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Abstract. We present a dictionary between arithmetic geometry of toric varieties and convex

analysis. This correspondence allows for effective computations of arithmetic invariants of these

varieties. In particular, combined with a closed formula for the integration of a class of functions
over polytopes, it gives a number of new values for the height (arithmetic analog of the degree)

of toric varieties, with respect to interesting metrics arising from polytopes. In some cases these

heights are interpreted as the average entropy of a family of random processes.

1. Introduction

Toric varieties form a remarkable class of algebraic varieties, endowed with an action of a
torus having one Zariski dense open orbit. It is well known that their geometric properties can be
described in terms of combinatorial objects such as fans and polytopes having the same dimension,
say n, as the toric variety. For instance, the degree of a toric variety with respect to a nef toric
divisor is n! times the volume of the corresponding polytope.

In the book [4], we have extended this dictionary by linking the arithmetic geometry of toric
varieties defined over a number field to convex analysis. Here, the arithmetic ingredients are
given by (semipositive) metrics on the toric line bundle associated to a toric divisor. Each of
these metrics correspond to a continuous concave function on the associated polytope, that we
call the local roof function. These functions combine in a global roof function over the polytope.
In this context, the arithmetic invariant analogous to the degree is the height which, similarly to
the degree, can be expressed as (n + 1)! times the integral over the polytope of the global roof
function.

For particular choices of metrics, these heights coincide with the average entropy of certain
random processes associated to the polytope. Our toric “dictionary”, combined with a closed
formula for the integration of a class of functions over polytopes, allows to compute the values of
these heights. All the results presented here can be found in more details in [4].

2. Heights and toric varieties

In this section we recall some of the basic constructions and results in [4]. Details and more
information can be found in this reference. The reader can also consult [6, 5] for a background on
the algebraic geometry of toric varieties.

Let N ' Zn be a lattice of rank n and M := Hom(N,Z) its dual lattice. Set NR := N⊗ZR ' Rn
and MR := M ⊗Z R. We denote by 〈x, u〉 the pairing between x ∈MR and u ∈ NR.

To a lattice fan Σ on NR we associate a toric scheme over the integers, denoted by XΣ. This
scheme is flat over Spec(Z) of relative dimension n. It is equipped with an action of the algebraic
torus TN := Spec(Z[M ]) ' Gnm,S extending the natural action of TN on itself. This action has
a dense orbit, denoted X◦Σ and which is canonically isomorphic to TN . The scheme XΣ,S is
projective whenever the fan Σ is complete and regular, and it is smooth whenever each cone of Σ
is generated by a subset of a basis of N , see [5]. We will assume both properties from now on.
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tially supported by the CNRS project PICS “Géométrie diophantienne et calcul formel” and the ANR research
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A virtual support function is a continuous function Ψ: NR → R whose restriction to each of
the cones of Σ is an element of M . Such a function defines an invariant Cartier divisor DΨ of
XΣ,S or, equivalently, an equivariant line bundle LΨ,S together with an invariant rational section
sΨ such that div(sΨ) = DΨ, see [6, § 3.3 and 3.4]. The divisor DΨ is relatively ample if and only
if Ψ is concave and restricts to different elements of M on each of the maximal cones of Σ. We
will also suppose this from now on. Under this assumption, the polyhedron

∆Ψ := {x ∈MR : 〈x, y〉 ≥ Ψ(y) for all y ∈ NR} ⊂MR

is an n-dimensional polytope.

Let XΣ(C) and TN (C) respectively denote the analytification of the scheme XΣ and of the
algebraic torus T. Also let S := {t ∈ TN (C) | |t| = 1} be the compact subtorus of TN (C). There
is a map val : X◦Σ(C)→ NR, defined, in a given splitting X◦Σ(C) = TN (C) ' (C×)n, by

val(x1, . . . , xn) = (− log |x1|v, . . . ,− log |xn|v).

This map does not depend on the choice of the splitting and the compact torus S coincides with
its fiber over the point 0 ∈ NR.

We furthermore consider a semipositive toric metric ‖·‖ on the analytification of the line bundle
LΨ, that is, a semipositive metric which is invariant under the action of S. We denote by LΨ the
line bundle metrized in this way. Such a toric metrized line bundle defines a continuous function
ψL : NR → R given, for p ∈ T(C), by

ψL(val(p)) = log ‖sΨ(p)‖v.

This function is concave. We can then consider its Legendre-Fenchel dual ψ∨
L

: MR → R ∪ {−∞}
defined by

ψ∨
L

(x) = inf
u∈NR

(〈u, x〉 − ψL(u)).

The stability set of a concave function is the set of points where its Legendre-Fenchel dual is
> −∞. It turns out that the stability set of ψL coincides with the polytope ∆Ψ and that the

function ψ∨
L

is continuous and concave on ∆Ψ. The roof function of L, denote ϑL, is defined as

the restriction of ψ∨
L

to the polytope ∆Ψ.

Given a flat projective and smooth scheme X over Spec(Z) equipped with a semipositive
metrized line bundle L, we can define using arithmetic intersection theory a height function,
denoted hL, for subschemes of XΣ, see [2, 8, 10]. It is the arithmetic analogue of the notion of
degree of subvarieties.

One of the main results in [4] is that the height of a toric scheme with respect to a toric
semipositive metrized line bundle can be expressed as the integral of the associated roof function
[4, Theorem 5.2.5]. In precise terms,

(1) hLΨ
(XΣ) = (n+ 1)!

∫
∆Ψ

ϑL d volM ,

where volM is the Haar measure on MR normalized so that the lattice M has covolume 1.

3. Metrics from polytopes and entropy

In some cases, the height of a toric variety with respect to a toric semipositive metrized line
bundle has an interpretation in terms of the average entropy of a family of random processes.

Let ∆ ⊂ Rn be a lattice polytope of dimension n and Γ an arbitrary polytope containing it. For
a point x in the interior of ∆, we denote by Πx the partition of Γ consisting of the cones ηx,F of
vertex x and base the relative interior of each proper face F of Γ. We consider Γ as a probability
space endowed with the uniform probability distribution. Let βx be the random variable that
maps a point y ∈ Γ to the base F of the unique cone ηx,F that contains y. Clearly, the probability
that a given face F is returned is the ratio of the volume of the cone based on F to the volume
of Γ. We have

voln(ηx,F ) = n−1dist(x, F ) voln−1(F ),
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where voln and voln−1 respectively denote the Euclidean n-th and (n− 1)-th Euclidean volume of
convex subsets of Rn, and dist(x, F ) denotes the distance of the point x to the face F . Hence,

(2) P (βx = F ) =


dist(x, F ) voln−1(F )

n voln(Γ)
if dim(F ) = n− 1,

0 if dim(F ) ≤ n− 2.

The entropy of the random variable βx is

E(x) = −
∑
F

P (βx = F ) log(P (βx = F )),

where the sum is over the facets F of Γ.
From the polytope Γ, we can construct a concave function on itself as follows. For each facet F

of Γ, we denote by u′F ∈ Rn the inner normal vector to F of Euclidean norm (n− 1)! voln−1(F ).
Set λ(F ) = infx∈Γ〈x, u′F 〉 and consider the affine polynomial defined as

(3) `F (x) = 〈x, u′F 〉 − λ(F ).

Hence,

Γ = {x ∈MR | `F (x) ≥ 0 for every facet F}.
In particular, `F is nonnegative on Γ, and we can consider the function ϑΓ : Γ→ R defined by

ϑΓ(x) = −1

2

∑
F

`F (x) log(`F (x)).

By [4, Lemma 6.2.1], this function is concave.

Notation 1. Let Σ∆ and Ψ∆ be the fan and the support function on NR = Rn induced by the
polytope ∆, see [4, Example 2.5.13]. Let XΣ∆

and LΨ∆
be the corresponding toric scheme and

line bundle. The restriction of the function ϑΓ above to ∆ is a continuous concave function and
so, by [4, Theorem 4.8.1], it corresponds to a semipositive toric metric on LΨ∆ . We denote this
metric by ‖ · ‖∆,Γ and we write LΨ∆

for the line bundle LΨ∆
equipped with this toric metric.

Example 1. Let ∆n = {(x1, . . . , xn) | xi ≥ 0,
∑
i xi ≤ 1} be the standard simplex of Rn and

consider the case when Γ = ∆ = ∆n. The corresponding concave function on ∆n is given by

ϑ∆n(x1, . . . , xn) = −1

2

(
1−

∑
i

xi

)
log
(

1−
∑
i

xi

)
− 1

2

n∑
i=1

xi log(xi).

From [4, Example 2.4.3 and 4.3.9(1)], we deduce that the corresponding toric metric is the Fubini-
Study metric on O(1), the universal line bundle on the projective space Pn.

Remark 1. This kind of metrics are interesting for the Kähler geometry of toric varieties. Given
a Delzant polytope ∆ ⊂ Rn, Guillemin has constructed a “canonical” Kähler structure on the
associated symplectic toric variety, see [7] for details. Following Guillemin, this canonical Kähler
structure is codified by a convex function on the polytope, dubbed the “symplectic potential”.

With the notation above, when Γ = ∆ and u′F is a primitive vector in N for every facet F ,
the function −ϑΓ coincides with this symplectic potential, see [7, Appendix 2, (3.9)]. In this case,
the metric ‖ · ‖∆,Γ on the line bundle LΨ∆ is smooth and positive, and its Chern form gives this
canonical Kähler form.

The following result shows that the average entropy of the random variables βx, x ∈ ∆, with
respect to the uniform distribution on ∆ can be expressed in terms of the height of the toric variety
XΣ∆

with respect to L.

Theorem 1. With the above notation,

1

voln(∆)

∫
∆

E d voln =
1

n! voln(Γ)

(
2 hL(XΣ∆

)

(n+ 1) degL(XΣ∆
)
− λ(Γ)log(n! voln(Γ))

)



4 BURGOS GIL, PHILIPPON, AND SOMBRA

with λ(Γ) =
∑
F λ(F ), the sum being over the facets F of Γ. In particular, if Γ = ∆,

1

voln(∆)

∫
∆

E d voln =
2 hL(XΣ∆

)

(n+ 1) degL(XΣ∆
)2
− λ(Γ)

log(degL(XΣ∆
))

degL(XΣ∆
)

.

Proof. By [9, Lemma 5.1.1], the vectors u′F satisfy the Minkowski condition
∑
F u
′
F = 0. Hence∑

F

`F = −
∑
F

λ(F ) = −λ(Γ).

Let x be a point in the interior of ∆ and F a facet of Γ. We deduce from (2) that P (βx = F ) =
`F (x)/(n! voln(Γ)). Hence,

E(x) = −
∑
F

`F (x)

n! voln(Γ)
log
( `F (x)

n! voln(Γ)

)
=

1

n! voln(Γ)

(
−
∑
F

`F (x) log(`F (x))− λ(Γ) log(n! voln(Γ))

)
=

1

n! voln(Γ)

(
2ϑΓ(x)− λ(Γ) log(n! voln(Γ))

)
.

The result then follows from the expression for the height of XΣ∆ in (1) and the analogous
expression for its degree in [6, page 111, Corollary]. �

Example 2. The Fubini-Study metric of O(1) corresponds to the case when Γ and ∆ are the
standard simplex ∆n. In that case, the average entropy of the random variables βx, x ∈ ∆, is

1

n!

∫
∆n

E d voln =
2 hO(1)

(Pn)

(n+ 1)
.

4. Integration on polytopes

In this section, we present a closed formula for the integral over a polytope of a function of one
variable composed with a linear form, extending in this direction Brion’s formula for the case of a
simplex [3], see Proposition 1 and Corollary 2 below. This formula allow us to compute the height
of toric varieties with respect to the metrics arising from polytopes as in §3.

We consider the vector space Rn with its usual scalar product, that we denote 〈·, ·〉, and its
Lebesgue measure, that we denote voln. We also consider a polytope ∆ ⊂ Rn of dimension n.

Definition 1. Let u ∈ Rn and λ ∈ R, the aggregate of ∆ in the affine subset

Lu,λ := {x ∈ Rn | 〈x, u〉 = λ}

is the union of all the faces of ∆ contained in Lu,λ. An aggregate V of ∆ in the direction u is an
aggregate in Lu,λ for some λ ∈ R.

We denote by dim(V ) the maximal dimension of a face of ∆ contained in V . In particular,
dim(∅) = −1.

We write ∆(u) for the set of non-empty aggregates of ∆ in the direction u. In particular,
∆(0) = {∆}. Note that, if V ∈ ∆(u) and x is a point in the affine space spanned by V , then the
value 〈x, u〉 is independent of x. We denote this common value by 〈V, u〉.

For any two aggregates V1, V2 ∈ ∆(u), we have V1 = V2 if and only if 〈V1, u〉 = 〈V2, u〉.

Example 3.

(1) Every facet of a polytope is an aggregate in the direction orthogonal to the facet.
(2) If u is general enough, the set ∆(u) agrees with the set of vertices of ∆.
(3) Let ∆ = {(x, y) ∈ R2 | 0 ≤ x, y ≤ 1} be the unit square and u = (1, 1). Then the set of

aggregates ∆(u) contains three elements: {(0, 0)}, {(1, 0), (0, 1)} and {(1, 1)}.
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In each facet F of ∆ we choose a point mF . Let LF be the linear hyperplane defined by F and
πF the orthogonal projection of Rn onto LF . Then, F −mF is a polytope in LF of full dimension
n − 1. To ease the notation, we identify F −mF with F . Observe that, with this identification,
for V ∈ ∆(u), the intersection V ∩ F is an aggregate of F in the direction πF (u). We also denote
by uF the inner normal vector to F of norm 1.

Definition 2. Let u ∈ Rn be a vector. For each aggregate V in the direction of u, we define the
coefficients Ck(∆, u, V ), k ∈ N, recursively. If u = 0, then V is either ∅ or ∆. For both cases, we
set

Ck(∆, 0, V ) =

{
voln(V ) if k = n,

0 otherwise.

If u 6= 0, we set

Ck(∆, u, V ) = −
∑
F

〈uF , u〉
‖u‖2

Ck(F, πF (u), V ∩ F ),

where the sum is over the facets F of ∆. This recursive formula implies that Ck(∆, u, V ) = 0 for
all k > dim(V ).

Let Cn(R) be the space of functions of one real variable which are n-times continuously differ-
entiable. For f ∈ Cn(R) and 0 ≤ k ≤ n, we write f (k) for the k-th derivative of f . We want to
give a formula that, for f ∈ Cn(R), computes∫

∆

f (n)(〈x, u〉) d voln(x)

in terms of the values of the function x 7→ f(〈x, u〉) at the vertices of ∆. However, when u is
orthogonal to some faces of ∆ of positive dimension, such a formula necessarily depends on the
values of the derivatives of f .

Proposition 1. ([4, Proposition 6.1.4]) Let ∆ ⊂ Rn be a polytope of dimension n and u ∈ Rn.
Then, for any f ∈ Cn(R),∫

∆

f (n)(〈x, u〉) d voln(x) =
∑

V ∈∆(u)

∑
k≥0

Ck(∆, u, V )f (k)(〈V, u〉).

The coefficients Ck(∆, u, V ) are uniquely determined by this identity.

Corollary 1. Let ∆ ⊂ Rn be a polytope of dimension n and u ∈ Rn. Then,∑
V ∈∆(u)

min{i,dim(V )}∑
k=0

Ck(∆, u, V )
〈V, u〉i−k

(i− k)!
=

{
0 for i = 0, . . . , n− 1,

voln(∆) for i = n.

Proof. This follows from proposition 1 applied to the functions f(z) = zi/i!. �

The following result gives the basic properties of the coefficients associated to the aggregates
of a polytope.

Proposition 2. ([4, Proposition 6.1.6]) Let ∆ ⊂ Rn be a polytope of dimension n and u ∈ Rn.
Let V ∈ ∆(u) and k ≥ 0.

(1) The coefficient Ck(∆, u, V ) is homogeneous of weight k− n in the sense that, for λ ∈ R×,

Ck(∆, λu, V ) = λk−nCk(∆, u, V ).

(2) The coefficients Ck(∆, u, V ) satisfy the vector relation

Ck(∆, u, V ) · u = −
∑
F

Ck(F, πF (u), V ∩ F ) · uF ,

where the sum is over the facets F of ∆.
(3) Let ∆1,∆2 ⊂ Rn be two polytopes of dimension n intersecting along a common facet and

such that ∆ = ∆1 ∪∆2. Then V ∩∆i = ∅ or V ∩∆i ∈ ∆i(u) and

Ck(∆, u, V ) = Ck(∆1, u, V ∩∆1) + Ck(∆2, u, V ∩∆2).
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In case ∆ is a simplex, the linear system given by Corollary 1 has as many unknowns as
equations. In this case, the coefficients corresponding to an aggregate in a given direction are
determined by this linear system. The following result gives a closed formula for those coefficients.

Proposition 3. ([4, Proposition 6.1.7]) Let ∆ ⊂ Rn be a simplex and u ∈ Rn. Write dW =
dim(W ) for W ∈ ∆(u). Then, for V ∈ ∆(u) and 0 ≤ k ≤ dim(V ),

Ck(∆, u, V ) = (−1)dV −k
n!

k!
voln(∆)

∑
η∈N∆(u)\{V }

|η|=dV −k

∏
W∈∆(u)\{V }

(
dW+ηW
dW

)
〈V −W,u〉dW+ηW+1

.

Remark 2. We can rewrite the formula in Proposition 3 in terms of vertices instead of aggregates
as follows:

(4) Ck(∆, u, V ) = (−1)dV −k
n!

k!
voln(∆)

∑
|β|=dV −k

∏
ν /∈V

〈V − ν, u〉−βν−1,

where the product is over the vertices ν of ∆ not lying in V and the sum is over the tuples β of
non negative integers of length dV − k, indexed by those same vertices of ∆ that are not in V ,
that is, β ∈ Nn−dV and |β| = dV − k.

Example 4. Let ∆ ⊂ Rn be a simplex and u ∈ Rn. If a vertex ν0 of ∆ is an aggregate in the
direction of u, then formula (4) reduces to

(5) C0(∆, u, ν0) = n! voln(∆)
∏
ν 6=ν0

〈ν0 − ν, u〉−1,

where the product runs over all vertices of ∆ different from ν0. Suppose that the simplex is
presented as the intersection of n+ 1 halfspaces as

∆ =

n⋂
i=0

{x ∈ Rn| 〈x, ui〉 − λi ≥ 0}

with ui ∈ Rn \ {0} and λi ∈ R. Up to a reordering, we can assume that u0 is an inner normal
vector to the unique face of ∆ not containing ν0. We denote by ε the sign of (−1)n det(u1, . . . , un).
Then the above coefficient can be alternatively written as

C0(∆, u, ν0) =
εdet(u1, . . . , un)n−1∏n

i=1 det(u1, . . . , ui−1, u, ui+1, . . . , un)
.

From the equation (5), we obtain the following extension of Brion’s “short formula” for the case
of a simplex [3, Théorème 3.2], see also [1].

Corollary 2. Let ∆ ⊂ Rn be a simplex of dimension n that is the convex hull of points νi,
i = 0, . . . , n, and let u ∈ Rn such that 〈νi, u〉 6= 〈νj , u〉 for i 6= j. Then, for any f ∈ Cn(R),∫

∆

f (n)(〈x, u〉) d voln(x) = n! voln(∆)

n∑
i=0

f(〈νi, u〉)∏
j 6=i〈νi − νj , u〉

.

Proof. This follows from Proposition 1 and formula (5). �

The following result gives the value of the integral over a simplex of a function of the form
`(x) log(`(x)), where ` is an affine function.

Proposition 4. Let ∆ ⊂ Rn be a simplex of dimension n and ` : Rn → R an affine function which
is non-negative on ∆. Write `(x) = 〈x, u〉 − λ for some vector u and constant λ. Then

1

voln(∆)

∫
∆

`(x) log(`(x)) d voln(x) =
∑

V ∈∆(u)

∑
β′

(
n

n− |β′|

) `(V )
(

log(`(V ))−
∑|β′|+1
j=2

1
j

)
(|β′|+ 1)

∏
ν /∈V

(
−
( `(ν)
`(V ) − 1

)β′
ν

) ,
where the second sum runs over β′ ∈ (N×)n−dim(V ) with |β′| ≤ n and the product is over the
n− dim(V ) vertices ν of ∆ not in V .
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If `(x) is the defining equation of a hyperplane containing a facet F of ∆, then

1

voln(∆)

∫
∆

`(x) log(`(x)) dx =
`(νF )

n+ 1

(
log(`(νF ))−

n+1∑
j=2

1

j

)
,

where νF denotes the unique vertex of ∆ not contained in F .

Proof. This follows from the formulae (1) and (4) with the function f (n)(z) = (z − λ) log(z − λ),
a (n− k)-th primitive of which is

f (k)(z) =
(z − λ)n−k+1

(n− k + 1)!

log(z − λ)−
n−k+1∑
j=2

1

j

 .

�

We obtain the following formula for the height of a toric variety with respect to the toric metrics
considered in §3, in terms of the coefficients Ck(∆, ui, V ).

Theorem 2. Let ∆ ⊂ Rn be a lattice polytope of dimension n and Γ an arbitrary polytope
containing it. Let XΣ∆

and L = LΨ∆
the toric be as in Notation 1, and `F and u′F the affine

polynomial and the inner normal vector associated to a facet F of Γ as in (3) . Then

hL(XΣ∆
) =

(n+ 1)!

2

∑
F

∑
V ∈∆(u′

F )

dim(V )∑
k=0

Ck(∆, u′F , V )
`F (V )n−k+1

(n− k + 1)!

n−k+1∑
j=2

1

j
− log(`F (V ))

 ,

the first sum being over the facets F of Γ. Suppose furthermore that ∆ ⊂ Rn is a simplex. Then

(6) hL(XΣ∆
) =

n!

2
volM (∆)

∑
F

`F (νF )

( n+1∑
j=2

1

j
− log(`F (νF ))

)
,

where νF is the unique vertex of ∆ not contained in the facet F .

Proof. The first statement follows readily from the formula (1) and Proposition 1 applied to the
functions

fi(z) =

log(z − λi)−
n+1∑
j=2

1

j

 (z − λi)n+1/(n+ 1)!.

The second statement follows similarly from Proposition 4. �

Example 5. Let O(1) be the universal line bundle of Pn. As we have seen in Example 1, the
Fubini-Study metric of O(1) corresponds to the case of the standard simplex ∆n. Hence we recover
from (6) the well known expression for the height of Pn with respect to the Fubini-Study metric
in [2, Lemma 3.3.1]:

hO(1)
(Pn) =

n+ 1

2

n+1∑
j=2

1

j
=

n∑
h=1

h∑
j=1

1

2j
.

Hence, in this case the average entropy of the random variables βx, x ∈ ∆n, is

1

n!

∫
∆n

E d voln =
2 hO(1)

(Pn)

(n+ 1)
=

n+1∑
j=2

1

j
.
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