Accurate and robust fully-automatic QCA: Method and numerical validation

Abstract

The Quantitative Coronary Angiography (QCA) is a methodology used to evaluate the arterial diseases and, in particular, the degree of stenosis. In this paper we propose AQCA, a fully automatic method for vessel segmentation based on graph cut theory. Vesseness, geodesic paths and a new multi-scale edginess map are used to compute a globally optimal artery segmentation. We evaluate the method performance in a rigorous numerical way on two datasets. Moreover, the method can discriminate between arteries and catheter with an accuracy of 96.4%.

1. Automatic Vessel Segmentation

Graph-cuts Energy Minimization Framework [3]

\[E(\alpha, k, \theta, z) = U(\alpha, k, \theta, z) + V(\alpha, z) \]

2. Centerline extraction

Segmentation ➔ Distance transform ➔ Non-maximum suppression ➔ Ridge transversal

3. Caliber estimation

\[\sigma^2 \log_G(x, y; \sigma) \]

Minimum at \(\sigma = w/2 \)

4. Catheter detection

Feature Extraction

Position \(x \), Curvature \(K(x) \), Angular direction \(\alpha(x) \), Caliber \(C(x) \)

Bayesian Classifier

\[p(x|c) \]
\[p(\log(e + K(x))|c) \]
\[p(\alpha(x)|c) \]
\[p(C(x)|c) \]

5. Results

Absolute and signed caliber error in DS2 (in mm)

<table>
<thead>
<tr>
<th></th>
<th>(\Delta D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IO</td>
<td>0.18±0.24 -0.001±0.3</td>
</tr>
<tr>
<td>GC</td>
<td>0.84±0.74 0.096±1.12</td>
</tr>
<tr>
<td>AQCA</td>
<td>0.49±0.55 -0.1±0.73</td>
</tr>
</tbody>
</table>

Catheter detection %

Sensitivity	70.9
Precision	90.1
Accuracy	96.4

Acknowledgements

This work has been supported in part by the projects: La Marató de TV3 (20131, TIN2008-14404-C02 and CONSOLIDER-INGENIO CSD 2007-00019). The work of C. Gatta is supported by a becas de Pinos Fellowship.