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For N, D, H ∈ N consider the Laurent polynomials

f1 := x1 −H, f2 := x2 x−D
1 −H, f3 := x3 x−D

2 −H,

. . . , fN := xN x−D
N−1 −H ∈ Z[x±1

1 , . . . , x±1
N ]

and the associated equation system

f1 = 0, . . . , fN = 0

The solution set Z ⊂ (C∗)N has only one point, namely(
H, H1+D, H1+D+D2

, . . . , H1+D+···+DN−1) ∈ (C∗)N

For N := 5, D := 3, H := 2

Z =
{(

2; 16; 8,192; 1,099,511,627,776;

2,658,455,991,569,831,745,807,614,120,560,689,152
)}

⊂ (C∗)5
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Heights of points of TN

For m = (m1, . . . ,mN) ∈ ZN the height

h(m) = log max{0, m1, . . . ,mN}

is a measure for the complexity of writing down ξ.

In the example

deg(Z) = 1 , h(Z) = (1 + D + · · · + DN−1) log(H)

For N := 5, D := 3, H := 2 we have h(Z) = 83.87.

Set TN := (Q∗)N for the algebraic torus of dimension N . The
previous defn is compatible with the group law : for k ∈ N we
set

[k] : TN → TN , (t1, . . . , tN) 7→ (tk1, . . . , t
k
N)

for the multiplication by k over TN ; then

h
(
[k] m

)
= k h(m)

How does this extends to 0-dimensional varieties ?
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Let X ⊂ TN be a 0-dimensional Q-variety. Consider the
(primitive) Chow form

ChX = γ
∏
ξ∈Z

(
U0 + U1 ξ1 + · · · + UN ξN

)
∈ Z[U0, . . . , UN ]

which is well-defined up to ±. Set

hnaive(X) := h(ChX) = log max
{∣∣Coeffs of ChX

∣∣}
This is linear up to a bounded function : there exists c ≥ 0 st

hnaive([k] X) = c k + O(1) , k � 0

then the height of X is defined as

h(X) := lim
k 7→∞

1

k
hnaive([k] X)

This is the normalized (or Neron-Tate) height of points of TN

introduced by [Weil 51] ; this approach is due to [Neron65] for
points in Abelian varieties

It is linear :
h([k] X) = k h(X)

For ξ ∈ (Q∗)N

h(ξ) = log max{q, m1, . . . ,mN}

where ξ =
1

q

(
m1, . . . ,mN) is an irredundant expression for ξ

In general ∣∣h(X)− h(ChX)
∣∣ ≤ log(N + 1) #X
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Intersection theory on PN

Let
F1, . . . , FN ∈ C[x0, . . . , xN ]

be homogeneous polynomials, then (Bézout theorem, 1764)

#Z(F1, . . . , FN)0 ≤
N∏

i=1

deg(Fi)

For an equidimensional variety X ⊂ PN the degree is

deg(X) := #
(
X ∩ Z(`1, . . . , `n)

)
for generic linear forms `1, . . . , `n and n = dim(X).

For dim(X) = 0 the degree equals its cardinality :

deg(X) = #X

For a hypersurface Z(f ) defined by a squarefree polynomial

deg
(
Z(f )

)
= deg(f )

This notion can be extended to arbitrary varieties. For Z ⊂ PN

we set

deg(Z) :=

N∑
j=0

deg(Zj)

where Zj ⊂ PN is the jth equidimensional component of Z.
Then

deg(X ∩ Y ) ≤ deg(X) deg(Y )
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Intersection theory on toric varieties

Let
F1, . . . , FN ∈ Z[x±1

1 , . . . , x±1
N ]

be Laurent polynomials, and let Z0 ⊂ (C∗)N be the set of isola-
ted zeroes of the equation system

F1 = 0, . . . , Fn = 0

Then (Bernstein-Kushnirenko thm 1975)

#Z0 ≤
∑
ξ∈Z0

`(ξ) ≤ MV(Q1, . . . , QN)

where `(ξ) is the intersection multiplicity of F1, . . . , FN at ξ ;

Qi := NP(fi) = Conv(Supp(Fi)) ⊂ RN

is the Newton polytope of Fi ; and Q := NP(f1, . . . , fN) ⊂ RN

The mixed volume MV(Q1, . . . , QN) ∈ N can be defined as

∑
J⊂{1,2,...,N}

(−1)#J VolRN

( ∑
j∈J

Qj

)
For the unmixed case Q1 = . . . , QN = Q

MV(Q1, . . . , QN) = N ! VolNR (Q)
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In the example

f1 := x1−H, f2 := x2 x−D
1 −H, . . . , fn := xN x−D

N−1−H

Let e1, . . . , eN be the standard basis of RN , then

Q1 = Conv(e1, 0), Q2 = Conv(e2 −D e1, 0),

. . . , Qn = Conv(eN −D eN−1, 0) ⊂ RN

Then

MV(Q1, . . . , QN) = 1

and so
#Z ≤ 1 � DN

For N := 2, D := 3
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Heights of subvarieties of PN

Let’s compactify the torus through the standard inclusion

iN : TN ↪→ PN , (t1, . . . , tN) 7→ (1 : t1 : · · · : tN)

The multiplication [k] extends to the k-power map

[k] : PN → PN , (x0 : · · · : xN) 7→ (xk
0 : · · · , xk

N)

Let X ⊂ PN be an equidimensional Q-variety of dimension n

and let
ChX ∈ Z[U0, . . . , Un]

be its (primitive) Chow form, where n := dim(X). This is a ho-
mogeneous polynomial in each group of variables Ui = {Ui0, . . . , Uin}
of partial degree

degUi
(ChX) = deg(X)

Set

hnaive(X) := h(ChX) = log max
{∣∣Coeffs of ChX

∣∣}
for the naive height of X (proposed by [Weil 50], reappears in
the ’80 [Nesterenko 83], [Philippon 86])
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Then there exists c ≥ 0 st for k � 0

hnaive([k] X)

deg([k] X)
= c k + O(1)

The normalized (or Neron-Tate) height of X is defined as

h(X) := deg(X) lim
k→∞

1

k

hnaive

(
[k] X

)
deg

(
[k] X

) ∈ R+

[Zhang 95], [David-Philippon 98]

Then

h
(
[k] X

)
deg

(
[k] X

) = k
h
(
X

)
deg

(
X

)
This can be compared with the naive height as∣∣h(X)− h(ChX)

∣∣ ≤ 2 (n + 1) log(N + 1)

Vanishing

h(X) = 0 iff X =
⋃M

i=1 Xi where each Xi = ωi H

is the translated of an algebraic group H by a torsion point ω

The “ ⇒” implication is equivalent to the Bogomolov conjecture,
solved by [Zhang95]
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Examples

• dim(X) = 0

This height was first introduced by A. Weil (1951) as

h(X) :=
∑
ξ∈X

h(ξ)

with

h(ξ) :=
1

[K : Q]

∑
v∈MQ

∑
σ:K↪→Cv

log max
{
|σ(ξ0)|v, . . . , |σ(ξN)|v

}

where

K is a number field such that ξ ∈ (K∗)N ;

[K : Q] is the extension degree of K ;

MQ := {∞} ∪ {p ; p prime} is the canonical set of absolute
values of Q ;

| · |∞ is the ordinary absolute value ;

| · |p is the p-adic absolute value defined by

|α|p := p−ordp(α);

Cv is the completion of the algebraic closure of Qv ;

σ runs over all inclusions of K into Cv.
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Examples (cont.)

• dim(X) > 0

There is no general algorithm for computing h(X). Moreover we
don’t know which is its arithmetic nature in the general case (is
it a period à la Kontsevich-Zagier ?)

For X = Z(f ) the height equals the Mahler measure of f

h(X) = m(f ) =

∫
S1×···×S1

log |f (z)| dz1 · · · dzN

the integral being w.r. to the unitary Haar measure over the

compact torus

For plenty of f ∈ Z[x±1, y±1] this is related to special values of
Dirichlet L functions and of L functions of elliptic curves

E.g. [Smyth81]

m(1 + x + y) =
3
√

3

4 π
L(χ−3, 2)

with L(χ−3, 2) = 1− 1

22
+

1

42
− 1

52
+ · · ·

This is a very active area of research : work of D. Boyd, C. De-
ninger, F. Rodríguez Villegas, V. Maillot, . . .
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More examples : monomials varieties

Joint work with P. Philippon

Let A :=
{
(a0, α0), . . . , (aN , αN)

}
⊂ Zn ×Q∗ st(

a1 − a0, . . . , aN − a0

)
Z = Zn

Let

ϕA : Tn → PN , s 7→
(
α0 sa0 : · · · : αN saN

)
and set

XA := ϕA(Tn) ⊂ PN

for the associated monomial variety When αi = 1 for all i this
is a projective toric variety

The dimension and degree are

dim(XA) = n , deg(XA) = n! VolRn(Q)

where Q := Conv(a0, . . . , aN) ⊂ Rn

E.g. Let S ⊂ P4 be the surface associated to the monomial map

(s, t) 7→ (1 : s : t : s2 t : s t2)

its degree is

deg(S) = 2! VolRn(Q) = 5
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Thm. (Philippon-S. 03)
Let v ∈ MQ and set

Qv := Conv
(
(a0, log |α0|v), . . . , (aN , log |αN |v)

)
⊂ Rn+1

for the v-adic polytope of A, and set

Ev : Q → R

for the parameterization of its upper convex envelope w.r. to
Q := Conv(a0, . . . , aN) ⊂ Rn ; then set

E :=
∑

v

Ev

Then
h(XA) = (n + 1)!

∫
Q

E dx1 · · · dxN

E.g. Let A :=
{
(0, 1), (1, 5), (2, 7), (3, 1)

}
⊂ Z × Q∗ ; then

XA ⊂ P3 is (the closure of) the image of the map

s 7→ (1 : 5 s : 7 s2 : s3)

Set

Q∞ := Conv
(
(0, 0), (1, log(5)), (2, log(7)), (3, 0)

)
⊂ R2

then

h(XA) = 2! VolRn+1(Q∞) = 2
(

log(5) + log(7)
)
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Cor.
h(XA) ∈

(
log(Q∗

)
)

Q

⇒ either h(XA) = 0 or h(XA) /∈ Q (by Baker’s theorem)

For A symmetric that is when

[−1] XA = XA

then
h(XA) =

(n + 1)!

2

∑
v∈MQ

VolRn+1(Qv)

Idea of the proof. Set Hgéom(XA; D) for the Hilbert function
of XA ; then

Hgéom(XA; D) = #
(
D Q ∩ Zn

)
= VolRn(Q) Dn + O(Dn−1)

which implies that deg(XA) =
VolRn(Q)

n!
. For the height : set

IZ
D := I(XA) ∩ Z[x0, . . . , xN ]D

which is a lattice of IR
D := IZ

D ⊗ R. We can compute the
arithmetic Hilbert function of XA, which is defined as

Harith(XA; D) := Vol
(
IR
D/IZ

D

)
By the “theorem of arithmetic amplitude” of [Gillet-Soulé 93] and

[Randriam 01] we can read the height from the asymptotics of
this function

Harith(XA; D) =
h(XA)

(n + 1)!
Dn+1 + o(Dn+1)

2
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The “arithmetic” Bézout theorem

Let X ⊂ PN be equidimensional and f =
∑

a fa xa ∈ Z[x0, . . . , xN ]

a homogeneous polynomial ; then

h
(
X ∩ Z(f )

)
≤ h(X) deg(f ) + deg(X) h1(f )

where h1(f ) := log
( ∑

a |fa|
)

is the height associated with

the `1-norm [Philippon 86]

For homogeneous polynomials F1, . . . , FN ∈ Z[x0, . . . , xN ] of
degree D, this implies that

h
(
Z(F1, . . . , FN)

)
≤ DN−1

N∑
i=1

h1(Fi)

Thm. ([Bost-Gillet-Soulé 94], [Philippon 95])
Let X, Y ⊂ PN be (any) varieties ; then

h(X∩Y ) ≤ h(X) deg(Y )+deg(X) h(Y )+(N+1) log(N+1)
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The “arithmetic” Bernstein-Kushnirenko theorem

Thm. ([S. 02] based on work of [Maillot 97])
Let

F1, . . . , FN ∈ Z[x±1
1 , . . . , x±1

N ]

be Laurent polynomials, and let Z0 ⊂ TN be the set of isolated
points of the equation system

F1 = 0, . . . , FN = 0

Let Q0 ⊂ RN be an arbitrary convex polytope ; then

h
(
ϕQ0(Z)

)
≤

N∑
i=1

MV(Q0, . . . , Qi−1, Qi+1, . . . , QN) h1(Fi)

The inclusion iN : TN ↪→ PN corresponds to the standard poly-
tope S := Conv(0, e1, . . . , eN) Hence in the example this gives

h
(
ϕS(Z)

)
≤

N∑
i=1

MV(S, Q1, . . . , Qi−1, Qi+1, . . . , QN) h1(fi)

= (1 + D + · · · + Dn−1) log(H + 1)

while in fact

h(Z) = (1 + D + · · · + Dn−1) log(H)

15



On the other hand, set

Q0 := Conv
(
0, e1, e2−D e1, e3−D e2, . . . , eN−D eN−1

)
⊂ RN

then MV(Q0, Q1, . . . , Qi−1, Qi+1, . . . , QN) = 1 for all i

and so the previous thm gives

h
(
ϕQ0(Z)

)
≤

N∑
i=1

MV(Q0, Q1, . . . , Qi−1, Qi+1, . . . , QN) h1(fi)

= (N + 1) log(H + 1)

In fact
ϕQ0(Z0) = (1 : H : · · · : H)

which shows that hQ0(Z0) = log(H)

Some applications

• This gives an a priori estimate for the size of the output

⇒ certificates and precises the application of modular methods
in polynomial equation solving (as e.g. in the Magma package
Kronecker [Lecerf 99])

• Sometimes this allows to compress the output (by an appro-
priate choice of Q0)

• Estimates for the height of the polynomials in Hilbert’s Nullstellensatz
[Berenstein-Yger96], [Krick-Pardo-S.01]
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