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Jean Baptiste Joseph Fourier (1768-1830)

It was around 1804 that Fourier did his important mathematical work
on the theory of heat. By 1807 he had completed his important memoir
On the Propagation of Heat in Solid Bodies, which was read to the
Paris Institute on December 21, 1807 and a committee consisting of
Lagrange, Laplace, Monge and Lacroix was set up to report on the
work.

The Institute set as a prize competition subject the propagation
of heat in solid bodies for the 1811 mathematics prize. Fourier sub-
mitted his 1807 memoir together with additional work on the cooling
of infinite solids and terrestrial and radiant heat. Only one other en-
try was received and the committee set up to decide on the award
of the prize, Lagrange, Laplace, Malus, Haüy and Legendre, awarded
Fourier the prize. The report was not however completely favorable
and states:

“... the manner in which the author arrives at these equations
is not exempt of difficulties and that his analysis to integrate them
still leaves something to be desired on the score of generality and even
rigor.”

The MacTutor History of Mathematics archive:
http://turnbull.mcs.st-and.ac.uk/history
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Jean Baptiste Joseph Fourier (1768-1830)
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Heat flow in a circular ring

Fourier formulated that the heat equation ut = uxx describes the
time evolution of the temperature of a circular ring (assuming that
u(x, t) is 2π-periodic function of x, but not of t). By using the classical
method of separation of variables and linearity, it is easy to arrive at
a solution of the form

u(x, t) =
N∑

n=0

(an cos nx + bn sinnx)e−n2t

This will fit an initial temperature f(x) (at time t = 0) only if f can
be expressed as a finite trigonometric sum:

f(x) =
N∑

n=0

(an cos nx + bn sin nx)

Thus, if we let the number of coefficients N go to infinity, we would
like to know which 2π-periodic functions f can be written as an infi-
nite trigonometric series, and how can the coefficients an and bn be
calculated in terms of f?
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It turns out that the trigonometric system enjoys very nice orthogo-
nality relations:

∫ π

−π

sinmx sinnx dx = 0, m �= n

∫ π

−π

cos mx cos nx dx = 0, m �= n

∫ π

−π

sinmx cos nx dx = 0, all m, n

Thus, if f(x) =
∑N

n=0(an cos nx + bn sin nx) then

a0 =
1
2π

∫ π

−π

f(x) dx

an =
1
π

∫ π

−π

f(x) cos nx dx, n = 1, 2, · · ·

bn =
1
π

∫ π

−π

f(x) sinnx dx, n = 1, 2, · · ·
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Main Question

Given a 2π-periodic function f , we want to know when the equality

f(x) =
∞∑

n=0

(an cos nx + bn sin nx)

holds, where an and bn are defined as above. Also we want to study
the convergence properties of the series.

This series is called the Fourier Series of f , and can be viewed as
the spectral decomposition of a signal, in terms of pure frequencies (in
this case the sine and cosine functions): If we think of these functions
as representing the “pure” colors (red, green, blue, etc.), then if f is a
light ray, the coefficients represent the intensity of each of the “pure”
colors.
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Examples of Fourier Series

cos(x)−2 cos(3 x)+5 cos(4 x)−7 cos(7 x)+12 cos(9 x)+0.1 cos(23 x)

Sums with N = 1, 3, 4, 7, 9, 23 coefficients
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Blips

5 cos(80x)e−5x2
+ 5 cos(80x)e−5(x+2)2 + 5 cos(80x)e−5(x−2)2
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Fourier Series with 40 coefficients
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Fourier Series with 80 coefficients
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Fourier Series with 120 coefficients
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“The problem of convergence of the Fourier Series of a function f has
been one of the most productive in analysis, and many basic notions
and results in mathematics have been developed by mathematicians
working in this field. The modern concept of function was first in-
troduced by Dirichlet while studying this convergence. The Riemann
and, later, the Lebesgue integrals were originally introduced in works
dealing with harmonic analysis. Infinite cardinal and ordinal num-
bers, probably the most original and striking notions of modern math-
ematics, were developed by Cantor in his attempts to solve a delicate
real-variable problem involving trigonometric series.”

Guido Weiss: "Harmonic Analysis", a chapter in the book
MAA Studies in Math. vol. III, AMS, 1964
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There are several easy results concerning the convergence of

(CFS) f(x) =
∞∑

n=0

(an cos nx + bn sin nx)

∗ If
∑

n |an| < ∞ and
∑

n |bn| < ∞ then
∑∞

n=0(an cos nx+bn sin nx)
converges absolutely and uniformly. Hence if it converges to f
then f has to be a continuous function.

∗ If f is a smooth function of class C1 then (CFS) holds. In fact it
suffices a very small regularity condition on f (Lipschitz regular-
ity).

One of the first striking negative results on (CFS) was given
by P. du Bois Reymond in 1873, who showed the existence of
a continuous function for which (CFS) fails at a point.
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Not so easy results about (CFS) are the following:

∗ If f satisfies a Dini condition at x:

∫ δ

0

|f(x + t) + f(x − t) − 2f(x)|
t

dt < ∞,

then (CFS) holds (thus (CFS) is a local property, even though
it involves the values of f in all the domain).

∗ If f is differentiable at x0 then (CFS) holds at x0.

∗ Dirichlet-Jordan If f is a function of bounded variation (i.e.,
it can be written as the difference of two monotone and bounded
functions) then the Fourier Series converges at the middle point
of f at x (and hence (CFS) holds if f is continuous at that point).

∗ If f is absolutely continuous, then (CFS) holds everywhere.

However, A. N. Kolmogorov showed in 1922 the existence of
a function f for which (CFS) fails at any point.
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f(x) =
{

(x − π)/2, −π < x < 0
(π − x)/2, 0 < x < π

Dirichlet-Jordan Theorem
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Gibbs Phenomenon

On jump discontinuities the overshot at the point always exceeds a fix
amount (about 18%) the lateral limit point.

16



Most of the results concerning (CFS) are based on the integral rep-
resentation of the partial sums of the Fourier Series, in terms of the
convolution with the Dirichlet kernel:

Dk(x) =
sin(k + 1/2)x

sin x/2

This family of kernels has a lot of oscillations and it is hard to control.
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However, if we consider the problem of convergence in means, which is
a more regular approach, then the kernel that shows up is much nicer:

Fejér’s kernel: Kn(x) =
1

n + 1

(
sin(n + 1)x/2

sin x/2

)2

This modified convergence ((C, 1)-convergence) corresponds to the so
called Summability Methods. In particular, now the (CFS) holds uni-
formly for continuos functions (this is just a particular case of an
Approximation of the Identity).
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The Nice L2 Theory

The behaviour of the Fourier Series for a function in L2, i.e.,

‖f‖2 =
(

1
2π

∫ π

−π

|f(x)|2 dx

)1/2

< ∞

can be easily controlled by using the fact that the trigonometric sys-
tem is an orthonormal basis in L2, and hence we can have all the
functional properties known for Hilbert spaces. In particular, we have
the generalization of Pythagoras’ Theorem, which is called Parseval’s
Theorem:

‖f‖2 =
( ∞∑

k=0

|ak|2 +
∞∑

k=1

|bk|2
)1/2

From here one can show that (CFS) holds in the L2-norm. By using
some other techniques based on the conjugate Fourier Series one can
show that in fact (CFS) holds in Lp for all 1 < p < ∞ (the cases
p = 1,∞ are false).
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It is know that the norm convergence implies the existence of a subse-
quence which also converges pointwise, almost everywhere. But, what
is the best we can say about (CFS) in the pointwise sense?

In 1966, L. Carleson proved what is considered the most important
(and possibly the most difficult to read!) result on Fourier Series:

If f ∈ L2, then f(x) =
∞∑

n=0

(an cos nx + bn sinnx), almost everywhere

This conjecture was posed by N. Lusin in 1915. The proof of Carleson
was so complicated because he was trying, in fact, to build a coun-
terexample. After cutting the bad set in many pieces, he realized that
he was able to show that the measure of the exceptional set was zero...

In 1968, R. Hunt extended the pointwise convergence to all functions
in Lp, 1 < p. There is yet an open question:

What is the largest space in L1 for which (CFS) holds a. e.?

Up to now (2003) the largest known is L(log L)(log log log L).
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Lennart Carleson, Royale Institute of Technology (KTH), Stockholm, Sweden.
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Discrete and Fast Fourier Transform

There is a basic tool for computation of the Fourier Series, the Dis-
crete Fourier Transform (DFT). The computer algorithm for this com-
putation is called Fast Fourier Transform (FFT). The main idea is to
discretize the integrals defining the Fourier coefficients of the function
f , by means of a Riemann sum: Fix a big number N (usually a power
of 2), and use the approximation:

an ≈ 2
N

N∑
j=0

f(2jπ/N) cos(2jπn/N)

bn ≈ 2
N

N∑
j=0

f(2jπ/N) sin(2jπn/N)

This discrete transformation is now used to compute (approximately)
the Fourier Series of f . It turns out that this calculation involves the
multiplication of N × N trigonometric matrices, which requires the
order of N2 multiplications: If N = 1024 then this would amount up
to 1,048,576 products.
By using an optimization method to carry over this product, the FFT
allows a tremendous saving: we can get the same result but only using
N log N products. In the previous case, we reduce the products from
1,048,576 to 5,120.
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Examples using FFT with N = 1024 and 30 coefficients

f(x) =
{

1, −π < x < 0
−1, 0 < x < π

(0.06 seconds)
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f(x) = x2 (0.08 seconds)
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f(x) =
{

x + π, −π < x < 0
π − x, 0 < x < π

(0.06 seconds)
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How to optimize multiplication

Consider two (BIG) numbers:

A = 438471239857418148514985100000

B = 758437583475834756834756100000

(A has 2, 364, 195 digits). We would like to calculate the following:

A2 + 2AB + B2

We observe that this operation requires 3 products and 3 sums (A2 +
2AB + B2 = A2 + AB + AB + B2). Using Mathematica we measure
the time needed for this calculation:

17.599999999976717 seconds

We now observe that we can also write the above number as follows:

(A + B)(A + B)

which only needs 1 product and 1 sum. Now, to calculate this we only
need

5.46667 seconds

which is a BIG improvement.
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Applications of Fourier Series

∗ Prediction of Tides (Lord Kelvin, 1871).

∗ Isoperimetric Problem: The circle is the figure with maximum
area for a fixed perimeter (J. Steiner, 1841. A. Hurwitz, 1900)

∗ The age of the Earth: Kelvin’s model of a cooling earth (Rough
approximation: 100-400 million years! Radioactivity was not yet
discovered...)

∗ Analog telephone.

∗ Spectral Analysis: Atomic, Infrared, Cosmic.

∗ Physical Models described by some Partial Differential Equations:
Motions of the Planets, Heat Flow in Solids, etc.
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∗ Denoising: Filtering “noises” in a signal:

∗ Compact Discs: How music is stored on CD’s and then repro-
duced? (Shannon Sampling Theorem.)
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However, there are many cases in which Fourier methods are not al-
ways a good tool to analyze a signal, in particular if it is highly nons-
mooth:

∗ The Fourier Series behaves badly at discontinuity points.

∗ What can we say about the regularity of a function by looking at
the size of its coefficients (some information can be recovered but
there is always a loss).

∗ Can we characterize other spaces than L2 by the Fourier coeffi-
cients? (It is not true for Lp if p �= 2)

It was in the 1980’s that several people (R. Coifman, I. Daubechies,
M. Frazier, A. Grossman, B. Jawerth, S. Mallat, Y. Meyer, J.O.
Strömberg, G. Weiss) realized that a new method for discretizing func-
tions (analyzing signals) could be used in a more efficient way.
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WAVELETS

A Wavelet is just an L2 function Ψ which satisfies the following prop-
erty:

If we dilate and translate the function, Ψj,k(x) = 2j/2Ψ(2jx−k), then

{
Ψj,k

}
j,k

is an orthonormal basis of L2

Hence, we can now define the wavelet transform by assigning to each
function f the coefficients

fj,k =
∫

f(x)Ψj,k(x) dx

and we can recover the function back by means of the series

f(x) =
∑
j,k

fj,kΨj,k(x)

if f ∈ L2.
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Examples

Haar wavelet

f(x) =
{

1, 0 < x < 1/2
−1, 1/2 < x < 1
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Daubechies wavelet

Continuous compactly supported wavelet
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Good Features of the Wavelet Transform

∗ We can choose the “right” wavelet for each case: we can either
fix the smoothness, or the support, etc. Hence we can completely
determine the regularity properties of a function by measuring
the size of the discrete sequence of coefficients.

∗ In general, most of the functional spaces in Analysis (Lebesgue,
Sobolev, Triebel-Lizorkin, etc.) can be discretized using wavelets.

∗ All wavelets are characterized by the simple equations:

∑
j

|Ψ̂(2jξ)|2 = 1, a.e.

∞∑
j=0

Ψ̂(2jξ)Ψ̂(2j(ξ + 2mπ)) = 0 a.e.

for every odd integer m.

∗ A small number of wavelet coefficients are needed to accurately
represent a function:
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Original fingerprint

Using 7% of the wavelet coefficients

The full FBI fingerprints database (more than 200 million records,
about 2,000 terabytes in size) has been compressed about 15:1 by
using a wavelet type image coding.
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