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Gelfond’s method for algebraic independence has been first applied to prove the
algebraic independence of at least two values of the exponential function. It exploits
the construction of an auxiliary function given as an exponential polynomial, that
is a function on a multiplicative torus or, equivalently, a Laurent polynomial. Higher
dimensional generalisation of Gelfond’s method also makes a heavy use of the so-called
Bézout’s theorem in various guise : geometric, arithmetic and metric. It turns out that in
this context a much more precise estimate, due to Kušnirenko and Bernštein, is known to
bound the number of common zeros in a torus of a family of Laurent polynomials. Here,
we shall recall Kušnirenko-Bernštein’s theorem and present some new improvements on
this beautiful result.

Throughout the lecture we will denote by k a commutative field algebraically
closed.

§ 1. Degrees of intersections

Let f, g ∈ k[x±, y±] and Z0 = Z0(f, g) denote the set of common isolated
zeros of f and g in (k×)2 . Set ∆x(f) = − ord1/x(f) − ordx(f) and ∆y(f) =
− ord1/y(f)− ordy(f) and similarly for g .

Bézout (bihomogeneous) theorem tells us that :

card(Z0) ≤ ∆x(f)∆y(g) + ∆x(g)∆y(f) ,

with equality for general Laurent polynomials of given bidegrees.
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Write f =
∑

i,j∈Z αijx
iyj and g =

∑
i,j∈Z βijx

iyj , one associates to these
Laurent polynomials convex polytopes in R2 as follows :

P̃ := Conv{(i, j);αij 6= 0}
Q̃ := Conv{(i, j);βij 6= 0}

.

We denote by P̃ + Q̃ the Minkowski sum of two convexes.

Bernštein-Kušnirenko’s theorem asserts :

card(Z0) ≤ MVR2(P̃ , Q̃) := VolR2(P̃ + Q̃)−VolR2(P̃ )−VolR2(Q̃) ,

with equality for general Laurent polynomials with given polytopes.

Remark – For P̃ = Q̃ one has MVR2(P̃ , Q̃) := 2VolR2(P̃ ) .

Example – Let k, ` ∈ N∗ , consider the polynomials

f := (y − 1)2k + (y − 1)kx` − 3yx2`

g := −3(y − 1)2k + (y − 1)kx` + 3yx2`
.

One verifies easily that the common zeros of these two polynomials are the points of
coordinates (uk, 2

3 ) where u runs through the `-th root of − 1
3 , therefore card(Z0) =

` . However, Bézout’s theorem only gives the upper bound card(Z0) ≤ 8k` and
Bernštein-Kušnirenko’s card(Z0) ≤ 2VolR2(P̃ ) = 4k` + ` .

Remark – In the above example, one can replace the middle term (y − 1)kx` by
(y − 1)kx`−1 , and then the upper bound given by Bernštein-Kušnirenko becomes :
card(Z0) ≤ 4k` + `− 1 .

Write now f =
∑

i∈Z αi(y)xi and g =
∑

i∈Z βi(y)xi with α, β ∈ k[y±] , suppose
f and g are of content 1 in k[y±] . Introduce for all v ∈ P1(k) the following convex
polytopes in R2 :

Pv = Conv{(i,− ordv(αi));αi 6= 0}
Qv = Conv{(i,− ordv(βi));βi 6= 0}
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and the intervals in R
P = Conv{i;αi 6= 0}
Q = Conv{i;βi 6= 0}

.

Let ϑPv : P → R be the function defined by ϑPv (u) = max{t; (u, t) ∈ Pv} and
similarly ϑQv

: Q → R . This (( roof )) function also appears in tropical geometry.

We also denote ϑPv ϑQv : P +Q → R the function defined by u 7→ max{ϑPv (s)+
ϑQv

(t); s ∈ P, t ∈ Q, s + t = u} . This operation is known as the sup-convolution in
convex analysis.

Theorem in dimension 2 [1] – With the above notations one has

card(Z0) ≤
∑

v∈P1(k)

MI(ϑPv
, ϑQv

) :=
∫

P+Q

(ϑPv
ϑQv

)(u)du−
∫

P

ϑPv
(u)du−

∫
Q

ϑQv
(u)du ,

with equality for general polynomials with given polytopes Pv and Qv for all v ∈
P1(k) .

Example (continuation) – The only non trivial polytopes (i.e. Pv 6= P × {0} and
Qv 6= Q× {0} ) show at places v = 0, 1 and ∞ .

Consequently, one obtain ` = card(Z0) ≤ −`− 4k` + 4k` + 2` = ` .

Remark – Replacing again the middle term (y − 1)kx` by (y − 1)kx`−1 , the upper
bound given by our theorem above is : card(Z0) ≤ 2k + ` − 1 , which is actually an
equality.
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On an other hand, writing our polynomials f =
∑

j∈Z αj(x)yj and g =∑
j∈Z βj(x)yj , the application of theorem theorem in dimension 2 [1] doesnot improve

on Bernštein-Kušnirenko’s estimate. Indeed, one checks that the only place showing a
non trivial polytope is the place v = ∞ , where the polytope appears to be :

and the upper bound provided is card(Z0) ≤ 4k` + ` , the same as with Bernštein-
Kušnirenko’s theorem.

Remarks – 1) MI(ϑPv
, ϑQv

) ≤ 0 for all v 6= 0,∞ .

2) MI(ϑP0 , ϑQ0) + MI(ϑP∞ , ϑQ∞) = MV(P̃ , Q̃) .

3) MI(ϑ, ϑ) = 2
∫

Q
ϑ(u)du .

More generally, one defines the mixed integral of n + 1 concave functions
%i : Qi → R , i = 0, . . . , n , defined on some convex sets in Rn , by the formula :

MI(%0, . . . , %n) :=
n∑

j=0

(−1)n−j
∑

0≤i0<...<ij≤n

∫
Qi0+...+Qij

(%i0 . . . %ij
)(u)du1 . . . dun .

We then prove [1] :

Theorem in higher dimensions [1] – Let f0, . . . , fn ∈ k[y±][x±1 , . . . , x±n ] be of
content 1 in k[y±] and Piv their associated polytopes for each v ∈ P1(k) , then

card(Z(f0, . . . , fn)0) ≤
∑

v∈P1(k)

MI(ϑP0v
, . . . , ϑPnv

)

with equality for f0, . . . , fn general among the polynomials of given associated polytopes
P0v, . . . , Pnv , v ∈ P1(k) .
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Let C be a smooth complete curve equipped with a family of ample line bundles
Li for 0 ≤ i ≤ n . Set

Γ(C;Li)[t±1] := Γ(C;Li)⊗k k[t±1] =
⊕

a∈Zn

Γ(C;Li)⊗k ta ,

for the k -vector space of Laurent polynomials with coefficients global sections of Li ,
and for each i consider an element fi ∈ Γ(C;Li)[t±1] . The set of zeros (resp. isolated
zeros) in C × (k×)n of such a system is well-defined and, as before, we denote it by
Z(f0, . . . , fn) (resp. Z(f0, . . . , fn)0 ). If we fix a non-zero section si ∈ Γ(C;Li) \ {0} ,
then s−1

i fi is a Laurent polynomial with coefficients in k(C) , and we can extend to
this setting the notions of v -adic Newton polytope NPv(si; fi) and the corresponding
functions ϑi,v , for s ∈ C .

It may happen that the coefficients of one fi have a non-empty common locus of
zeros, which we denote B(fi) . For a system f = (f0, . . . , fn) as above, we then set
Bi := B(fi) \∪k 6=iB(fk) and finally we put Bf := ∪n

i=0Bi ⊂ C . In this general setting
we have the following extension of Theorem theorem in higher dimensions [1] :

Theorem on curves [1] – Let C be a smooth complete curve equipped with ample line
bundles Li for 0 ≤ i ≤ n . Let fi ∈ Γ(C;Li)[t±1

1 , . . . , t±1
n ] be Laurent polynomials in

the t -variables with coefficients in Γ(C;Li) and si ∈ Γ(C;Li)\{0} a non-zero global
section. For v ∈ C let ϑi,v : NP(f) → R denote the parametrization of the upper
envelope of NPv(si; fi) , then∑

ξ∈Z(f0,...,fn)0\(Bf×(k×)n)

mult(ξ|Z(f0, . . . , fn)) ≤
∑
v∈C

MI(ϑ0,v, . . . , ϑn,v) .

Furthermore, this is an equality for general polynomials with given functions (ϑi,v : 0 ≤
i ≤ n, v ∈ C) .

Consider an extension of an elliptic curve E by a torus k× of dimension 1 .
The complementary set of the fibres above the origin 0 ∈ E and the point u0 ∈ E

parametrizing the extension, is identified with (E \ {0, u0})× (k×) . On this open set,
the algebra of functions gives an embedding of the extension in P2 ×P2 through the
functions (we denote Λ := Z(ω1, η1u0) + Z(ω2, η2u0) + Z(0, 2iπ) ⊂ C2 )

C2/Λ −→ P2 ×P2

(z, t) 7−→
(
(1 : ℘(z) : ℘′(z)) ,

(
℘′(z)+℘′(u0)
℘(z)−℘(u0)

: F (z, t) : F (z, t)−1
))

.

Here, ℘ stands for the Weierstrass elliptic function and F = σ(z−u0)
σ(z) et with σ the

Weierstrass sigma function. The polynomials occuring in this situation are of the shape

f =
N∑

j=0

Aj

(
℘(z), ℘′(z),

℘′(z) + ℘′(u0)
℘(z)− ℘(u0)

)
× F aj
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with Ai polynomials in the three functions indicated and ai ∈ Z . One can apply our
main theorem theorem on curves [1] to estimate from above the number of common
zeros of two such polynomials in (E \ {0, u0}) × (k×) . We see that the only positive
contributions to the estimate come from the extended Newton polytopes at the places 0
and u0 of E , whereas the other places can bring negative contributions. In particular,
we note that for polynomials of the shape f(℘, ℘′, F ) the upper bound does not depend
on the extension itself (namely on u0 ). Even more particularly, consider integers d ,
D , L and two polynomials f1 and f2 of the special shape ( u1 6= 0,±u0 ) :

fi = Ai,0(℘)× (℘− ℘(u1))dD +
d∑

j=1

Ai,j(℘)× (℘− ℘(u1))(d−j)DF jL−1 ,

with Ai,j ∈ C[s] , d◦Ai,j ≤ d and (℘ − ℘(u1)) –| Ai,d(℘) for i = 1, 2 . Then the
number of common isolated zeros of f1 and f2 in (E \ {0})× (k×) is bounded above
by 4d(d− 1)L + 2(d− 1)D , which is most interesting when d is significantly smaller
than D and L .

Remark – Replacing the exponents jL−1 by jL in the expression of the fi ’s, one get
the upper bound 4d(d−1)L , which is easily seen to be exact since (℘−℘(u1)) –| Ai,d(℘)
for i = 1, 2 .
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