On the distribution of the solutions of systems of polynomial equations

C. D'Andrea, A. Galligo and M. Sombra

MEGA 2009 — Barcelona, 15-19/6/2009

A (1) > A (1) > A

э

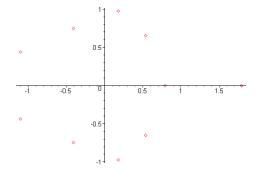
C. D'Andrea, A. Galligo and M. Sombra

Let f be a polynomial of degree $d \gg 0$ with coefficients ± 1 or 0. I will plot all complex solutions of f = 0, then we will see what it happens...

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3

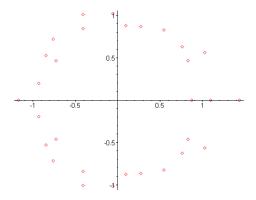
For instance, let d = 10 and $f = -x^{10} + x^9 + x^8 + x^6 + x^5 - x^4 + x^3 - x^2 + x - 1$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のQ@

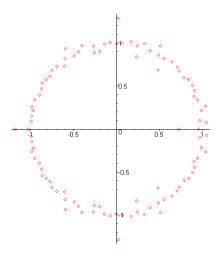
C. D'Andrea, A. Galligo and M. Sombra

d = 30 and $f = x^{30} - x^{29} - x^{28} + x^{26} + x^{25} - x^{24} - x^{23} - x^{22} + x^{21} - x^{20} + x^{19} + \cdots$



C. D'Andrea, A. Galligo and M. Sombra

 $d = 100 \text{ and } f = -x^{100} - x^{98} + x^{96} + x^{94} - x^{93} + x^{92} - x^{91} - x^{90} + x^{88} - x^{84} + \cdots$



C. D'Andrea, A. Galligo and M. Sombra

On the distribution of the solutions of systems of polynomial equations

◆ロ > ◆母 > ◆臣 > ◆臣 > ○臣 - の Q @

Conclusion???

C. D'Andrea, A. Galligo and M. Sombra

On the distribution of the solutions of systems of polynomial equations

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三目 - のへで

The Erdös-Turán theorem

Let
$$f(x) = a_d x^d + \cdots + a_0 = a_d (x - \rho_1 e^{i\theta_1}) \cdots (x - \rho_d e^{i\theta_d})$$

Defn

The angle discrepancy of f is

$$\Delta_{ heta}(f) := \sup_{0 \leq lpha < eta < 2\pi} \left| rac{\#\{k: lpha \leq heta_k < eta\}}{d} - rac{eta - lpha}{2\pi}
ight.$$

The ε -radius discrepancy of f is

$$\Delta_{\mathrm{r}}(f;arepsilon):=rac{1}{d}\,\#\Big\{k:1-arepsilon<
ho_k<rac{1}{1-arepsilon}\Big\}$$

< ロ > < 回 > < 回 > < 回 > < 回 >

3

Also set
$$||f|| := \sup_{|z|=1} |f(z)|$$

C. D'Andrea, A. Galligo and M. Sombra

Thm [Erdös-Turán 1948], [Hughes-Nikeghbali 2008]

$$\Delta_{ heta}(f) \leq c \, \sqrt{rac{1}{d} \log\left(rac{||f||}{\sqrt{|a_0 \, a_d|}}
ight)} \quad , \quad 1 - \Delta_{\mathrm{r}}(f; arepsilon) \leq rac{2}{arepsilon d} \log\left(rac{||f||}{\sqrt{|a_0 \, a_d|}}
ight)$$

Here $\sqrt{2} \le c \le 2,5619$ [Amoroso-Mignotte 1996]

Cor: the equidistribution

Let
$$f_d(x)$$
 of degree d st $\log\left(\frac{||f_d||}{\sqrt{|a_{d,0}a_{d,d}|}}\right) = o(d)$, then

$$\lim_{d \to \infty} \frac{1}{d} \# \left\{ k : \alpha \le \theta_{dk} < \beta \right\} = \frac{\beta - \alpha}{2\pi}$$
$$\lim_{d \to \infty} \frac{1}{d} \# \left\{ k : 1 - \varepsilon < \rho_{dk} < \frac{1}{1 - \varepsilon} \right\} = 1$$

・ロト ・四ト ・ヨト ・ヨト

2

C. D'Andrea, A. Galligo and M. Sombra

- 1 The number of real roots of f is $\leq 51 \sqrt{d \log \left(\frac{||f||}{\sqrt{|a_0 a_d|}}\right)}$ [Erhardt-Schur-Szego]
- 2 If $g(z) = 1 + b_1 z + b_2 z^2 + ...$ converges on the unit disk, then the zeros of its *d*-partial sums distribute uniformely on the unit circle for $d \to \infty$ [Jentzsch-Szego]

(日) (同) (三) (三)

э

C. D'Andrea, A. Galligo and M. Sombra

For $f_1, \ldots, f_n \in \mathbb{C}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$ consider its set of zeros

 $V(f_1,\ldots,f_n) = \{\xi \in (\mathbb{C}^{\times})^n : f_1(\xi) = \cdots = f_n(\xi) = 0\} \subset (\mathbb{C}^{\times})^n$

and V_0 the subset of isolated points Set $Q_i := \mathsf{N}(f_i) \subset \mathbb{R}^n$ the

Newton polytope, then

$$\#V_0 \leq \mathsf{MV}_n(Q_1, \dots, Q_n) =: D \quad [\mathsf{BKK}]$$

From now on, we will assume $\#V_0 = D$, in particular $V(f) = V_0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 うのの

Pb: estimate $\Delta_{\theta}(f)$ and $\Delta_{r}(f, \varepsilon)$

For $v \in \mathbb{R}^n \setminus \{0\}$ let $\pi_v : \mathbb{R}^n \to v^{\perp}$ the orthogonal projection and

$$\gamma(\boldsymbol{f}) := \frac{1}{D} \sup_{\boldsymbol{v} \in \mathbb{R}^n \setminus \{\boldsymbol{0}\}} \sum_{j=1}^n \mathsf{MV}_{n-1} \left(\pi_{\boldsymbol{v}}(\boldsymbol{Q}_k) : k \neq j \right) \log ||f_j||$$

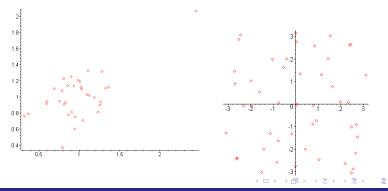
For f_i dense of degree d_i we have $\gamma(f) = \sqrt{n} \sum_j \frac{\log ||f_j||}{d_j}$

Thm (D'Andrea-Galligo-S)
Let
$$f_1, \ldots, f_n \in \mathbb{Z}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$$
, then
 $\Delta_{\theta}(f) \leq c(n)\gamma(f)^{\frac{1}{2(n+1)}}$, $1 - \Delta_{\mathrm{r}}(f;\varepsilon) \leq \frac{2}{\varepsilon d}\gamma(f)$
with $c(n) \leq 2^{3n}n^{\frac{n+1}{2}}$

Cor. Let f_d such that $\gamma(f_d) = o(d)$, then $V(f_d)$ converges to equidistribution on $(S^1)^n$ for $d \to \infty$

C. D'Andrea, A. Galligo and M. Sombra

For instance, let
$$d = 7$$
 and
 $f = x^7 + x^6y + x^5y^2 - x^4y^3 + x^3y^4 + xy^6 - y^7 - x^6 + x^4y^2 - x^3*y^3 + x^2*y^4 + x*y^5 + y^6 + \cdots$
 $g = -x^7 - x^5y^2 + x^4y^3 + x^3y^4 - x^2y^5 - y^7 + x^5y - xy^5 - y^6 + x^5 + x^4y - x^2y^3 - xy^4 + x^2y^2 + \cdots$
The joint modulus and arguments of $f = g = 0$ plot as



C. D'Andrea, A. Galligo and M. Sombra

The size of an eliminant form

Let $a \in \mathbb{Z}^n \setminus \{0\}$ and consider the monomial projection $\chi_a : (\mathbb{C}^{\times})^n \to \mathbb{C}^{\times}$, $\xi \mapsto \xi^a = \xi_1^{a_1} \cdots \xi_n^{a_n}$. The associated *eliminant* polynomial is

$$\mathsf{E}(f, \mathsf{a})(z) := c \prod_{\xi \in V} (z - \chi_{\mathsf{a}}(\xi))^{\mathsf{mult}(\xi)} \in \mathbb{Z}[z]$$

Thm (a variant of the arithmetic Bezout theorem)

$$\log ||E(f, a)|| \le ||a|| \sum_{j=0}^{n} \mathsf{MV}_{n-1} (\pi_a(Q_k) : k \ne j) \log ||f_j||$$

For the estimate of Δ_{θ} : apply E-T to E(f, a) to estimate the exponential sums on its roots, then recover V by tomography via Fourier analysis

C. D'Andrea, A. Galligo and M. Sombra

Thank you!

C. D'Andrea, A. Galligo and M. Sombra

On the distribution of the solutions of systems of polynomial equations

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三目 - のへで