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Abstract. We present a quantitative version of Bilu's theorem on the limit distri-
bution of Galois orbits of sequences of points of small height in the N -dimensional
algebraic torus. Our result gives, for a given point, an explicit bound for the discrep-
ancy between its Galois orbit and the uniform distribution on the compact subtorus,
in terms of the height and the generalized degree of the point.

1. Introduction

One of the �rst results concerning the distribution of Galois orbits of points of small
height in algebraic varieties is due to Bilu [Bil97]. It establishes that the Galois orbits
of strict sequences of points of small Weil height in an algebraic torus tend to the
uniform distribution around the unit polycircle.

Let us introduce some notation before giving the precise formulation of this result.

Fix an algebraic closure Q of Q together with an embedding Q ↪→ C. By C× and Q×

we denote the multiplicative groups of C and Q, respectively. Let N ≥ 1, the Galois

orbit of a point in (Q×)N is its orbit under the action of the absolute Galois group,
Gal(Q/Q).

For a �nite set T ⊂ (C×)N , the discrete probability measure on (C×)N associated
to it is given by

µT =
1

#T

∑
α∈T

δα,

where #T denotes the cardinality of T and δα the Dirac delta measure on (C×)N
supported on α. The unit polycircle (S1)N is the set of points (z1, . . . , zn) ∈ CN such
that |z1| = . . . = |zN | = 1. It is a compact subgroup of (C×)N . We denote by λ(S1)N

the Haar probability measure of (S1)N , considered as a measure on (C×)N .
A sequence (µk)k≥1 of probability measures on (C×)N converges weakly to a pro-

bability measure µ on (C×)N if, for every compactly supported continuous function
F : (C×)N → R, we have

lim
k→∞

∫
(C×)N

Fdµk =

∫
(C×)N

Fdµ.
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Let ξ ∈ Q× and fξ ∈ Z[x] be the minimal polynomial of ξ over the integers. The
Weil height of ξ is de�ned as

h(ξ) =
m(fξ)

deg(ξ)
,

where m(fξ) is the (logarithmic) Mahler measure of fξ, given by

m(fξ) =
1

2π

∫ 2π

0
log |fξ(eiθ)|dθ,

and deg(ξ) = [Q(ξ) : Q] is the degree of the point ξ.

This notion of height extends to (Q×)N as follows:

(1.1) h(ξ) = h(ξ1) + . . .+ h(ξN ), for every ξ = (ξ1, . . . , ξN ) ∈ (Q×)N .

A sequence (ξk)k≥1 in (Q×)N is strict if, for every proper algebraic subgroup Y ⊂
(Q×)N , the cardinality of the set {k : ξk ∈ Y } is �nite.

Theorem 1.1. [Bil97, Theorem 1.1] Let (ξk)k≥1 be a strict sequence in (Q×)N such
that lim

k→∞
h(ξk) = 0. Then we have

lim
k→∞

µSk = λ(S1)N ,

where µSk is the discrete probability measure associated to the Galois orbit Sk of ξk.

This result was inspired on a previous work of Szpiro, Ullmo and Zhang [SUZ97]
on the equidistribution of points of small Néron-Tate height in Abelian varieties. It
was originally motivated by Bogomolov's conjecture, solved in [Ull98] and [Zha98].
The results of Szpiro, Ullmo and Zhang and of Bilu were largely generalized to other
heights and places [Rum99, BH05, FR06, BR06, Cha06, Yua08, Gub08, BB10, Che11,
BRPS15]. In particular, these results established the equidistribution of Galois orbits
of sequences of small points for all places of Q and heights associated to algebraic
dynamical systems. Moreover, this equidistribution phenomenon holds for the bigger
set of test functions with logarithmic singularities along divisors with minimal height,
see [CT09].

As a general fact, these equidistribution theorems are formulated in a qualitative
way, in the sense that no information is provided on the rate of convergence towards the
equidistribution. An exception is [FR06], where a bound for this rate of convergence
is given for a large class of heights of points in the projective line and all places of Q.
Independently, Petsche [Pet05] gave a quantitative version of Bilu's result for the case
of dimension one.

In this paper, we present a quantitative version of Theorem 1.1 for the general N -
dimensional case. In particular, we provide a bound for the integral of a suitable test
function with respect to the signed measure de�ned by the di�erence of the discrete

probability measure associated to the Galois orbit of a point in (Q×)N and the measure
λ(S1)N . This bound is given in terms of the height of the point, a higher dimensional
generalization of the notion of the degree of an algebraic number, and a constant
depending only on the test function.

To state our main result properly, let us introduce further de�nitions and notations.
For every n = (n1, . . . , nN ) ∈ ZN , consider the monomial map

χn : (Q×)N −→ Q×

z = (z1, . . . , zN ) 7−→ χn(z) = zn1
1 . . . znNN .
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We de�ne the generalized degree of a point ξ ∈ (Q×)N by

(1.2) D(ξ) = min
n6=0
{‖n‖1 deg(χn(ξ))},

where deg(χn(ξ)) is the degree of the point χn(ξ) ∈ Q× and ‖ · ‖1 is the 1-norm on
CN . For a particular choice of ξ, the generalized degree can be computed with a �nite
number of operations (Remark 2.7).

Let us identify (R/Z)N × RN and (C×)N via the logarithmic-polar coordinates
change of variables:

(R/Z)N × RN −→ (C×)N
(θ,u) = ((θ1, . . . , θN ), (u1, . . . , uN )) 7−→ (e2πiθ1+u1 , . . . , e2πiθN+uN ).

On (R/Z)N × RN ' (C×)N we consider the translation invariant distance, de�ned as

d((θ,u), (θ′,u′)) =

(
N∑
l=1

|θl − θ′l|2 + |ul − u′l|2
) 1

2

.

A function F : (C×)N → R belongs to the set of test functions F if it satis�es:

(i) F is a Lipschitz function with respect to the distance d;
(ii) The restriction F0 = F |(S1)N is in CN+1((S1)N ,R).

The set F contains all compactly supported functions in CN+1((C×)N ,R).
The following is the main result of this paper.

Theorem 1.2. There is a constant C ≤ 64 such that, for every ξ ∈ (Q×)N with
h(ξ) ≤ 1 and every F ∈ F ,∣∣∣∣∣

∫
(C×)N

FdµS −
∫
(C×)N

Fdλ(S1)N

∣∣∣∣∣ ≤ c(F )
(
4 h(ξ) + C

log(D(ξ) + 1)

D(ξ)

) 1
2

,

where S is the Galois orbit of ξ, µS the discrete probability measure associated to it
and c(F ) a positive constant depending only on F .

For every test function F ∈ F , the function F0, its Fourier transform F̂0, all the �rst
order partial derivatives of F0 and their corresponding Fourier transforms are integrable
with respect to a Haar measure (Theorem A.1). In logarithmic-polar coordinates
F0(θ) = F (θ,0). Then, as shown in the proof of Theorem 1.2, the constant c(F ) can
be bounded by

c(F ) ≤ 2Lip(F ) + 16
N∑
l=1

∥∥∥∥∥ ∂̂F0

∂θl

∥∥∥∥∥
L1

,

where Lip(F ) is the Lipschitz constant of F with respect to the distance d of (C×)N
and ‖ · ‖L1 stands for the L1-norm of a function on the locally compact Abelian group
ZN with respect to the standard Haar measure.

Our main theorem is a quantitative version of Bilu's result. Indeed, if we consider a

strict sequence (ξk)k≥1 in (Q×)N such that h(ξk)→ 0 as k →∞, we necessarily have
that D(ξk)→∞ as k →∞ (Lemma 2.8). Hence, for every function F ∈ F , Theorem
1.2 implies that

lim
k→∞

∫
(C×)N

FdµSk =

∫
(C×)N

Fdλ(S1)N ,
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where µSk is the discrete probability measure associated to the Galois orbit Sk of ξk.
Since F contains a dense subset of the set of compactly supported continuous functions
on (C×)N , we deduce Theorem 1.1.

The rate of convergence in Theorem 1.2 has the expected exponent 1
2 as in Favre

and Rivera-Letelier's paper [FR06], see also Theorem 3.1. On the other hand, one
could ask if, for the general N -dimensional case, the constant c(F ) might be bounded
by the Lipschitz constant of the test function, as in their paper.

The idea of the proof of our result is to reduce the problem, via monomial maps,
to the one-dimensional situation as it was done in [Bil97, DGS14]. In this setting, we
apply Favre and Rivera-Letelier's result (Theorem 3.1). Then, we lift the obtained
quantitative control to the N -dimensional torus by applying the Fourier inversion for-
mula and a study of the Fourier-Stieltjes transform of the discrete probability measure
associated to the orbit of the point.

This paper is structured as follows. Section 2 contains preliminary theory and
general results on Fourier analysis, measures on the Riemann sphere, Galois invariant
sets and the generalized degree. In Section 3, we give the proof of Theorem 1.2, which
is divided in several propositions and lemmas. At the end of the paper there are two
appendices, the �rst one studies the set of test functions F and the second the Lipschitz
constant of an auxiliary function used in Section 3.

Acknowledgements. We thank Joaquim Ortega and Juan Rivera-Letelier for useful
comments and suggestions. The results of this paper are part of the Ph.D. thesis of
the second author [Nar16].

2. Preliminaries

2.1. Fourier analysis. In this section we review basic concepts of Fourier analysis on
(R/Z)N , we refer the reader to [Rud62] for the proof of the stated results.

Let p ≥ 1. Given a function H : (R/Z)N → C, its Lp-norm is de�ned by

‖H‖Lp =

(∫
(R/Z)N

|H(θ)|pdθ

) 1
p

∈ R≥0 ∪ {+∞}.

We say that H ∈ Lp((R/Z)N ) if this norm is �nite. In particular, the function H is
Haar-integrable if it lies in L1((R/Z)N ). Similarly, for a function G : ZN → C, its
Lp-norm is de�ned by

‖G‖Lp =

 ∑
n∈ZN

|G(n)|p
 1

p

∈ R≥0 ∪ {+∞}

and we say that G ∈ Lp(ZN ) if this norm is �nite. Also, G is Haar-integrable if it lies
in L1(ZN ).

Let H : (R/Z)N → C be Haar-integrable, its Fourier transform is the function

Ĥ : ZN → C de�ned as

Ĥ(n) =

∫
(R/Z)N

H(θ)e−2πin·θdθ,

where

n · θ = (n1, . . . , nN ) · (θ1, . . . , θN ) = n1θ1 + · · ·+ nNθN .
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If, in addition, Ĥ is also Haar-integrable, the Fourier inversion formula states that

H(θ) =
∑
n∈ZN

Ĥ(n)e2πin·θ.

For H ∈ (L1 ∩L2)((R/Z)N ), Plancherel's theorem states that Ĥ ∈ L2(ZN ) and
moreover the following holds

‖Ĥ‖L2 = ‖H‖L2 .

For every �nite and regular positive measure λ on (R/Z)N , its Fourier-Stieltjes

transform is the function λ̂ : ZN → C given by

λ̂(n) =

∫
(R/Z)N

e−2πin·θdλ(θ).

We now establish some auxiliary results that will be useful for the proof of Theo-
rem 1.2.

Lemma 2.1. Let H : (R/Z)N −→ C be a Haar-integrable function such that its Fourier

transform Ĥ is also Haar-integrable. For any �nite regular measure λ on (R/Z)N we

have that H is integrable with respect to λ and Ĥλ̂ is Haar-integrable. Moreover, the
following holds ∫

(R/Z)N
Hdλ =

∑
n∈ZN

Ĥ(n)λ̂(n).

Proof. Let λ be a �nite regular measure on (R/Z)N . Its Fourier-Stieltjes transform is

the function λ̂ : ZN → C given by

λ̂(n) =

∫
(R/Z)N

e−2πin·θdλ(θ).

Since both H and Ĥ are Haar-integrable, we apply the Fourier inversion formula that,
together with Fubini's theorem, leads to∫

(R/Z)N
Hdλ =

∫
(R/Z)N

 ∑
n∈ZN

Ĥ(n)e2πin·θ

 dλ(θ)

=
∑
n∈ZN

Ĥ(n)

(∫
(R/Z)N

e2πin·θdλ(θ)

)

=
∑
n∈ZN

Ĥ(n)λ̂(n),

this equality containing the fact that H is integrable with respect to λ and that Ĥλ̂
is Haar-integrable. �

Lemma 2.2. Let H : (R/Z)N → C be a Haar-integrable function such that Ĥ is also
Haar-integrable, and let λ be a �nite regular measure on (R/Z)N . Then∫

(R/Z)N
Hdλ−

∫
(R/Z)N

Hdλ(S1)N = Ĥ(0)
(
λ̂(0)− 1

)
+
∑
n 6=0

Ĥ(n)λ̂(n).
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Proof. Since λ(S1)N is the Haar probability measure of (R/Z)N , for any n ∈ ZN we
have

λ̂(S1)N (n) =

∫
(R/Z)N

e−2πin·θdθ =

{
1 if n = 0,

0 otherwise.

Hence, by Lemma 2.1 we obtain∫
(C×)N

Hdλ(S1)N =
∑
n∈ZN

Ĥ(n)λ̂(S1)N (n) = Ĥ(0).

Then we have∫
(R/Z)N

Hdλ−
∫
(R/Z)N

Hdλ(S1)N

=

 ∑
n∈ZN

Ĥ(n)λ̂(n)

− Ĥ(0) = Ĥ(0)
(
λ̂(0)− 1

)
+
∑
n6=0

Ĥ(n)λ̂(n).

�

2.2. Galois invariant sets. In this section we work with Galois invariant sets and
study their height, for further details on basic Galois theory we refer to [Lan05].

Let T ⊂ (Q×)N be a �nite Galois-invariant set, its height is de�ned as

h(T ) =
∑
α∈T

h(α),

where h(α) is the height of α ∈ (Q×)N as in (1.1). In particular, since the height of

two Galois conjugate points coincide, if T ⊂ (Q×)N is a Galois orbit of cardinality D,
we have

h(T ) = D h(α),

for any α ∈ T .

Lemma 2.3. Let ξ = (ξ1, . . . , ξN ) in (Q×)N , S its Galois orbit and set D = #S.
Then

(1) D = [Q(ξ1, . . . , ξN ) : Q],
(2) for every n ∈ ZN , we have that deg(χn(ξ)) divides D.

Proof. To prove the �rst statement, let M be the normal closure of the extension
Q(ξ1, . . . , ξN ) ofQ, that is, the smallest normal extension ofQ containingQ(ξ1, . . . , ξN ).
Since the extensionM ←↩ Q is Galois, its Galois group G = Gal(M/Q) has cardinality
equal to [M : Q].

The orbit S of ξ under the action of the absolute Galois group coincides with the
orbit of ξ under the action of G, that is

S = {σξ = (σξ1, . . . , σξN ) : σ ∈ G}.
For any element α ∈ S, its isotropy group is the subgroup of G de�ned as

Gα := {σ ∈ G : σα = α}.
Since S is an orbit, the isotropy groups of its elements are conjugate by an inner
automorphism of G and, in particular, they all have the same cardinality. From this
fact, we can easily deduce the classical orbit-stabilizer theorem that states

#S =
#G

#Gα
, for any α ∈ S.
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Since M ←↩ Q is normal, for any intermediate extension M ←↩ L ←↩ Q we have
that M ←↩ L is normal. Thus, M ←↩ Q(ξ1, . . . , ξN ) is a Galois extension whose Galois
group has cardinality

#Gal(M/Q(ξ1, . . . , ξN )) = [M : Q(ξ1, . . . , ξN )].

We claim that Gξ = Gal(M/Q(ξ1, . . . , ξN )). Indeed, an automorphism σ ∈ G lies
in Gξ if and only if σξj = ξj for all j, which is equivalent to the fact that σ ∈
Gal(M/Q(ξ1, . . . , ξN )). Thus,

#G = [M : Q] = [M : Q(ξ1, . . . , ξN )] · [Q(ξ1, . . . , ξN ) : Q]

= #Gal(M/Q(ξ1, . . . , ξN )) · [Q(ξ1, . . . , ξN ) : Q] = #Gξ · [Q(ξ1, . . . , ξN ) : Q].

We can then deduce

D = #S =
#G

#Gξ
= [Q(ξ1, . . . , ξN ) : Q],

which proves statement (1).
Let us prove the second statement of the lemma. For any n ∈ ZN , the element

χn(ξ) = ξn1
1 · · · ξ

nN
N is an element in the �eld extension Q(ξ1, . . . , ξN ). Hence, we have

the tower of extensions

Q(ξ1, . . . , ξN )←↩ Q(χn(ξ))←↩ Q

and the result follows from the multiplicativity of the degree of �eld extensions and
the statement (1). �

Lemma 2.4. Let ξ ∈ Q×, d = deg(ξ) and S its Galois orbit. Then

1

d

∑
α∈S
| log |α|| ≤ 2 h(ξ).

Proof. We have

1

d

∑
α∈S
| log |α|| = 1

d

∑
α∈S

max{− log |α|, log |α|}

=
1

d

∑
α∈S

logmax

{
1

|α|
, |α|

}
=

1

d

∑
α∈S

(logmax{1, |α|2} − log |α|).

Let Pξ(x) = adx
d + . . .+ a0 ∈ Z[x] be the minimal polynomial of ξ over Z. Since S is

the Galois orbit of ξ, we have

Pξ(x) = ad
∏
α∈S

(x− α) and a0 = (−1)dad
∏
α∈S

α.

Since |a0| is a nonzero positive integer, we obtain

1

d

∑
α∈S

(logmax{1, |α|2} − log |α|) = 1

d

∑
α∈S

logmax{1, |α|2}+ log
|ad|
|a0|

≤ 1

d

∑
α∈S

logmax{1, |α|2}+ log |ad|

≤ 2

(
1

d

∑
α∈S

logmax{1, |α|}+ log |ad|

)
= 2h(ξ),
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where the last equality is given by Jensen's formula for the Mahler measure [BG07,
Proposition 1.6.5]. �

Lemma 2.5. Let ξ1 ∈ (Q×)N and consider its Galois orbit {ξ1, . . . , ξD}, where ξj =
(ξj,1, . . . , ξj,N ) for every j = 1, . . . , D. Then

1

D

N∑
l=1

D∑
j=1

| log |ξj,l|| ≤ 2 h(ξ1).

Proof. For every l = 1, . . . , N , the elements ξj,l and ξk,l are conjugates. Let us denote
by Sl the Galois orbit of ξ1,l. By Lemma 2.3, we have that #Sl = deg(ξ1,l) divides D.
This is, there is a positive integer kl such that D = deg(ξ1,l)kl, where kl is exactly the
number of times each element of the orbit is repeated in {ξ1,l, . . . , ξD,l}. We obtain

1

D

N∑
l=1

D∑
j=1

| log |ξj,l|| =
N∑
l=1

1

kl deg(ξ1,l)

D∑
j=1

| log |ξj,l||

=
N∑
l=1

1

deg(ξ1,l)

∑
α∈Sl

| log |α|| ≤
N∑
l=1

2 h(ξ1,l) = 2 h(ξ1),

where the inequality follows from Lemma 2.4. �

Lemma 2.6. Let S ⊂ Q× be a Galois-invariant set of cardinality D. For every
0 < δ < 1, we have

#Sδ < 2

(
log

1

δ

)−1
h(S),

where Sδ = {α ∈ S : | log |α|| > log 1
δ}.

Proof. Write S as a �nite disjoint union of Galois orbits

S = S1 t · · · t Sm.

By de�nition, for any α ∈ Sδ we have

1 <

(
log

1

δ

)−1
| log |α||.

Hence, we obtain

#Sδ <
∑
α∈Sδ

(
log

1

δ

)−1
| log |α|| ≤

(
log

1

δ

)−1∑
α∈S
| log |α||

=

(
log

1

δ

)−1 m∑
l=1

∑
α∈Sl

| log |α|| ≤
(
log

1

δ

)−1 m∑
l=1

2 h(Sl) = 2

(
log

1

δ

)−1
h(S),

where the last inequality holds by Lemma 2.4. �

2.3. The generalized degree. We study now the notion of the generalized degree of
a point in the algebraic torus de�ned in (1.2). First of all, let us see that in dimension

one, it coincides with the notion of the degree of the algebraic number. Let ξ ∈ Q×,
then

D(ξ) = min
n6=0
{|n|deg(ξn)}.
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For every non-zero integer n, let Qn(x) be the minimal polynomial of ξ|n| over Z,
of degree deg(ξ|n|) = deg(ξn). By setting Rn(x) = Qn(x

|n|) ∈ Z[x] we obtain that
Rn(ξ) = 0 and this implies that

deg(ξ) ≤ deg(Rn(x)) = |n|deg(ξn).

Hence, D(ξ) = deg(ξ).

Remark 2.7. For N ≥ 1 and every ξ = (ξ1, . . . , ξN ) in (Q×)N we have that

D(ξ) ≤ min{deg(ξ1), . . . ,deg(ξN )}.

This holds since

{deg(ξ1), . . . ,deg(ξN )} ⊂ {deg(χn(ξ)) : n 6= 0}.

Thus, for a particular choice of ξ, the generalized degree can be computed after a �nite
number of steps by considering all n 6= 0 such that ‖n‖1 ≤ min{deg(ξ1), . . . ,deg(ξN )}.

For N = 1, a strict sequence (ξk)k≥1 in Q× such that lim
k→∞

h(ξk) = 0 veri�es that

lim
k→∞

deg(ξk) = ∞. Indeed, suppose there is some c > 0 such that deg(ξk) ≤ c for

every k ≥ 0. By Northcott's theorem [BG07, Theorem 1.6.8], there are only �nitely

many elements with bounded degree and height. Hence, there is some α ∈ Q× such
that ξk = α for in�nitely many k's. Since h(ξk) tends to 0 as k goes to in�nity,
by Kronecker's theorem [BG07, Theorem 1.5.9] we necessarily have h(α) = 0, which
implies that α is a root of unity. In particular, there is an in�nite subsequence of

(ξk)k≥1 contained in a proper algebraic subgroup of Q× which is not possible by the
assumption that the sequence is strict.

The following lemma is a generalization to the higher dimensional case of this fact.

Lemma 2.8. Let (ξk)k≥1 be a strict sequence in (Q×)N such that limk→∞ h(ξk) = 0.
Then

lim
k→∞

D(ξk) =∞.

Proof. Since the sequence (ξk)k≥0 is strict, the sequence (χn(ξk))k≥0 is a strict se-

quence in Q× for every n 6= 0.
Write ξk = (ξk,1, . . . , ξk,N ) and let n = (n1, . . . , nN ) 6= 0. We have

h(χn(ξk)) = h(ξn1
k,1 · · · ξ

nN
k,N ) ≤ h(ξn1

k,1) + . . .+ h(ξnNk,N )

= |n1|h(ξk,1) + . . .+ |nN | h(ξk,N ) ≤ ‖n‖1 h(ξk) −−−→
k→∞

0,

where the inequality follows from [BG07, �1.5.14].
Thus, as we just saw, we have that for every n 6= 0

lim
k→∞

deg(χn(ξk)) =∞.

Finally, by Remark 2.7, for every k ≥ 0 there is nk 6= 0 with bounded 1-norm such
that D(ξk) = ‖nk‖1 deg(χnk(ξk)). Hence

lim
k→∞

D(ξk) =∞,

completing the proof. �
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3. Proof of the main result

In this section we give the proof of Theorem 1.2. As we mentioned in the intro-
duction, we do so by using Fourier analysis techniques and reducing the problem,
via projections, to the one-dimensional case, where the result follows from Favre and
Rivera-Letelier's [FR06, Corollary 1.4].

Before stating this result, we give the de�nition of the spherical distance on the
Riemann sphere. Let us identify the projective complex line with the unit sphere S2

of R3. Let S2 \ {(0, 0, 1)} → C be the stereographic projection, where we identify the
equator of S2 with the set {z ∈ C : |z| = 1}. Composing it with the standard inclusion
C ↪→ P1(C) gives a map S2 \ {(0, 0, 1)} → P1(C) \ {(0 : 1)}, that we extend to a
homeomorphism ρ : S2 → P1(C) by setting ρ(0, 0, 1) = (0 : 1). The spherical distance
dsph on P1(C) is given by the length of the arc on S2 under this identi�cation.

A function f : P1(C)N → C is a Lipschitz function with respect to the distance dsph
if there is a constant K ≥ 0 such that

(3.1) |f(p)− f(p′)| ≤ K dsph(p,p
′) for every p,p′ ∈ P1(C)N .

If f is a Lipschitz function with respect to the spherical distance, its Lipschitz constant
Lipsph(f) is the smallest K ≥ 0 such that (3.1) holds.

We now state Favre and Rivera-Letelier's result together with the explicit constants
computed in the second author's Ph.D. Thesis [Nar16, Theorem II].

Theorem 3.1. There is a positive constant C0 ≤ 15 such that for every C 1- function

f : P1(C)→ R and every ξ ∈ Q×∣∣∣∣∣
∫
P1(C)

fdµS −
∫
P1(C)

fdλS1

∣∣∣∣∣ ≤ Lipsph(f)

(
π

deg(ξ)
+

(
4 h(ξ) + C0

log(deg(ξ) + 1)

deg(ξ)

) 1
2

)
,

where S is the Galois orbit of ξ, µS the discrete probability measure associated to it
and Lipsph stands for the Lipschitz constant with respect to the spherical distance on
the Riemann sphere.

In particular, if h(ξ) ≤ 1, then∣∣∣∣∣
∫
P1(C)

fdµS −
∫
P1(C)

fdλS1

∣∣∣∣∣ ≤ Lipsph(f)

(
4 h(ξ) + C

log(deg(ξ) + 1)

deg(ξ)

) 1
2

,

for C ≤ 64.

The proof of this result relies on the interpretation of the height of a point in terms

of the potential theory over the complex projective line. Given ξ ∈ Q×, it can be
shown that the mutual energy of the signed measure µS − λS1 is bounded above by
twice the height of the point. Since this signed measure is not regular enough, Favre
and Rivera-Letelier consider a regularization such that it has vanishing total mass and
its trace measure has continuous potential. This allows to apply a Cauchy-Schwartz
type inequality to the integral of the function with respect to the regularized measure.
Together with the study of the integral of the function with respect to the di�erence
of the measure and its regularization, this leads to their result. The explicitation of
the constant in [Nar16] is done by considering a speci�c regularization of the measure,
which is done by convolution with an speci�c molli�er.

Consider the projection

π : (R/Z)N × RN −→ (R/Z)N
(θ,u) 7−→ θ.
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Under the natural identi�cations

(C×)N −→ (R/Z)N × RN

(z1, . . . , zN ) 7−→
((

arg(z1)
2π , . . . , arg(zN )

2π

)
, (log |z1|, . . . , log |zN |)

)
and

(S1)N −→ (R/Z)N

(z1, . . . , zN ) 7−→
(
arg(z1)

2π , . . . , arg(zN )
2π

)
,

the map π can be re-written as

π : (C×)N −→ (S1)N

(z1, . . . , zN ) 7−→
(
z1
|z1| , . . . ,

zN
|zN |

)
.

Let ξ ∈ (Q×)N , S its Galois orbit and µS the discrete probability measure associated
to it. If F : (R/Z)N × RN −→ C is integrable with respect to the measure λ(S1)N ,
then we have

(3.2)

∣∣∣∣∣
∫
(R/Z)N×RN

FdµS −
∫
(R/Z)N×RN

Fdλ(S1)N

∣∣∣∣∣
≤

∣∣∣∣∣
∫
(R/Z)N×RN

FdµS −
∫
(R/Z)N

F0dνS

∣∣∣∣∣
+

∣∣∣∣∣
∫
(R/Z)N

F0dνS −
∫
(R/Z)N×RN

Fdλ(S1)N

∣∣∣∣∣ ,
where F0 : (R/Z)N → R is de�ned by F0(θ) = F (θ,0), and the measure νS is the
pushforward of the measure µS , which is given by

(3.3) νS = π∗µS =
1

#S

∑
α∈S

δ α
|α|
.

Using (3.2), we are able to divide the proof of the main result into two parts. The
following proposition corresponds to the �rst one.

Proposition 3.2. Let ξ ∈ (Q×)N and S its Galois orbit. Let F : (C×)N −→ R be
a Lipschitz function with respect to the distance d and such that it is integrable with
respect to λ(S1)N , then∣∣∣∣∣

∫
(R/Z)N×RN

FdµS −
∫
(R/Z)N

F0dνS

∣∣∣∣∣ ≤ 2Lip(F ) h(ξ),

where F0(θ) = F (θ,0) and Lip(F ) is the Lipschitz constant of F .
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Proof. With the above notation, we have∣∣∣∣∣
∫
(R/Z)N×RN

FdµS −
∫
(R/Z)N

F0dνS

∣∣∣∣∣ =
∣∣∣∣∣
∫
(R/Z)N×RN

FdµS −
∫
(R/Z)N×RN

(F ◦ π)dµS

∣∣∣∣∣
=

∣∣∣∣∣
∫
(C×)N

(
F (z1, . . . , zN )− F

(
z1
|z1|

, . . . ,
zN
|zN |

))
dµS(z1, . . . , zN )

∣∣∣∣∣
≤ 1

#S

∑
(α1,...,αN )∈S

∣∣∣∣F (α1, . . . , αN )− F
(
α1

|α1|
, . . . ,

αN
|αN |

)∣∣∣∣
≤ 1

#S
Lip(F )

∑
(α1,...,αN )∈S

d

(
(α1, . . . , αN ),

(
α1

|α1|
, . . . ,

αN
|αN |

))
,

where the last inequality is given by the fact that F is a Lipschitz function with respect
to the distance d of (C×)N . By the de�nition of this distance, we have

d

(
(α1, . . . , αN ),

(
α1

|α1|
, . . . ,

αN
|αN |

))
=

(
N∑
l=1

| log |αl||2
) 1

2

≤
N∑
l=1

| log |αl||.

Hence, by Lemma 2.5, we conclude∣∣∣∣∣
∫
(R/Z)N×RN

FdµS −
∫
(R/Z)N

F0dνS

∣∣∣∣∣
≤ 1

#S
Lip(F )

∑
(α1,...,αN )∈S

N∑
l=1

| log |αl|| ≤ 2Lip(F ) h(ξ).

�

Let us study now the second summand in (3.2). First of all we observe that, since
the measure λ(S1)N is supported on (R/Z)N × {0}, we can reduce the problem to the

compact torus (S1)N . Indeed, with the notation as in (3.2), we have∣∣∣∣∣
∫
(R/Z)N

F0dνS −
∫
(R/Z)N×RN

Fdλ(S1)N

∣∣∣∣∣ =
∣∣∣∣∣
∫
(R/Z)N

F0dνS −
∫
(R/Z)N

F0dλ(S1)N

∣∣∣∣∣ ,
where νS is given by (3.3).

If F0 : (R/Z)N −→ R is Haar-integrable and such that its Fourier transform F̂0 is
also Haar-integrable, by Lemma 2.2 we have∫

(R/Z)N
F0dνS −

∫
(R/Z)N

F0dλ(S1)N = F̂0(0)
(
ν̂S(0)− 1

)
+
∑
n 6=0

F̂0(n)ν̂S(n),

where the Fourier-Stieltjes transform of νS is

(3.4) ν̂S(n) =

∫
(R/Z)N

e−2πin·θdνS(θ) =
1

#S

∑
(α1,...,αN )∈S

e−in·(arg(α1),...,arg(αN )),

for every n ∈ ZN . In particular, ν̂S(0) = 1.
We obtain the following lemma.
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Lemma 3.3. Let F0 : (R/Z)N −→ R be Haar-integrable and such that its Fourier
transform is also Haar-integrable. With the notation as above, we have∫

(R/Z)N
F0dνS −

∫
(R/Z)N

F0dλ(S1)N =
∑
n 6=0

F̂0(n)ν̂S(n).

We study now the Fourier-Stieltjes transform of the measure νS = π∗µS .

Proposition 3.4. There is a constant C ≤ 64 such that, for every n 6= 0 and every
0 < δ < 1, we have

|ν̂S(n)| ≤
−2
log δ

‖n‖1 h(ξ) +
4
√
2(δ2 + 9)

δ3
‖n‖1

(
4 h(ξ) + C

log(D(ξ) + 1)

D(ξ)

) 1
2

.

Proof. Let n 6= 0 and let Sn be the Galois orbit of χn(ξ). By Lemma 2.3, there is an
integer ln such that #S = ln#Sn and we know that every element α ∈ Sn is repeated
ln times in {χn(α) : α ∈ S}. Hence, by (3.4), we obtain

ν̂S(n) =
1

#S

∑
(α1,...,αN )∈S

ein·(arg(α1),...,arg(αN )) =
1

#S

∑
α∈S

χn(α)

|χn(α)|
=

1

#Sn

∑
α∈Sn

α

|α|
.

For 0 < δ < 1, consider the function fδ : P1(C)→ C de�ned as follows.

fδ(0 : 1) = 0, fδ(1 : z) = ρδ(|z|)
z

|z|
for any z ∈ C,

where the function ρδ : R→ [0, 1] is given by

ρδ(r) =



0 if r < δ
2 ,

(5δ−4r)(δ−2r)2
δ3

if δ2 ≤ r ≤ δ,
1 if δ < r < 1

δ ,

(−2 + δr)2(−1 + 2δr) if 1
δ ≤ r ≤

2
δ ,

0 if r > 2
δ .

In Lemma B.1, we prove that fδ is a C 1-function such that, if we write fδ = uδ + ivδ
we have

Lipsph(uδ),Lipsph(vδ) ≤
2
√
2(δ2 + 9)

δ3
,

where Lipsph stands for the Lipschitz constant with respect to the spherical distance
on the Riemann sphere.

For every n 6= 0, we have∣∣∣ν̂S(n)− 1

#S

D∑
α∈S

fδ(1 : χn(α))

∣∣∣∣∣(3.5)

=

∣∣∣∣∣ 1

#S

∑
α∈S

χn(α)

|χn(α)|
− 1

#S

∑
α∈S

ρδ(|χn(α)|)
χn(α)

|χn(α)|

∣∣∣∣∣
=

∣∣∣∣∣ 1

#S

∑
α∈S

χn(α)

|χn(α)|
(1− ρδ(|χn(α)|))

∣∣∣∣∣
≤ 1

#S

∑
α∈S
|1− ρδ(|χn(α)|)| .
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Let us de�ne, for every n 6= 0 and 0 < δ < 1, the set

Jn,δ =

{
α ∈ S : δ ≤ |χn(α)| ≤ 1

δ

}
.

If α ∈ Jn,δ, then ρδ(|χn(α)|) = 1, and 0 ≤ ρδ(|χn(α)|) < 1 otherwise. Hence, we have

(3.6)
1

#S

∑
α∈S
|1− ρδ(|χn(α)|)| =

1

#S

∑
α/∈Jn,δ

1− ρδ(|χn(α)|) ≤
1

#S

∑
α/∈Jn,δ

1.

Set

Sn,δ =

{
α ∈ Sn : | log |α|| > log

1

δ

}
,

then we obtain

(3.7)
1

#S

∑
α/∈Jn,δ

1 =
1

#Sn

∑
α∈Sn,δ

1 ≤ 2

(
log

1

δ

)−1
h(χn(ξ)),

where the last inequality is given by Lemma 2.6.
As we saw in the proof of Lemma 2.8, for n 6= 0 we have

h(χn(ξ)) ≤ ‖n‖1 h(ξ).

Thus, putting this together with (3.5), (3.6) and (3.7) we deduce that

(3.8)

∣∣∣∣∣ν̂S(n)− 1

#S

∑
α∈S

fδ(1 : χn(α))

∣∣∣∣∣ ≤ 2

(
log

1

δ

)−1
‖n‖1 h(ξ).

On the other hand, we have

(3.9)
1

#S

∑
α∈S

fδ(1 : χn(α)) =
1

ln#Sn

∑
α∈Sn

lnfδ(1 : α) =

∫
P1(C)

fδdµSn ,

where µSn is the discrete probability measure on P1(C) associated to the Galois orbit
Sn of χn(ξ).

Since λS1 is the measure on P1(C) supported on the unit circle, where it coincides
with the Haar probability measure and, by de�nition, fδ(1 : z) = z if |z| = 1, we have∫

P1(C)
fδdλS1 =

∫
C×

zdλS1(z) = 0.

By Theorem 3.1, we obtain

(3.10)

∣∣∣∣∣
∫
P1(C)

fδdµSn

∣∣∣∣∣ =
∣∣∣∣∣
∫
P1(C)

fδdµSn −
∫
P1(C)

fδdλS1

∣∣∣∣∣
≤

∣∣∣∣∣
∫
P1(C)

uδdµSn −
∫
P1(C)

uδdλS1

∣∣∣∣∣+
∣∣∣∣∣
∫
P1(C)

vδdµSn −
∫
P1(C)

vδdλS1

∣∣∣∣∣
≤ (Lipsph(uδ)+Lipsph(vδ))

(
π

deg(χn(ξ))
+

(
4 h(χn(ξ)) + C0

log(deg(χn(ξ)) + 1)

deg(χn(ξ))

) 1
2

)

≤ 4
√
2(δ2 + 9)

δ3

(
π

deg(χn(ξ))
+

(
4 h(χn(ξ)) + C0

log(deg(χn(ξ)) + 1)

deg(χn(ξ))

) 1
2

)
,

where C0 ≤ 15.
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Since h(χn(ξ)) ≤ ‖n‖1 h(ξ), we have(
4 h(χn(ξ)) + C0

log(deg(χn(ξ)) + 1)

deg(χn(ξ))

) 1
2

≤
(
4‖n‖1 h(ξ) + C0

‖n‖1 log(deg(χn(ξ)) + 1)

‖n‖1 deg(χn(ξ))

) 1
2

≤ ‖n‖1
(
4 h(ξ) + C0

log(‖n‖1 deg(χn(ξ)) + 1)

‖n‖1 deg(χn(ξ))

) 1
2

.

Hence, this together with (3.9) and (3.10) gives∣∣∣∣∣
∫
P1(C)

fδdµSn

∣∣∣∣∣ ≤4
√
2(δ2 + 9)

δ3
‖n‖1

(
π

‖n‖1 deg(χn(ξ))
(3.11)

+

(
4 h(ξ) + C0

log(‖n‖1 deg(χn(ξ)) + 1)

‖n‖1 deg(χn(ξ))

) 1
2

)

≤4
√
2(δ2 + 9)

δ3
‖n‖1

(
4 h(ξ) + C

log(‖n‖1 deg(χn(ξ)) + 1)

‖n‖1 deg(χn(ξ))

) 1
2

,

with C ≤ 64.

The function log(x+1)
x is monotonically decreasing for x ≥ 1. We deduce that, for

every n 6= 0
log(‖n‖1 deg(χn(ξ)) + 1)

‖n‖1 deg(χn(ξ))
≤ log(D(ξ) + 1)

D(ξ)
.

Together with (3.11), this implies that, for every n 6= 0,∣∣∣∣∣
∫
P1(C)

fδdµSn

∣∣∣∣∣ ≤ 4
√
2(δ2 + 9)

δ3
‖n‖1

(
4 h(ξ) + C

log(D(ξ) + 1)

D(ξ)

) 1
2

.

By using this inequality and (3.5) we deduce that∣∣∣ν̂S(n)∣∣∣ ≤
∣∣∣∣∣ν̂S(n)− 1

#S

∑
α∈S

fδ(1 : χn(α))

∣∣∣∣∣+
∣∣∣∣∣ 1

#S

∑
α∈S

fδ(1 : χn(α))

∣∣∣∣∣
≤ −2

log δ
‖n‖1 h(ξ) +

4
√
2(δ2 + 9)

δ3
‖n‖1

(
4 h(ξ) + C

log(D(ξ) + 1)

D(ξ)

) 1
2

,

proving the proposition. �

The following proposition bounds the second summand in the inequality (3.2).

Proposition 3.5. There is a constant C ≤ 64 such that, for every ξ ∈ (Q×)N with
h(ξ) ≤ 1, every 0 < δ < 1 and every F ∈ F , the following holds∣∣∣∣∣
∫
(R/Z)N

F0dνS −
∫
(R/Z)N×RN

Fdλ(S1)N

∣∣∣∣∣
≤ 1

2π

(
−2
log δ

+
4
√
2(δ2 + 9)

δ3

)(
4 h(ξ) + C

log(D(ξ) + 1)

D(ξ)

) 1
2

N∑
l=1

∥∥∥∥∥ ∂̂F0

∂θl

∥∥∥∥∥
L1

,

where S is the Galois orbit of ξ, µS the discrete probability measure associated to it,
D(ξ) the generalized degree of ξ and F0(θ) = F (θ,0).
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Proof. In Appendix A we prove that, given F ∈ F , the function F0 is Haar-integrable

as well as its Fourier transform F̂0. Thus, by Lemma 3.3 and Proposition 3.4,∣∣∣∣∣
∫
(R/Z)N

F0dνS −
∫
(R/Z)N×RN

Fdλ(S1)N

∣∣∣∣∣ =
∣∣∣∣∣
∫
(R/Z)N

F0dνS −
∫
(R/Z)N

F0dλ(S1)N

∣∣∣∣∣
=

∣∣∣∣∣∣
∑
n 6=0

F̂0(n)ν̂S(n)

∣∣∣∣∣∣ ≤
∑
n 6=0

∣∣∣F̂0(n)
∣∣∣ |ν̂S(n)|

≤
∑
n 6=0

∣∣∣F̂0(n)
∣∣∣( −2

log δ
‖n‖1 h(ξ) +

4
√
2(δ2 + 9)

δ3
‖n‖1

(
4 h(ξ) + C

log(D(ξ) + 1)

D(ξ)

) 1
2

)

≤

(
−2
log δ

+
4
√
2(δ2 + 9)

δ3

)(
4 h(ξ) + C

log(D(ξ) + 1)

D(ξ)

) 1
2 ∑
n 6=0

∣∣∣F̂0(n)
∣∣∣ ‖n‖1,

where the last inequality is given by the fact that h(ξ) ≤ 1.
By Lemma A.2, for every l = 1, . . . , N we have

∂̂F0

∂θl
(n) = 2πinlF̂0(n).

Hence, we obtain

∑
n 6=0

∣∣∣F̂0(n)
∣∣∣ ‖n‖1 = 1

2π

N∑
l=1

∑
n 6=0

∣∣∣F̂0(n)
∣∣∣ · |2πnl|

=
1

2π

N∑
l=1

∑
n∈ZN

∣∣∣∣∣ ∂̂F0

∂θl
(n)

∣∣∣∣∣ = 1

2π

N∑
l=1

∥∥∥∥∥ ∂̂F0

∂θl

∥∥∥∥∥
L1

.

Finally, we conclude:∣∣∣∣∣
∫
(R/Z)N

F0dπ∗µS −
∫
(R/Z)N×RN

Fdλ(S1)N

∣∣∣∣∣
≤

(
−2
log δ

+
4
√
2(δ2 + 9)

δ3

)(
4 h(ξ) + C

log(D(ξ) + 1)

D(ξ)

) 1
2 1

2π

N∑
l=1

∥∥∥∥∥ ∂̂F0

∂θl

∥∥∥∥∥
L1

�

Proof of Theorem 1.2. Let F ∈ F and set F0(θ) = F (θ,0). By Theorem A.1, the

function F0 and its Fourier transform F̂0 are Haar-integrable and thus, as shown in
(3.2), we have∣∣∣∣∣
∫
(R/Z)N×RN

FdµS −
∫
(R/Z)N×RN

Fdλ(S1)N

∣∣∣∣∣
≤

∣∣∣∣∣
∫
(R/Z)N×RN

FdµS −
∫
(R/Z)N

F0dνS

∣∣∣∣∣
+

∣∣∣∣∣
∫
(R/Z)N

F0dνS −
∫
(R/Z)N×RN

Fdλ(S1)N

∣∣∣∣∣ .
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Since the function F is Lipschitz with respect to the distance d, by Propositions 3.2
and 3.5, there is a constant C ≤ 64 such that∣∣∣∣∣
∫
(R/Z)N×RN

FdµS −
∫
(R/Z)N×RN

Fdλ(S1)N

∣∣∣∣∣ ≤ 2Lip(F ) h(ξ)

+
1

2π

(
−2
log δ

+
4
√
2(δ2 + 9)

δ3

)(
4 h(ξ) + C

log(D(ξ) + 1)

D(ξ)

) 1
2

N∑
l=1

∥∥∥∥∥ ∂̂F0

∂θl

∥∥∥∥∥
L1

.

By Theorem A.1, the Fourier transforms of the �rst order partial derivatives of F0 are
Haar-integrable and so this bound is �nite.

We search numerically for the minimum of the function −2
log δ +

4
√
2(δ2+9)
δ3

, for 0 <

δ < 1, and we obtain the value 94.9591, attained at δ ≈ 0.9071. Hence, since h(ξ) ≤ 1
and 94.9591/2π < 16, we have∣∣∣∣∣
∫
(R/Z)N×RN

FdµS −
∫
(R/Z)N×RN

Fdλ(S1)N

∣∣∣∣∣
≤ 2Lip(F ) h(ξ) + 16

(
4 h(ξ) + C

log(D(ξ) + 1)

D(ξ)

) 1
2

N∑
l=1

∥∥∥∥∥ ∂̂F0

∂θl

∥∥∥∥∥
L1

≤

(
2Lip(F ) + 16

N∑
l=1

∥∥∥∥∥ ∂̂F0

∂θl

∥∥∥∥∥
L1

)(
4 h(ξ) + C

log(D(ξ) + 1)

D(ξ)

) 1
2

.

�

Remark 3.6. The functions in F are functions with logarithmic singularities along

toric divisors in a toric compacti�cation of (Q×)N . The qualitative equidistribution
with respect to this set of test functions is given by the theorem of Chambert-Loir and
Thuillier [CT09, Théorème 1.2].

Appendix A. The set of test functions

In this appendix, we show that the test functions in F , when restricted to the unit
polycircle (S1)N , are Haar-integrable as well as their Fourier transforms. We also prove
the Haar-integrability of all their �rst order partial derivatives and their corresponding
Fourier transforms.

Recall the de�nition of the test functions. The set F is given by all real-valued
functions F satisfying

(i) F is Lipschitz with respect to the distance d on (C×)N ,
(ii) F0(θ) = F (θ,0) is in CN+1((R/Z)N ,R).
The main theorem of this section is:

Theorem A.1. For any F ∈ F , the function F0(θ) = F (θ,0) satis�es the following
properties:

(i) F0 is Haar-integrable,

(ii) F̂0 is Haar-integrable,

(iii) for every l = 1, . . . , N ,
∂F0

∂θl
are Haar-integrable,

(iv) for every l = 1, . . . , N ,
∂̂F0

∂θl
are Haar-integrable,



18 D'ANDREA, NARVÁEZ-CLAUSS, AND SOMBRA

Before proving this result, let us consider a technical lemma. For every function
H : (R/Z)N −→ R and α = (α1, . . . , αN ) ∈ {0, 1}N , we will use the notation

∂|α|H

∂θα
(θ) =

∂α1+...+αNH

∂θα1
1 · · · θ

αN
N

(θ),

whenever it makes sense.

Lemma A.2. Let H : (R/Z)N −→ R of class CN+1 be such that

∂|α|H

∂θα
∈ L1((R/Z)N ) and

∂|α|+1H

∂θαθl
∈ L1((R/Z)N ),

for α ∈ {0, 1}N and l = 1, . . . , N . Then,

∂̂|α|H

∂θα
(n) =

N∏
k=1

(2πink)
αkĤ(n) and

∂|α|+1H

∂θαθl
= (2πinl)

N∏
k=1

(2πink)
αkĤ(n).

Proof. This lemma is proved applying recursively the following

∂̂F0

∂θ1
(n) =

∫
(R/Z)N

∂F0

∂θ1
(θ)e−2πin·θdθ

=

∫
(R/Z)N−1

(∫
R/Z

∂F0

∂θ1
(θ)e−2πin1θ1dθ1

)
e−2πi

∑
j 6=1 njθjdθ2 . . . dθN

=

∫
(R/Z)N−1

(
2πin1

∫
R/Z

F0(θ)e
−2πin1θ1dθ1

)
e−2πi

∑
j 6=1 njθjdθ2 . . . dθN

= (2πin1)

∫
(R/Z)N

F0(θ)e
−2πin·θdθ

= (2πin1)F̂0(n).

�

Proof of Theorem A.1. By de�nition, for every F ∈ F , the function F0 is of class N+1.
This is, all its partial derivatives up to order N + 1 are continuous and, since they
are de�ned on a compact space, they are bounded. Hence, for every α ∈ {0, 1}N and
every l = 1, . . . , N

∂|α|F0

∂θα
,
∂|α|+1F0

∂θαθl
∈ (L1 ∩L2)((R/Z)N ).

In particular, we obtain parts (i) and (iii).
Let us prove (ii), we have to see that∑

n∈ZN

∣∣∣F̂0(n)
∣∣∣ <∞.

To do so, we will divide the sum over all n ∈ ZN in several subsets. Let α ∈ {0, 1}
and set

W (α) =

{
0 if α = 0,

ZN \ {0} if α = 1.

For α ∈ {0, 1}N , set also

W (α) =W (α1)× . . .×W (αN ).
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Hence, we have ∑
n∈ZN

∣∣∣F̂0(n)
∣∣∣ = ∑

α∈{0,1}N

∑
n∈W (α)

∣∣∣F̂0(n)
∣∣∣ .

For α ∈ {0, 1}N , we have∑
n∈W (α)

∣∣∣F̂0(n)
∣∣∣ = ∑

n∈W (α)

∏
k:αk 6=0

(2πnk)
−1

∣∣∣∣∣ ∂̂|α|F0

∂θα
(n)

∣∣∣∣∣ .
We saw that ∂|α|F0

∂θα ∈ (L1 ∩L2)((R/Z)N ) and so, by Plancherel's theorem∥∥∥∥∥ ∂̂|α|F0

∂θα

∥∥∥∥∥
L2(ZN )

=

∥∥∥∥∥∂|α|F0

∂θα

∥∥∥∥∥
L2((R/Z)N )

.

Using Cauchy-Schwartz inequality, we obtain ∑
α∈{0,1}N

∑
n∈W (α)

∣∣∣F̂0(n)
∣∣∣
2

=

 ∑
α∈{0,1}N

∑
n∈W (α)

∏
k:αk 6=0

(2πnk)
−1

∣∣∣∣∣ ∂̂|α|F0

∂θα
(n)

∣∣∣∣∣
2

≤

 ∑
α∈{0,1}N

∑
n∈W (α)

∏
k:αk 6=0

1

4π2n2k

 ∑
α∈{0,1}N

∑
n∈W (α)

∣∣∣∣∣ ∂̂|α|F0

∂θα
(n)

∣∣∣∣∣
2
 <∞.

Part (iv) of the theorem is proved by applying the same argument to the function
∂F0
∂θl

for every l = 1, . . . , N . �

Appendix B. Bounds for the Lipschitz constant of the function fδ

In this appendix, we give a bound for the Lipschitz constant with respect to the
spherical distance of the function fδ : P1(C)→ C de�ned by

fδ(0 : 1) = 0 and fδ(1 : z) = ρδ(|z|)
z

|z|
for any z ∈ C,

where ρδ : R→ [0, 1], with 0 < δ < 1, is given by

ρδ(r) =



0 if r < δ
2 ,

(5δ−4r)(δ−2r)2
δ3

if δ2 ≤ r ≤ δ,
1 if δ < r < 1

δ ,

(−2 + δr)2(−1 + 2δr) if 1
δ ≤ r ≤

2
δ ,

0 if r > 2
δ .

First we prove that fδ ∈ C 1(P1(C),C). Afterwards, we will study the Lipschitz
constant of its real and imaginary parts. Let us de�ne the usual charts in P1(C),

U0 := {(z0 : z1) ∈ P1(C) : z0 6= 0} and U1 := {(z0 : z1) ∈ P1(C) : z1 6= 0}.

It is easy to see that the function fδ is compactly supported on U0 ∩ U1. In fact, we
have that

supp(fδ) =

{
(1 : z) :

δ

2
≤ |z| ≤ 2

δ

}
.

For this reason, to prove that fδ is in C 1(P1(C),C), it is enough to prove that the
function ρδ(|z|) z|z| is of class C 1 in a neighborhood of the set

{
z : δ2 ≤ |z| ≤

2
δ

}
.
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The piecewise-de�ned function ρδ is continuous, as well as its derivative, which is
given by

ρ′δ(r) =


−24
δ3
(δ − 2r)(δ − r) if δ2 ≤ r ≤ δ,

6δ(−2 + δr)(−1 + δr) if 1
δ ≤ r ≤

2
δ ,

0 otherwise.

Hence, since |z| and z/|z| are smooth on C×, we conclude that ρδ(|z|) z|z| is of class C 1.

Lemma B.1. Let fδ be de�ned as above, and set fδ = uδ + ivδ. Then,

Lipsph(uδ),Lipsph(vδ) ≤ 2
√
2
δ2 + 9

δ3
.

The spherical distance dsph on P1(C) can be computed as follows

dsph(p, p
′) := 2 arccos

(
|z0z′0 + z1z′1|√

|z0|2 + |z1|2
√
|z′0|2 + |z′1|2

)
,

for p = (z0 : z1) and p
′ = (z′0 : z

′
1) in P1(C).

To simplify the computations, we will work with an equivalent distance, the chordal
distance dch on P1(C), which is given by the length of the chord joining two points of
S2. For p = (z0 : z1) and p

′ = (z′0 : z
′
1) in P1(C), we have

dch(p, p
′) :=

2|z0z′1 − z1z′0|√
|z0|2 + |z1|2

√
|z′0|2 + |z′1|2

.

These distances can be compared as follow:

Lemma B.2. For every p, p′ ∈ P1(C),
2

π
dsph(p, p

′) ≤ dch(p, p
′) ≤ dsph(p, p

′).

Proof. We work on the sphere using the stereographic projection. Since the chordal
distance dch between two points in the sphere is the length of the chord joining them
and the spherical distance dsph is the angle between the vectors both points de�ne, we
have

dch(p, p
′) = 2 sin

(
dsph(p, p

′)

2

)
, for every p, p′ ∈ P1(C).

For any pair of points, we have dsph(p, p
′) ≤ π so we deduce

dch(p, p
′) ≤ dsph(p, p

′).

Now, let β > 0 be such that β dsph(p, p
′) ≤ dch(p, p

′) for all p, p′ ∈ P1(C). This is
equivalent to βx ≤ 2 sin

(
x
2

)
for every 0 ≤ x ≤ π. By the convexity of the function

2 sin
(
x
2

)
, we deduce that the optimal value is β = 2

π . �

Proof of Lemma B.1. Let us compute now a bound for the Lipschitz constants, with
respect to the spherical distance, of the uδ and vδ. To do so, we choose coordinates
(x, y) in R2 ∼= C. Let

ũδ(x, y) := uδ(1 : x+ iy) =
ρδ(
√
x2 + y2)√
x2 + y2

x,

ṽδ(x, y) := vδ(1 : x+ iy) =
ρδ(
√
x2 + y2)√
x2 + y2

y.
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Since the computations are symmetric for both the real and imaginary parts of fδ, it
is enough to study the Lipschitz constant of one of them. To simplify these computa-
tions, we will study the Lipschitz constant with respect to the chordal distance in the
Riemann sphere and conclude by applying the comparison between the chordal and
spherical distances.

First of all, recall that the chordal distance restricted to the open subset U0 ⊂ P1(C)
is given by

dch((1 : x0 + iy0), (1 : x1 + iy1)) =
2‖(x0, y0)− (x1, y1)‖√

1 +m(x0, y0)2
√
1 +m(x1, y1)2

,

where ‖ · ‖ denotes the Euclidean metric on R2 and m(x, y) =
√
x2 + y2. Now, since

the function uδ is supported on U0, we have

sup
z0,z1∈C

|uδ(1 : z0)− uδ(1 : z1)|
dch((1 : z0), (1 : z1))

= sup
(x0,y0),(x1,y1)∈R2

|ũδ(x0, y0)− ũδ(x1, y1)|
‖(x0, y0)− (x1, y1)‖

√
1 +m(x0, y0)2

√
1 +m(x1, y1)2

2
.

We consider di�erent cases.

1. If (x0, y0), (x1, y1) /∈ D(0, 2δ ), we trivially obtain

|ũδ(x0, y0)− ũδ(x1, y1)|
dch((1 : x0 + iy0), (1 : x1 + iy1))

= 0.

2. Suppose (x0, y0), (x1, y1) ∈ D(0, 2δ ). For t ∈ [0, 1], consider the function g(t) =
ũδ((1− t)(x0, y0) + t(x1, y1)). By the mean value theorem, there is some c ∈ (0, 1)
such that g(1)− g(0) = g′(c). Applying the chain rule, we obtain

ũδ(x1, y1)− ũδ(x0, y0) = ∇ũδ((1− c)(x0, y0) + c(x1, y1)) · (x1 − x0, y1 − y0).

Hence, we deduce

(B.1)
|ũδ(x0, y0)− ũδ(x1, y1)|
‖(x0, y0)− (x1, y1)‖

≤ sup
(x,y)∈D(0, 2

δ
)

‖∇ũδ(x, y)‖.

Let us study the gradient of ũδ. For every (x, y) ∈ R2 we have

∂ũδ
∂x

(x, y) =

(
x

m(x, y)

)2

ρ′δ(m(x, y)) +

(
y

m(x, y)

)2 ρδ(m(x, y))

m(x, y)
,

∂ũδ
∂y

(x, y) =
xy

m(x, y)2

(
ρ′δ(m(x, y))− ρδ(m(x, y))

m(x, y)

)
.

Without loss of generality, we restrict ourselves to the situation where (x, y) veri�es
δ
2 ≤ m(x, y) ≤ 2

δ , since otherwise both partial derivatives would vanish. It can be

easily shown that |ρ′δ(r)| ≤
3
δ for every r ≥ 0. This, together with the fact that

0 ≤ ρδ ≤ 1, x ≤ m(x, y), y ≤ m(x, y) and m(x, y) ≥ δ
2 , leads to∣∣∣∣∂ũδ∂x

(x, y)

∣∣∣∣ , ∣∣∣∣∂ũδ∂y (x, y)

∣∣∣∣ ≤ 4

δ
.

We then conclude that, for any (x, y) ∈ R2,

‖∇ũδ(x, y)‖ ≤
4
√
2

δ
.
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On the other hand, given (x0, y0), (x1, y1) ∈ D(0, 2δ ) we have that√
1 +m(x0, y0)2

√
1 +m(x1, y1)2

2
≤ δ2 + 4

2δ2
.

Therefore, we obtain

|ũδ(x0, y0)− ũδ(x1, y1)|
dch((1 : x0 + iy0), (1 : x1 + iy1))

≤ 2
√
2
δ2 + 4

δ3
.

3. Suppose now that (x0, y0) ∈ D(0, 2δ ) and (x1, y1) ∈ D(0, 3δ ) \D(0, 2δ ). As we did in
the previous case, we can deduce that

|ũδ(x0, y0)− ũδ(x1, y1)|
‖(x0, y0)− (x1, y1)‖

≤ 4
√
2

δ

and √
1 +m(x0, y0)2

√
1 +m(x1, y1)2

2
≤ δ2 + 9

2δ2
.

Hence, we obtain

|ũδ(x0, y0)− ũδ(x1, y1)|
dch((1 : x0 + iy0), (1 : x1 + iy1))

≤ 2
√
2
δ2 + 9

δ3
.

4. Finally suppose that (x0, y0) ∈ D(0, 2δ ) and (x1, y1) /∈ D(0, 3δ ). In this situation, we
have ũδ(x1, y1) = 0 and

|ũδ(x1, y1)| = |ρδ(m(x0, y0))|
|x0|

m(x0, y0)
≤ 1.

Since

dch((1 : x0 + iy0), (1 : x1 + iy1)) ≥ dch((1 :
2

δ
), (1 :

3

δ
)) =

2δ√
(δ2 + 9)(δ2 + 4)

,

we conclude

|ũδ(x0, y0)− ũδ(x1, y1)|
dch((1 : x0 + iy0), (1 : x1 + iy1))

≤ 2δ√
(δ2 + 9)(δ2 + 4)

2δ.

Having studied all these cases, we deduce that

sup
(x0,y0),(x1,y1)∈R2

|ũδ(x0, y0)− ũδ(x1, y1)|
dch((1 : x0 + iy0), (1 : x1 + iy1))

≤ 2
√
2
δ2 + 9

δ3
.

As we mentioned above, we were looking for a bound of the Lipschitz constant of
uδ with respect to the spherical distance. By Lemma B.2, we know that dsph(p, p

′) ≥
dch(p, p

′) for any pair of points p, p′ ∈ P1(C) and we obtain

Lipsph(uδ) = sup
p,p′∈P1(C)

|uδ(p)− uδ(p′)|
dsph(p, p′)

≤ sup
(x0,y0),(x1,y1)∈R2

|ũδ(x0, y0)− ũδ(x1, y1)|
dch((1 : x0 + iy0), (1 : x1 + iy1))

≤ 2
√
2
δ2 + 9

δ3
.

Analogously, we deduce that Lipsph(vδ) ≤ 2
√
2 δ

2+9
δ3

. �
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