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Abstract. The study of the Newton polytope of a parametric hypersurface is
currently receiving a lot of attention both because of its computational interest and
its connections with Tropical Geometry, Singularity Theory, Intersection Theory and
Combinatorics. We introduce the problem and survey the recent progress on it, with
emphasis in the case of curves.
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1. Introduction. Parametric curves and surfaces play a central role
in Computer Aided Geometric Design (CAGD) because they provide
shapes which are easy to plot. Indeed, a rational parametrization allows to
produce many points in the variety using only the elementary operations
(±, ×, ÷) of the base field.

For instance, consider the folium of Descartes (Figure 1). This plane
curve can be defined either by the equation x3 + y2 − 3xy = 0 or as the
image of the rational map

C 99K C , t 7→

(

3t

1 + t3
,

3t2

1 + t3

)

. (1)

The parametric representation is certainly more suitable for plotting
the curve. If instead we plot it using only its implicit equation, the result
is bound to be poor, specially around the singular point (0, 0) (Figure 2).

This is because in order to produce many points in the folium in this
way, we have to solve as many cubic equations. This is certainly more
expensive than evaluating the parametrization and moreover, the resulting
points are typically not rational but live in different cubic extensions of Q.

On the other hand, if we are to decide whether a given point lies in
the folium or not, it is better to use the implicit equation. For instance, it
is straightforward to conclude that (−2, 1) does not belong to the folium
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Fig. 1. The folium of Descartes.

Fig. 2. The folium of Descartes according to the Maple command implicitplot.

by evaluating the equation: (−2)3 + 13 − 3(−2) = −1 6= 0. If we were to
find that out from the parametrization (1), we would have to determine if
the system of equations

−2 =
3t

1 + t3
, 1 =

3t2

1 + t3

admits a solution for t ∈ C or not, which is a harder task.
Depending on which kind of operation one needs to perform on a cer-

tain parametric variety, it may be convenient to dispose of the parametric
representation or of the implicit one. Efficiently performing the passage
from one representation to the other is one of the central problems of
Computational Algebraic Geometry. In the present text we will mostly
concentrate in one these directions: the implicitization problem, consisting
in computing equations for an algebraic variety given in parametric form.
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In precise terms, the implicitization problem is: let ρ1, . . . , ρn ∈
C(t1, . . . , tn−1) be a family of rational functions and consider the map

ρ : Cn−1
99K Cn , t = (t1, . . . , tn−1) 7→ (ρ1(t), . . . , ρn(t)). (2)

Suppose that the Zariski closure Im(ρ) of the image of this map is a hyper-
surface or equivalently, that the Jacobian matrix (∂ρi

∂tj
(t))i,j has maximal

rank n − 1 for generic t ∈ Cn−1. The ideal of this parametric (or unira-
tional) hypersurface is generated by a single irreducible polynomial and the
problem consists in computing this “implicit equation”.

This problem is equivalent to the elimination of the parameter vari-
ables from some system of equations. For instance, to compute the implicit
equation of the folium from the parametrization (1), one should eliminate
the variable t from the system of equations

(1 + t3)x − 3t = 0 , (1 + t3) y − 3t2 = 0, (3)

that is, we have to find the irreducible polynomial in C[x, y] vanishing at
the points (x, y, t) satisfying (3) for some t ∈ C.

The same procedure works in general. For a parametrization like in (2),

write ρi(t) = pi(t)
qi(t)

for some coprime polynomials pi, qi for 1 ≤ i ≤ n.

The implicit equation of the hypersurface Im(ρ) can then be obtained by
eliminating the variables t1, . . . , tn−1 from the system of equations

q1(t)x1 − p1(t) = 0, . . . , qn(t)xn − pn(t) = 0.

This elimination task can be effectively done either with Gröbner bases or
with resultants [3] but in practice, this can be too expensive. For instance,
for a ∈ N consider the parametrization

ρ : C → C2 , t 7→

(

t(t − 1)a

(t + 1)a+1
,

(t + 1)a

t(t − 1)a−1

)

. (4)

It is not hard to check by hand that the implicit equation of the image of
this map is

2 − xa−1ya − xaya+1 = 0.

However, all current implementations of Gröbner bases and resultant algo-
rithms fail to solve the problem for moderately large values of a, because
of the increasing number of intermediate computations involved.

2. The Newton polytope of the implicit equation. Instead of
trying to compute the implicit equation of a parametric hypersurface, we
will focus in the problem of determining its Newton polytope. We will work
with Laurent polynomials, that is expressions of the form x−1

2 +x−2
1 x2 where

the exponents can be any integer numbers.
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Fig. 3. The Newton polygon of the folium of Descartes.

Definition 2.1. The Newton polytope N(F ) ⊂ Rn of a Laurent poly-
nomial F ∈ C[x±1

1 , . . . , x±1
n ] is the convex hull of the exponents in its mono-

mial expansion.

This notion readily extends to hypersurfaces: we define the Newton
polytope N(Z) of a hypersurface Z ⊂ Cn as the Newton polytope of its
implicit equation; this polytope is well defined because the equation is
unique up to a scalar factor. For the case n = 2 we will apply the more
usual terminology of “polygon” instead of polytope. For instance, the
Newton polygon of the folium x3

1 + x3
2 − 3x1x2 = 0 is the convex hull

Conv
(

(1, 1), (3, 0), (0, 3)
)

(Figure 3).

The Newton polytope tells us which are the possible exponents occur-
ing in a given Laurent polynomial: if the polytope is small, then the poly-
nomial is sparse, in the sense that it has few monomials. It is an important
refinement of the notion of degree: if we denote by S := Conv(0, e1, . . . , en)
the standard simplex of Rn, the degree of a polynomial F ∈ C[x1, . . . , xn]
is the least integer d such that N(F ) ⊂ dS. Note that the Newton polytope
of a polynomial (and a fortiori that of a hypersurface) is always contained
in the octant (R≥0)

n.

From now on, we will focus in the following problem: determine the
Newton polytope of a hypersurface given by a rational map ρ : Cn−1

99K

Cn. This problem is currently receiving a lot of attention because of its con-
nections with Tropical Geometry, Singularity Theory, Intersection Theory
and Combinatorics. The Newton polytope does not characterize the hy-
persurface but retains a lot of relevant information and as a consequence of
the research done during the last years, we now know that in plenty of cases
its computation is much simpler than that of the full implicit equation.

A preliminary version of this question was first posed by B. Sturmfels
and J.-T. Yu. In the context of the sparse elimination theory, their question
can be resumed in: “can I predict the Newton polytope of the implicit
equation from the Newton polytopes of the input parametrization?” In
precise terms:
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Fig. 4. The Newton polygon of the implicit equation of (5).

Problem 2.2. Let P1, . . . , Pn ⊂ Rn−1 be lattice polytopes with non-
empty interior and consider the family of n Laurent polynomials in n − 1
variables

ρi =
∑

a∈Pi∩Zn−1

λi,a ta1

1 · · · t
an−1

n−1 ∈ C

[

t±1
1 , . . . , t±1

n−1

]

for 1 ≤ i ≤ n and λi,a ∈ C generic. Determine the Newton polytope of the
image of the parametrization t 7→ (ρ1(t), . . . , ρn(t)).

A lattice polytope in Rn−1 is a polytope whose vertices lie in Zn−1. The
hypothesis that the Pi’s have non empty interior ensures that the image of
the parametrization is a hypersurface for a generic choice of the coefficients
λi,a (that is, in some non empty open set of the space of parameters).
The Newton polytope of this hypersurface does not depend on this generic
choice although the equation itself does.

As an example, let us consider the parametrization proposed by
A. Dickenstein and R. Fröberg [8]:

ρ : C → C2 , t 7→
(

t48 − t56 − t60 − t62 − t63, t32
)

. (5)

The Newton polytopes of the defining polynomials are relatively small: the
real interval [48, 63] and the singleton {32}. The exponents are rather
large, but in any case the implicit equation can be computed via the
Sylvester resultant. It’s Newton polygon is the triangle with vertices
(32, 0), (0, 48), (0, 63).

This example was studied by I. Emiris and I. Kotsireas, who succeeded
in determining the polygon by analysing the behavior of the resultant under
specialization, thus showing that it is sometimes possible to access to the
Newton polytope without computing the implicit equation [8]; see also [7]
for further applications of this method.

The recent irruption of Tropical Geometry in the mathematical
panorama has boosted the interest in the problem. The tropical variety



6 CARLOS D’ANDREA AND MARTÍN SOMBRA

associated to an affine hypersurface is a polyhedral object, equivalent to
its Newton polytope in the sense that one can be recovered from the other
and viceversa. In this direction, Sturmfels, J. Tevelev and J. Yu succeeded
in determining the tropical variety (and thus the Newton polytope) of a
hypersurface parametrized by generic Laurent polynomials [15, 16] and im-
plemented the resulting algorithm [17, 18].

From another point of view, A. Esterov and A. Khovanskĭı have shown
that the Newton polytope of the implicit equation of a generic parametriza-
tion can be identified with the mixed fiber polytope in the sense of P. Mc-
Mullen, hence providing a different characterization of this object [9].

2.1. The Newton polygon of a parametric curve. If one wants
to determine the Newton polytope in all cases and not just in the generic
ones, it is clear that finer invariants of the parametrization must be taken
into account.

In this section we will focus in the case of parametric plane curves,
which has been recently solved in the papers [4, 5, 15, 20]. In this case, the
Newton polygon is determined by the multiplicities of the parametrization.
Let ρ : C 99K C2 be a map given by rational function f, g ∈ C(t) \ C. For
a point v in the projective line P1, the multiplicity of ρ in v is

ordv(ρ(t)) :=
(

ordv(f(t)), ordv(g(t))
)

∈ Z2,

where ordv(f) denotes the order of vanishing of f at v. Recall that the
order of vanishing at v = ∞ of a rational function p

q
∈ C(t) (p, q ∈ C[t])

equals deg(q) − deg(p).

The basic properties of these multiplicities are:

• ordv(ρ) = (0, 0) except for a finite number of v ∈ P1 and
•

∑

v∈P1 ordv(ρ) = (0, 0).

We next define an auxiliary operation which produces a convex lattice
polygon from a balanced family of vectors of the plane. Let B ⊂ Z2 be
a family of vectors which are zero except for a finite number of them and
such that

∑

b∈B b = (0, 0). We denote by P(B) ⊂ (R≥0)
2 the (unique)

convex polygon obtained by: 1) rotating −90◦ the non-zero vectors of B,
2) concatenating them following their directions counterclockwise and 3)
translating the resulting polygon to the first quadrant (R≥0)

2 in such a way
that it “touches” the coordinate axes (Figure 5). The zero-sum condition
warrants that the polygonal line closes at the end of the concatenation step.

The tracing index (or degree) ind(ρ) ≥ 1 is the number of times the
parametrization ρ runs over the curve when t runs over C. When ind(ρ) =
1, we say that the parametrization is birational.

The solution to the problem of the computation of the Newton polygon
of a parametric plane curve can be found in the papers of Dickenstein, E.-
M. Feichtner, Sturmfels and Tevelev [5, 15, 20] and also in ours [4].
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Fig. 5. The operation P(B).

Theorem 2.1. Let ρ : C 99K C2 be a rational map and set C := Im(ρ),
then

N(C) =
1

ind(ρ)
P

(

(ordv(ρ))v∈P1

)

. (6)

Example 1. Consider the parametrization

ρ : t 7→
( 1

t(t − 1)
,
t2 − 5t + 2

t

)

.

Its multiplicities are

ord0(ρ) = (−1,−1) , ord1(ρ) = (−1, 0) , ord∞(ρ) = (2,−1)

and ordvi
(ρ) = (0, 1) for each of the two zeros v1, v2 of the equation

t2 − 5t + 2 = 0, while ordv(ρ) = (0, 0) for v 6= 0,±1,∞, v1, v2. Figure 5
illustrates the family B and the associated polygon P(B).

Theorem 2.1 tells us that this polygon is ind(ρ) times the actual New-
ton polygon of the curve. It is easy to check that the constructed polygon
is non contractible, in the sense that it is not a non trivial integer multiple
of another lattice polygon. We conclude that the parametrization is bira-
tional (that is, ind(ρ) = 1) and that N(C) = P(B). These results can be
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contrasted with the implicit equation of the curve: 1 − 16x − 4x2 − 9xy −
2x2y − xy2 = 0.

Similarly, Theorem 2.1 allows to determine the Newton polygon of the
folium of Descartes and of the Dickenstein-Fröberg example. Again, the
additional data ind(ρ) = 1 is a consequence of the non contractibility of
the resulting polygon.

2.2. Tropical geometry and Intersection Theory. We will sketch
here the two different methods for proving Theorem 2.1: Tropical Geometry
and Intersection Theory.

Tropical Geometry can be regarded as the geometry of the min-plus
algebra (R,⊕,⊙), where the operations are defined as

x ⊕ y = min(x, y) , x ⊙ y = x + y.

To simplify the exposition, we will only deal with polynomials in C[x, y],
although the theory extends naturally to multivariate polynomials with
coefficients in a valuated field.

The tropicalization of a polynomial F =
∑N

j=0 λjx
aj ybj ∈ C[x, y] is

the concave piecewise linear function

tF : R2 → R , x 7→
N

⊕

j=0

x⊙aj y⊙bj = min
j

〈(aj , bj), (x, y)〉. (7)

Here,
⊕

stands for the tropical sum and 〈·, ·〉 is the standard inner product

of R2. The tropical variety TF ⊂ R2 is defined as the set of points in R2

where this function is not smooth. It can be deduced from (7) that TF

consists exactly in the union of the outer normal directions to the edges of
N(F ). To each of these directions δ we can assign a multiplicity mδ ≥ 1,
which coincides with the lattice length of the edge of N(F ) normal to the
given direction. We recall that the lattice length ℓ(S) of a lattice segment
S is the number of points in Z2 ∩ S minus 1.

This setting allows to interpret the Newton polygon as a certain degen-
eration of the curve and to study it with tools of Tropical Geometry. The
proof given in [5,12] of Theorem 2.1 is based in the so-called “Kapranov
Theorem” [6] and the Bieri-Groves Theorem. Moreover, their method al-
lows them to treat higher-dimensional hypersurfaces parametrized by prod-
ucts of linear forms [5, 15].

As an illustration, Figure 6 shows the tropical variety associated to
the curve in the example 1:

As we can see, the tropical variety plus the corresponding multiplicities
are in correspondence with the vectors in Figure 5 and Theorem 2.1 can
be easily reformulated in tropical terms.

On the other hand, in our paper [4] we propose a method which reduces
the determination of the Newton polygon to the computation of the number
of solutions of some polynomial systems of equations.
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Fig. 6. The tropical curve associated with C : 1 − 16x − 4x2 − 9xy − 2x2y − xy2 = 0.

The support function of a polygon Q ⊂ R2 is defined as

hQ : R2 → R , x 7→ max{〈u, x〉 : u ∈ Q}.

It is a convex piecewise affine function which completely characterizes Q.
Let ρ : C 99K C2 be a rational parametrization and set C := Im(ρ). Then,
for σ ∈ (N \ {0})2 it can be shown that

hN(C)(σ) =
1

ind(ρ)
#

{

(t, x, y) ∈ C3 : xσ1 = f(t), yσ2 = g(t),

(8)
ℓ0 + ℓ1x + ℓ2y = 0

}

for generic ℓ0, ℓ1, ℓ2 ∈ C. The proof of Theorem 2.1 reduces then to the
determination of this number of solutions, which can be obtained via the re-
finement of the Bernštein-Kušnirenko-Khovanskĭı (BKK) Theorem recently
obtained by P. Philippon and the second author [13].

Identity (8) holds also in higher dimensions. However, there is no
analogue for n ≥ 3 of the estimation in [13] and so for the moment, this
method cannot be extended to higher dimension.

3. Some applications and consequences. Besides of its theoreti-
cal interest, the Newton polytope is useful for computational purposes. Its
knowledge allows to speed-up computations and gives interesting informa-
tion about the solutions of polynomial systems of equations. Here we point
out two applications.

3.1. Computing the implicit equation with numerical inter-

polation. The Newton polytope tells us which exponents might occur
in the implicit equation and thus allows us to compute it via a suit-
able interpolation algorithm. Suppose we are given a parametrization
ρ = (f, g) : C 99K C2 and that we want to compute the implicit equa-
tion E(x, y) ∈ C[x, y] of its image curve. A possible strategy is to apply
Theorem 2.1 to obtain its Newton polygon Q and use this information to
recover E. We have
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E(x, y) =

N
∑

j=0

λjx
aj ybj

where the (aj , bj)’s are the integer points in Q and the λj ∈ C are un-
known. To determine these coefficients, we can evaluate ρ in N + 1 points
τ0, . . . , τN ∈ C where ρ(τi) is defined. We then obtain a homogeneous
system of linear equations in the λj ’s, of size (N + 1) × (N + 1):

E(ρ(τk)) =

N
∑

j=0

λjf(τk)aj g(τk)bj = 0 for 0 ≤ k ≤ N.

If the interpolation points τk are generic enough, the solution space of
this system is of dimension 1 and the polynomial E(x, y) can be com-
puted as some (any) generator of this space. This approach is most useful
when Q has few points integer points, which for instance is the case of the
parametrization (4), where the number of integer points is 3 for any a ∈ N.

3.2. Intersecting parametric curves. In the practice of CAGD, it
is important to be able to determine where two modelled shapes cut each
other. Typically, this amounts to compute the intersection of two curves
or surfaces given in parametric form. This task can be done by computing
the implicit equation of one of the two varieties but as explained, this can
be too expensive. If we only have access to the Newton polytope, we will
not be able to compute this intersection but we still can say something
about the number of intersection points of two parametric curves or about
the degree of the intersection curve of two parametric surfaces.

For two plane curves C, D ⊂ C2, the BKK Theorem says that the
number of their intersection points in (C×)2 is bounded above by the mixed
volume

Area(N(C) + N(D)) − Area(N(C)) − Area(N(D))

with equality in the generic case. Here, the “+” denotes the Minkowski
(that is, pointwise) sum of polygons in the plane. For instance, let C, D ⊂
(C×)2 be the curves respectively parametrized by

t 7→
( (t + 1)2

2 t (1 − t)
,
4 t (t − 1)3

(t + 1)5

)

, t 7→
(

t,
10

t3

)

.

In Figure 7 we see the corresponding polygons and their Minkowski sum.
The mixed volume is the area of the shaded zone, which is equal to 2.

Hence C and D have at most two points in common, which turn out
to be (1.33, 4.22) and (−4.17,−0.14) (Figure 8).

3.3. Generic parametrizations. With Theorem 2.1 at our disposal,
we can easily answer Problem 2.2 for the case n = 2 :
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Fig. 7. The mixed volume of two polygons.
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Fig. 8. The intersection of two parametric curves.

Corollary 3.1. For D ≥ d, E ≥ e let

p(t) = αdt
d + · · · + αDtD , q(t) = βet

e + · · · + βEtE ∈ C[t±1] (1)

such that αd, αD, βe, βE 6= 0 and gcd(t−dp(t), t−eq(t)) = 1. Set ρ = (p, q)
and C := Im(ρ), then

N(C) =
1

ind(ρ)
P

(

(D − d, 0), (0, E − e), (−D,−E), (d, e)
)

.

In particular, parametrizations by generic Laurent polynomials produce
equations whose Newton polygon is typically a quadrilateral (Figure 9).

The proof of this corollary is simple: we have ord0(ρ) = (d, e) and
ord∞(ρ) = (−D,−E). Let v1, . . . , vr 6= 0 be the different roots of t−dp(t)
and mi ≥ 1 the multiplicity of vi in p, then

ordvi
(ρ) = (mi, 0) for 1 ≤ i ≤ r
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e E

d

D

Fig. 9. The Newton polygon of a generic Laurent polynomial parametrization.

as we assume that p and q do not share roots in the torus. Similarly,
let w1, . . . , ws 6= 0 be the roots of t−eq(t) and nj ≥ 1 be their respective
multiplicities. For the same reasons as above

ordwj
(ρ) = (0, nj).

Theorem 2.1 then shows that ind(ρ)N(C) is obtained by rotating −90◦ and
concatenating the vectors (d, e), (−D,−E), (mi, 0) and (0, nj), for 1 ≤ i ≤
r and 1 ≤ j ≤ s. But the (mi, 0)’s are all pointing in the same direction
and so they concatenate together into the vector

∑

i(mi, 0) = (D − d, 0).
Similarly, the (0, nj)’s concatenate together into

∑

j(0, nj) = (0, E − e),
which concludes the proof.

Moreover, it can be shown that for a parametrization like (1), the
Newton polygon of the implicit equation equals

1

ind(ρ)
P

(

(D − d, 0), (0, E − e), (−D,−E), (d, e)
)

if and only if αd, αD, βe, βE 6= 0 and gcd(t−dp(t), t−eq(t)) = 1. If besides
the vectors (D−d, 0), (0, E−e), (d, e) are not collinear, then ρ is birational.

Note that the polygon does not depend on the actual values of the
roots of p and q, it only depends on the hypothesis that they are disjoint
and that we know the sum of their multiplicities. This is a general principle:
for computing the Newton polygon of a parametrization ρ = (f, g), we do
not need full access to the zeros and poles of f and g. It suffices with
partial factorizations of the form

f(t) = α
∏

p∈P

p(t)dp , g(t) = β
∏

p∈P

p(t)ep

where P ⊂ C[t] is a finite set of relatively prime polynomials, dp, ep ∈ N

and α, β ∈ C×. Such factorizations can be obtained with gcd’s operations
only, which is certainly easier than extracting roots and poles.

Back to the world of generic parametrizations, the second case to tackle
is when we have two rational functions with the same denominator. It turns
out that the resulting Newton polygon has at most five edges (Figure 10).
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(E − F, D − F )
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Fig. 10. The Newton polygon of a parametrization by generic rational functions
with the same denominator.

Corollary 3.2. Given D ≥ d, E ≥ e and F ≥ 0, let

p(t) = αdt
d+· · ·+αDtD, q(t) = βet

e+· · ·+βEtE , r(t) = γ0+· · ·+γF tF .

Set ρ =
(

p
r
, q

r

)

∈ C(t)2 and C := Im(ρ), then

N(C) =
1

ind(ρ)
P

(

(D − d, 0), (0, E − e), (F − D, F − E), (d, e), (−F,−F )
)

if and only if αd, αD, βe, βE , γ0, γF 6= 0 and t−dp(t), t−eq(t), r(t) are pair-
wise coprime.

Finally, we consider the case when the parametrization is given by
two generic rational functions with different denominators. The resulting
polygon has at most six edges (Figure 11).

Corollary 3.3. Given D ≥ d, E ≥ e, F, G ≥ 0, let

p(t) = αdt
d + · · · + αDtD , q(t) = βet

e + · · · + βEtE ∈ C[t±1]

and

r(t) = γ0 + · · · + γF tF , s(t) = δ0 + · · · + δGtG ∈ C[t].

Set ρ =
(

p
r
, q

s

)

and C := Im(ρ), then

N(C) =
1

ind(ρ)
P

(

(D−d, 0), (0, E−e), (F−D, G−E), (d, e), (−F, 0), (0,−G)
)

if and only if αd, αD, βe, βE , γ0, γF , δ0, δG 6= 0 and t−dp(t), t−eq(t), r(t), s(t)
are pairwise coprime.

4. The general case vs the generic case. Now suppose we start
from the other endpoint, that is suppose that we are given the equation
E(x, y) of a parametric curve. What does its Newton polytope tell us about
the (unknown) parametrization?
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Ee

(E, F )

(G, D)

Fig. 11. The Newton polygon of a generic parametrization by rational functions
with different denominators.

A first natural question is whether N(E(x, y)) can be any lattice poly-
gon. As we have seen, the polygons produced by generic parametrizations
are very special: they have at most six edges and some of them are in
prefixed directions.

Before answering this question, let us fix a lattice polygon Q ⊂ (R≥0)
2

with non empty interior and touching the coordinate axes. We will identify
C#(Q∩Z

2) with the C-vector space of polynomials whose Newton polygon
is contained in Q. Consider the set

M◦
Q :=

{

F ∈ C[x, y] : N(F ) = Q, F defines a parametric curve in C2
}

⊂ C#(Q∩Z
2)

and let MQ denote its Zariski closure. Recall that ∂Q denotes the border
of Q.

Theorem 4.1 ([4]). MQ is a parametric variety of dimension
#(∂Q ∩ Z2).

In particular, dim(MQ) ≥ 3 as Q must have at least three edges. It turns
out that any lattice polygon with non empty interior and supported in the
coordinate axes is the Newton polygon of a parametric curve.

A further consequence of this result is that the codimension of MQ

equals the number of lattice points in the interior of Q. This is interest-
ing for the inverse problem: given a polynomial E(x, y) ∈ C[x, y], decide
whether it defines a parametric curve or not and if it is the case, compute
a parametrization.

If the Newton polygon of the equation has a lot of points in its interior,
then the probability that E defines a parametric curve is low. If neverthe-
less this is the case, the corresponding parametrization will be defined by
#(∂Q∩Z2) degrees of freedom, and hence the efficiency of the computation
of such a parametrization should be correlated with the number of lattice
points in ∂Q and not with the number of lattice points in the whole of Q.
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Some pointers to the literature:
• Parametric curves in general: [1, 14, 21]
• Numerical interpolation methods: [2, 10, 19]
• Newton polytopes and specialized resultants: [7, 8]
• Newton polytopes and Tropical Geometry: [5, 12, 15,

16, 17]
• Newton polytopes and mixed fiber polytopes: [9, 11, 17]
• Newton polytopes and Intersection Theory: [4, 13]
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