

Vision-based Navigation and Reinforcement Learning Path Finding for Social Robots

Xavier Pérez Sala

Dr. Sergio Escalera (UB) and Dr. Cecilio Angulo

Motivation

- Path finding:
 - Мар
 - To optimize the route
- Navigation:
 - Follow the route

Motivation

- Avoid the necessity to know the world's map
- Robot finds the best solution by itself
- Robot really follows the route

Robot only needs information from its sensors

Motivation

- Unknown maze
 - → Unknown house
- Leaving the maze
 - → Route between rooms
- Social Robotics

Overview

Overview

Goals

- 1. Working environment:
 - a) Robot framework
 - b) Computer and communication platforms
 - c) Exchange protocols
- 2. To implement Reinforcement Learning algorithms
- 3. Leave the T-maze in the real world
- 4. To track the robot and to compute the reward
- 5. Reliable state representation
- 6. Vision Based Navigation:
 - a) Anti-collision reactive layer
 - b) Reliable actions: controlled forward and controlled turn

Working Environment

- 1. Working environment:
 - a) Robot framework
 - b) Computer and communication platforms
 - c) Exchange protocols
- 2. To implement Reinforcement Learning algorithms
- 3. Leave the T-maze in the real world
- 4. To track the robot and to compute the reward
- 5. Reliable state representation
- 6. Vision Based Navigation:
 - a) Anti-collision reactive layer
 - b) Reliable actions: controlled forward and controlled turn

Working Environment

- 1. Working environment:
 - a) Robot framework
 - b) Computer and communication platforms
 - c) Exchange protocols
- 2. To implement Reinforcement Learning algorithms
- 3. Leave the T-maze in the real world
- 4. To track the robot and to compute the reward
- 5. Reliable state representation
- 6. Vision Based Navigation:
 - a) Anti-collision reactive layer
 - b) Reliable actions: controlled forward and controlled turn

- Set of world states X
- Set of actions U
- Set of scalar rewards

- At each $X_t \rightarrow u(x_t) \rightarrow receives x_{t+1}$, reward_{t+1}
- Interactions with the world \rightarrow policy π

- Our approach:
 - $X \in \mathbb{R}^n$, where n=dictionary size + sensors used =53
 - − U ∈ [FORWARD, BACKWARD, LEFT, RIGHT]
 - Reward $\in R$
- High state space dimensionality
 - Too much to grid the state space
 - Policy Gradient → Natural Actor Critic

- 1. Working environment:
 - a) Robot framework
 - b) Computer and communication platforms
 - c) Exchange protocols
- 2. To implement Reinforcement Learning algorithms
- 3. Leave the T-maze in the real world
- 4. To track the robot and to compute the reward
- 5. Reliable state representation
- 6. Vision Based Navigation:
 - a) Anti-collision reactive layer
 - b) Reliable actions: controlled forward and controlled turn

- Distance and relative orientation goal robot
- Landmarks only here

- Industrial environment
- Filter by color

- 1. RGB \rightarrow HSV
- 2. Important pixels
- 3. Filter by Hue
- 4. Label images
- 5. Filter by area
- 6. Filter by distance
- 7. Filter by square

- Resulting image:
- Anti-errors layer
 - ROI
 - Uncertainly

First execution: 202.365ms

Other executions: 54.108ms

Results

- 1. Working environment:
 - a) Robot framework
 - b) Computer and communication platforms
 - c) Exchange protocols
- 2. To implement Reinforcement Learning algorithms
- 3. Leave the T-maze in the real world
- 4. To track the robot and to compute the reward
- 5. Reliable state representation
- 6. Vision Based Navigation:
 - a) Anti-collision reactive layer
 - b) Reliable actions: controlled forward and controlled turn

 (x,y,Ψ) position vs.

Robot view "Bag of Visual Words"

- It comes from BoW
- SURF features
- Dictionary is needed
- Image → Histogram

Results (50 Words)

x = [50 BoVW histogram, 3 sensors]

- 1. Working environment:
 - a) Robot framework
 - b) Computer and communication platforms
 - c) Exchange protocols
- 2. To implement Reinforcement Learning algorithms
- 3. Leave the T-maze in the real world
- 4. To track the robot and to compute the reward
- 5. Reliable state representation
- 6. Vision Based Navigation:
 - a) Anti-collision reactive layer
 - b) Reliable actions: controlled forward and controlled turn

- Turn 90° left
- Turn 90° right
- Go forward (2 seconds)
- Go backward (2 seconds)

We can trust on them?

Open loop vs. closed loop

i CLOSED LOOP IS NEEDED!

(Vision Based Navigation)

Vision Based Navigation

Extract motion information from consecutive images

- Simple odometry -> smart correspondences
- Anti-collision layer

- 1. To turn the head in an specific angle
- 2. Start turning the while robot keeps its head still
- 3. Turn is completed when head and body are aligned

error = steering angle = mean motion vector

Correspondences → most common angle → oriented correspondences → mean angle

Results (robot view)

Results

Open loop

Closed loop

Results (left turn)

error = center – average last vanishing points

- 1. Correspondences
- 2. Motion vectors
- 3. Vanishing point (VP)
- 4. Iterate over various hypotheses
- 5. Choose the best VP
- 6. Average last VP's

Results (robot view)

Results

Open loop

Closed loop

Results

Results

Conclusions

- ✓ Working environment:
 - Robot framework
 - Computer and communication platforms
 - Exchange protocols
- ▼ To implement Reinforcement Learning algorithms
- x Leave the maze in the real world
- To track the robot and to compute the reward
- Reliable state representation
- ✓ Vision Based Navigation:
 - Anti-collision reactive layer.
 - Reliable actions: controlled forward and controlled turn

Future work

- Improve Reinforcement Learning part, looking for a better learning parameters.
- Strong research on colors spaces (CIE-LAB).
- Improve error signal for forward control:
 - Averaged vanishing point -> Joints information
- Test our Control Navigation in a wheeled robot

Thanks for your attention

Doubts & questions