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Activity

Let f be a polynomial of degree d � 0 with coe�cients ±1 or 0.
I will plot all complex solutions of f = 0, then we will see what it
happens. . .
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For instance, let d = 10 and f =−x10+x9+x8+x6+x5−x4+x3−x2+x−1
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d = 30 and f =x30−x29−x28+x26+x25−x24−x23−x22+x21−x20+x19+···
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d = 100 and f =−x100−x98+x96+x94−x93+x92−x91−x90+x88−x84+···
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Conclusion???
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The Erdös-Turán theorem

Let f (x) = adx
d + · · ·+ a0 = ad (x − ρ1 ei θ1) · · · (x − ρd ei θd )

Defn

The angle discrepancy of f is

∆θ(f ) := sup
0≤α<β<2π

∣∣∣∣#{k : α ≤ θk < β}
d

− β − α
2π

∣∣∣∣
The ε-radius discrepancy of f is

∆r(f ; ε) :=
1

d
#
{
k : 1− ε < ρk <

1

1− ε

}
Also set ||f || := sup|z|=1 |f (z)|
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Thm [Erdös-Turán 1948], [Hughes-Nikeghbali 2008]

∆θ(f ) ≤ c

√
1
d log

(
||f ||√
|a0ad |

)
, 1−∆r(f ; ε) ≤ 2

εd log
(
||f ||√
|a0ad |

)
Here

√
2 ≤ c ≤ 2,5619 [Amoroso-Mignotte 1996]

Cor: the equidistribution

Let fd (x) of degree d st log
( ||fd ||√
|ad,0ad,d |

)
= o(d), then

limd→∞
1

d
#
{
k : α ≤ θdk < β

}
=
β − α
2π

limd→∞
1

d
#
{
k : 1− ε < ρdk <

1

1− ε

}
= 1
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Some consequences

1 The number of real roots of f is ≤ 51

√
d log

( ||f ||√
|a0ad |

)
[Erhardt-Schur-Szego]

2 If g(z) = 1 + b1z + b2z
2 + . . . converges on the unit disk,

then the zeros of its d -partial sums distribute uniformely on
the unit circle for d →∞ [Jentzsch-Szego]
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Systems of equations

For f1, . . . , fn ∈ C[x±11 , . . . , x±1n ] consider its set of zeros

V (f1, . . . , fn) = {ξ ∈ (C×)n : f1(ξ) = · · · = fn(ξ) = 0} ⊂ (C×)n

and V0 the subset of isolated points Set Qi := N(fi ) ⊂ Rn the

Newton polytope, then

#V0 ≤ MVn(Q1, . . . ,Qn) =: D [BKK]

From now on, we will assume #V0 = D, in particular V (f ) = V0.

Pb: estimate ∆θ(f ) and ∆r(f , ε)
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For v ∈ Rn \ {0} let πv : Rn → v⊥ the orthogonal projection and

γ(f ) :=
1

D
sup

v∈Rn\{0}

n∑
j=1

MVn−1
(
πv (Qk) : k 6= j

)
log ||fj ||

For fi dense of degree di we have γ(f ) =
√
n
∑

j
log ||fj ||

dj

Thm (D'Andrea-Galligo-S)

Let f1, . . . , fn ∈ Z[x±11 , . . . , x±1n ], then

∆θ(f ) ≤ c(n)γ(f )
1

2(n+1) , 1−∆r(f ; ε) ≤ 2

εd
γ(f )

with c(n) ≤ 23nn
n+1
2

Cor. Let f d such that γ(f d ) = o(d), then V (f d ) converges to
equidistribution on (S1)n for d →∞
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For instance, let d = 7 and

f =x7+x6y+x5y2−x4y3+x3y4+xy6−y7−x6+x4y2−x3∗y3+x2∗y4+x∗y5+y6+···

g=−x7−x5y2+x4y3+x3y4−x2y5−y7+x5y−xy5−y6+x5+x4y−x2y3−xy4+x2y2+···

The joint modulus and arguments of f = g = 0 plot as
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The size of an eliminant form

Let a ∈ Zn \ {0} and consider the monomial projection
χa : (C×)n → C×, ξ 7→ ξa = ξa11 · · · ξann . The associated eliminant

polynomial is

E (f , a)(z) := c
∏
ξ∈V

(z − χa(ξ))mult(ξ) ∈ Z[z ]

Thm (a variant of the arithmetic Bezout theorem)

log ||E (f , a)|| ≤ ||a||
n∑

j=0

MVn−1
(
πa(Qk) : k 6= j

)
log ||fj ||

For the estimate of ∆θ: apply E-T to E (f , a) to estimate the
exponential sums on its roots, then recover V by tomography via

Fourier analysis
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Thank you!
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