid deformations.
In order to outperform these difficulties, a framework is proposed to jointly estimate the
3D human body pose and camera viewpoint, restricting the search-space with strong
body part detectors and motion priors, as well as receiving feedback from behavior
analysis (see Figure 5.) The proposed Thesis can be summarized in the following goals:

• Intensive research on state-of-the-art body part descriptors.

• Intensive research on available databases, as well as complementing the state-of-
the-art with new databases.

• Construction of 3D pose priors able to deform the skeleton as humans do when
performing certain tasks.

• Joint body pose and camera estimation from monocular image sequences given 3D
priors of the skeleton and the camera poses.
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Figure 5: Overview of the proposed system and published contributions in red.

• Study of the applicability of general motion models, as well as action specific
motion priors, to be jointly combined with 3D kinematic body models.

• Study the benefits of the joint learning of motion priors and body pose priors for
certain human actions.

• Study on clustering pose priors, as well as motion priors, and the recursive opti-
mization algorithm for finding the pose which maximizes the cluster, while finding
the best cluster to reduce the search space.

• Joint estimation of behavior and human pose.

5.2 Expected contributions

Fulfill the objectives presented in Section 4 would result in the following contributions:

1. Contribute to the development of techniques dealing with 3D human pose estima-
tion from strong part detectors, searching for the most suitable configuration of
3D body priors which maps into the image likelihoods, making all computations
in 3D until the 2D image fitting.
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2. Extend the methods available in the literature for the simultaneous reconstruction
of deformable meshes and camera pose estimation to the field of human pose
recovery. In particular, we plan to propose a method for jointly estimate the body
pose and the camera viewpoint from monocular image sequences.

3. Define methods to reduce the search-space without limiting the flexibility of the
system by refining 3D body pose and tracking by specific models. In particular,
specific motion priors, to be jointly combined with 3D kinematic body models, also
learned for certain tasks.

4. Study the joint estimation of behavior and human pose, through a recursive frame-
work which exploits the information of both estimations.

5.3 Working Plan

This section describes the expected tasks in the development of the proposed research,
moreover the foreseen planning is presented in Figure 6 as a in a Gantt chart that spans
over four years.

Figure 6: Work planning for the proposed Thesis. Each column represents a two months
period.
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5.3.1 Task 1: State of the art, Library of body part descriptors and Databases

The first step of the proposed Thesis is to explore the state-of-the-art, paying a special
attention to body parts detectors and human datasets. Our work is not supposed to do
research on novel descriptors, therefore an intensive research on state-of-the-art body
part descriptors is required. In this way, obtain or build databases for learn body part
descriptors is also a must, as well as databases with 3D information to test the global
framework of 3D human pose estimation.

Task 1.1: State-of-the-art of human pose recovery, viewpoint estimation and behav-
ior analysis.

Task 1.2: Construction of a library including the state-of-the-art detectors to
find body parts in cluttered scenes, incorporating current trends and novel detec-
tors proposed.

Task 1.3: Extensive search for public databases must also be done. Databases
with labeled body parts are needed to learn and test body part detectors, as well
as datasets including 3D information of humans are required to test the 3D human
pose estimation.

Task 1.4: Validation & publication: Validation of the proposed methods on to the
state-of-the-art databases, in comparison with current trends and similar method-
ologies. Final results will be summarized and published in international scientific
forums.

5.3.2 Task 2: 3D body pose from 2D image evidences

The second step of this Thesis proposal searches to infer the human 3D pose from video
sequences. In this first approach, it will be done for only one subject and hard kinematic
constraints (e.g. bone length).

Task 2.1: Build likelihood maps for body parts: head, trunk and limbs. This task
includes the election of the most suitable part detectors and the study of the most
reliably detected parts to sort the subsequent image search.

Task 2.2: Estimate 3D pose during walking action given body pose priors with
fixed bone lengths and fixed camera viewpoint, searching for the most suitable pose
which matches with likelihood maps. Though it is the first approximation to 3D
human pose in this work, which makes this task challenging is that all computations
are performed in 3D, instead of the image search, which is a projection over 2D
image likelihood.

Task 2.3: Estimate 3D pose for several actions, maintaining previous restrictions.
This task includes the learning of different pose priors for more complex actions
than walking, such gestures or jumping, and be able to estimate the 3D pose for
all of them.
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Task 2.4: Validation & publication: Validation of the proposed methods on to the
state-of-the-art databases, in comparison with current trends and similar method-
ologies. Final results will be summarized and published in international scientific
forums.

5.3.3 Task 3: 3D body tracking

This step refers to the refinement of the 3D human pose through the addition of motion
information in conjunction with 3D kinematic body models. By adding motion priors,
restrictions of previous tasks shall be relaxed after this analysis. However, previous
constraints of fixed bone length and fixed camera viewpoint should be maintained during
this task.

Task 3.1: Motion priors in 3D will be learned for walking action. All the process
will be performed in 3D until the image search, projecting the 3D information over
2D image likelihoods of body parts.

Task 3.2: General vs. specific motion priors study about the applicability of both
models. General priors and action specific motion models will be tested, as well as
the combination of both approaches in a hierarchical way: first proposing a rough
trajectory through general priors and then refining the solution by specific models.

Task 3.3: Different motion priors will be learned for more complex actions than
walking (such gestures or jumping), if the results of Task 3.2 indicate that specific
motion priors outperform the general ones.

Task 3.4: Joint learning of motion and pose priors for certain human actions. Study
the benefits of a common learning of both priors, as well as study the viability of
a common learning with appearance parameters.

Task 3.5: Validation & publication: Validation of the proposed methods on to the
state-of-the-art databases, in comparison with current trends and similar method-
ologies. Final results will be summarized and published in international scientific
forums.

5.3.4 Task 4: Joint 3D body pose and viewpoint estimation

The forth step of the proposed Thesis is to explore the possibilities of the joint 3D human
pose and viewpoint estimation, given body pose models, priors of the camera pose and
motion priors for walking action.

Task 4.1: Relax viewpoint constraints jointly learning 3D body pose and view-
point, maintaining restrictions over fixed bone length (i.e. body pose only could
be estimated for one subject). All computation is performed in 3D and fitted into
2D image evidences.
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Task 4.2: Kinematic of various subjects will be learned, relaxing constraints of
bones length but increasing memory storage and the search space.

Task 4.3: Validation & publication: Validation of the proposed methods on to the
state-of-the-art databases, in comparison with current trends and similar method-
ologies. Final results will be summarized and published in international scientific
forums.

5.3.5 Task 5: Feedback with activity estimation

The following task proposed in this Thesis refers to improve previous results on joint 3D
pose and viewpoint estimation by a feedback with activity classification.

Task 5.1: Cluster study on pose priors, as well as motion priors, and the recursive
optimization algorithm for finding the pose which maximizes the cluster, while
finding the best cluster to reduce the search space.

Task 5.2: Study influences of behavior/activity on the clusters of poses and mo-
tion priors. This knowledge will be used on the selection of specific priors depending
on the action is being performed.

Task 5.3: Joint 3D body pose, viewpoint and activity estimation in cluttered
scenes in a full framework.

Task 5.4: Validation & publication: Validation of the proposed methods on to the
state-of-the-art databases, in comparison with current trends and similar method-
ologies. Final results will be summarized and published in international scientific
forums.

5.3.6 Task 6: Real scenarios and applications

This step consists on applying the previous research on to the field of social robotics.
Applications are divided in two topics: content retrieval and Human Robot Interaction
(HRI):

Task 6.1: Content retrieval of monocular video sequences given smart queries. These
queries could include human poses, gestures and complex human behaviors. Video
indexing can be applied in several domains, processing sequences batch. This task
is oriented to video sequences where appear long term patients, with the final
objective to provide statistics to clinicians about the evolution motor diseases.

Task 6.2: Monitorize patients suffering motor diseases in indoor environments. Monoc-
ular marker-less Motion Capture (MoCap) is a powerful approach to provide in-
formation to clinicians in near real-time. This task includes software optimization
to process video sequences in the time required by this application.
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Task 6.3: Human Robot Interaction (HRI): Optimization and adaptation of de-
veloped algorithms to be executed on a robotic platform. Human pose estimation
and behavior analysis provide powerful tools to be applied in HRI.

Task 6.4: Validation & publication: Validation of the proposed methods on to the
state-of-the-art databases, in comparison with current trends and similar method-
ologies. Final results will be summarized and published in international scientific
forums.

5.3.7 Task 7: Compilation of results

The last task proposed for this Thesis refers to the elaboration of the dissertation and
the preparation of the public defense.

6 Resources

The proposed research work will be developed mainly at the Technical Research Centre
for Dependency Care and Autonomous Living (CETpD) from Universitat Politècnica
de Catalunya, working in the framework of social robotics. Part of this research is also
being done in collaboration with the BCN Perceptual Computing Lab (BCNLab) at
the Universitat de Barcelona (UB) and Centre de Visió per Compuitador (CVC) at the
Universitat Autònoma de Barcelona. The author is being financed by the Comissionat
per a Universitats i Recerca del Departament d’Innovació, Universitats i Empresa de
la Generalitat de Catalunya, through a TEM grant associated to Fundació Hospital
Comarcal Sant Antoni Abat.

7 State of research

According to the planing presented in Figure 6, the current state of research can be
summarized by the data collection of two datasets of 3D human motion and labeled
body parts (see Figure 7), as well as the following list of publications:

1. Biologically inspired path execution using SURF flow in robot navigation [29]: In
the field of social robotics, has been completed research on detectors and descrip-
tors based on RGB cues, as well as using motion.

2. Biologically Inspired Turn Control for Autonomous Mobile Robots [30]: Comple-
menting the previous work [29], egomotion is studied in this paper in order to
compute motion information from monocular image sequences.

3. Identificación y seguimiento de personas usando kinect por parte de un robot seguidor [34]:
Tracking of people by applying color histograms was proposed in this work to follow
people with a social robot.
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Figure 7: HuPBA datasets. Sample frames of (left) video sequences of different activities,
with manually labeled body parts; and (right) 3D avatar animated with real motions
captured with our framework working on Microsoft KinectTM .

4. Uniform Sampling of Rotations for Discrete and Continuous Learning of 2D Shape
Models [55]: Different approaches to uniform samplings of rotations are reviewed
in this book chapter with the final goal of building statistical models.

5. BoVDW: Bag-of-Visual-and-Depth-Words for Gesture Recognition [38]: A frame-
work is proposed to classify human gestures from RGB features, as well as using
motion combined with depth information.

6. Probability-based Dynamic Time Warping for Gesture Recognition [39]: A proba-
bilistic approach to Dynamic TimeWarping is proposed in this work in a framework
of gesture classification.

7. Survey on Spatio-Temporal View Invariant Human Pose Recovery [14]: This paper
is a survey of human pose estimation, where classical methods are reviewed and
compared with current trends in this topic.

8. Continuous Alternative to Generalized Procrustes Analysis [74]: In this work, 2D
shape models are learned from 3D objects, in order to avoid typical problems of
learning certain 2D projections of 3D data.
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