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Chapter 1

Introduction

The digital image processing is a field devoted to the enhancement of a given image
in order to make it more suitable for a specific purpose as well as extracting some
of its particular attributes. Its applications cover a wide range of different areas:
from easing visualisation of a certain body feature (by sharpening, reducing noise,
improving contrast, ...) for medical recognition to edge detection so as to localise
a predetermined shape and, therefore, identifying a particular element such a car
plate. However, the processing may be very time consuming, which is an important
drawback. Thus, the main challenge that digital image processing faces is the de-
velopment of strategies that result in an accurate outcome while speeding up the
whole process. One of the tools introduced so as to achieve such purposes is the
Discrete Fourier Transform.

The aim of this project is to develop the Discrete Fourier Transform (DFT) in
order to see some of its applications on image processing. As we are going to discuss
in detail throughout the project, the role played by the DFT is the following. The
space we are going to deal with is `2(Z/M × Z/N) (defined in Chapter 2) since, as
we are going to see in Chapter 5, a digital image is regarded as an element of such
space. Moreover, we will focus on that type of image processing that consists in
applying a linear and translation-invariant transformation to the given picture. As
we will develop in Section 5.2, such processing is equivalent to perform a convolution
between the image and some other element of `2(Z/M ×Z/N) (filtering). Since M
and N can be very large (even millions), performing convolution appears to be not
only too expensive computationally, but even unfeasible if M and N are too large.
And here is where the DFT comes to play. One of its key properties is the fact that
it can turn a convolution into the Inverse Discrete Fourier Transform (IDFT) of a
component-wise product between the DFT of two matrices (Proposition 2.1.13). In
other words, f ∗ g = (f̂ . ∗ ĝ)∨, where f, g ∈ `2(Z/M × Z/N) and ∗ and .∗ stands
for convolution and component-wise product respectively. But, if it is true that a
component-wise product is, by far, less time consuming, the computation of the DFT
and IDFT requires much more time, since they have to be calculated by means of a
change-of-basis matrix (Section 2.2). However, as we will see, such computations can
be speeded up by implementing the Fast Fourier Transform (FFT) algorithm. Thus,
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on the one hand, the introduction of the DFT leads to a faster way of processing
an image. In addition, as we will see in Chapter 2, the DFT is a change of basis
from the Euclidean to the Fourier basis, which as discussed in Section 2.3, allows a
frequency analysis of the signal. Hence, on the other hand, the DFT splits a signal
into its frequency components providing key information of such signal, as illustrated
in Sections 5.4 and 5.5. Therefore, the project has two main goals: studying the
filtering process and developing some examples of image processing (Chapter 5) as
well as analysing the reduction entailed by the implementation of the FFT algorithm
(Chapters 3 and 4). In order to do so, it is going to be fundamental the development
of the main properties of the DFT (Chapter 2).

Let us now describe in more detail how the project is structured. Chapter 2,
which is an extension to two dimensions of [2], gathers all the essential results
concerning the DFT. It begins by setting the required tools to define the Discrete
Fourier Transform along with its main properties (Section 2.1) whereas Sections 2.2
and 2.3 are more focused on its features as a change of basis. On the one hand, the
former provides the change-of-basis matrix (which is going to be fundamental when
analysing the computational advantage of the FFT) while, on the other hand, the
latter explains the frequency information encoded in the new coefficients. As we
will see, the new basis (Fourier basis) splits a signal into its frequency components
in such a way that the coefficients reveal the strength of each component required
in making up the signal. This is very useful when recovering a signal, as Section 5.4
will illustrate.

In Section 3.1 we introduce the Fast Fourier Transform algorithm following the
approaches set in [2] and [8]. Since this algorithm halves a vector iteratively, the
most favourable situation is that in which it is applied to a vector whose size is
a power of two. That is the reason why, as also mentioned at the beginning of
Chapter 3, in most of the references the FFT is only applied to vectors of such length.
However, since we are interested in the computational advantage that results from
the use of this algorithm, not only have we studied its implementation in such vectors
(Section 3.2) but to any other vector of even length (Section 3.3). In both cases we
provide the number of operations required by the algorithm in order to compare it
with the ones needed by the change-of-basis matrix. Recall that in Section 2.2 we
constructed that matrix and, therefore, we know how many operations are carried
out when multiplying the matrix by the vector. By comparing such numbers we are
going to obtain the reduction entailed by the use of the FFT. As we will see, such
reduction is greater when the vector has length a power of two which leads us to study
the padding (Section 3.4). In that section we obtain an upper bound for the error
caused when padding a vector of any size, not necessarily even, (Proposition 3.4.3)
which leads to a uniform bound for normalised vectors (Corollary 3.4.5). Finally, we
particularise the study of the padding to vectors of even size but not a power of two
in order to stablish under which hypothesis it is worth to pad a vector, that is, under
which hypothesis the operations required for computing the FFT is smaller for the
padded vector. Moreover, we find out the reduction that ensues from padding.

Keeping in mind the fact that the FFT can only be applied to vectors of even
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size, we begin Chapter 4 by stating the result in which this algorithm is based [2,
Proposition 4.1.1]. Then, we use this result to extend the FFT to a vector of odd
but non-prime size, which we call extended algorithm (Section 4.2). In addition, this
extension allows us to introduce the mixed algorithm (Section 4.3), which improves
the FFT algorithm for vectors of even size but not a power of two. In both cases,
we compute the number of operations required by the new algorithms and compare
it with the change-of-basis matrix in order to analyse the reduction. Next, in Sec-
tions 4.4.2 and 4.4.3 we compare the number of operations required by the extended
or mixed algorithm with the ones needed by the FFT applied to the padded vector
so as to find out the reduction. Moreover, we study, in each case, the conditions
under which padding is worth doing. Finally, we focus on vectors of prime size,
whose only way of computing its transform is by means of the change-of-basis ma-
trix. In Section 4.4.1, we examine how many operations are needed when padding
it and, as we will see, the conclusion is that padding such vectors is always less
time-consuming.

Notice that in this two chapters we have distinguished different situations de-
pending on the size of the vector discussing, in each case, the quickest way of com-
puting its Fourier Transform (algorithms/padding). Section 4.5 summarises it and
provides the plots depicting the number of operations required by each algorithm
(Figure 4.6) and by the FFT applied to the padded vectors (Figure 4.7), both de-
pending on the length of the vectors.

Recall that we mentioned the fact that most of the references in the FFT are only
concerned with vectors whose size is a power of two since, otherwise, the vectors are
just padded. Therefore, the main purpose of Chapters 3 and 4 is to go deeper on
those aspects usually skipped in most of the discussions: the extension of the FFT
so as to be applied to a vector of any size, the study of the reduction that ensues
from the implementation of the algorithms (which involves counting the number
of operations required) and a deeper discussion on the padding issue. The latter
includes bounding its error, finding the hypothesis under which it is actually time-
saving and, finally, studying the consequent reduction.

Eventually, Chapter 5 focuses on digital image processing. Once it has estab-
lished the setting and introduced the notation (Section 5.1) it then exposes the
basics of filtering, where the results exposed are an extension to two dimensions of
the ones appearing in [2]. Moreover, it shows the computational reduction arisen
from the use of the DFT instead of the convolution. Finally, this section ends with
an introduction to Sections 5.3, 5.4 and 5.5, since some previous assumptions must
be made. Such sections provide examples of digital image processing that illustrate
the important role played by the Fourier Transform when filtering [3]. In addition,
Section 5.4 shows how to take advantage of the information encoded in the Fourier
basis in order to eliminate periodic noise from a picture. Finally, Section 5.6 devel-
ops an algorithm that can be used so as to reconstruct an image where a uniformly
distributed set of its pixels has been removed [1]. Although it is usually used with
other types of transformations (such the Discrete Cosine Transform as illustrated
in [1] and [7]), we are going to implement it with the DFT and see its performance
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when a whole square of pixels is missing. Along this chapter we are going to illus-
trate the approaches set with some particular examples, which were implemented
using Matlab. The codes can be found in the Appendix.



Chapter 2

Discrete Fourier Transform

In this chapter we are going to set a certain Hilbert space over which we will define
a linear transformation, the Discrete Fourier Transform, which will be regarded as
the change of coordinates from the Euclidean basis to the so called Fourier basis.
By extending to two dimensions the results exposed in [2], we are going to see some
of its properties such as the fact that it is invertible or its performance over other
transformations like are translation or convolution. In particular, we are going to
pay special attention to the construction of the change-of-basis matrix. Finally, we
will see how the Fourier basis allows a frequency analysis of the vectors, fact that is
going to be fundamental later on.

2.1 Fundamentals of the Discrete Fourier Trans-

form

In this section we are going to define the so called Discrete Fourier Transform over
a certain space of functions as well as developing its main properties.

Let us first consider the set

`2 (Z/(M)× Z/(N)) = {f : Z× Z→ C such that f(m,n) = f(m+ k1M,n+ k2N)

for all k1, k2 ∈ Z},

where M and N are positive integers. That is the set of discrete functions of
two integer variables taking values in the set of complex numbers such that they
have period M with respect to the first variable and period N with respect to the
second variable. Notice that it is enough to have these functions defined in the set
{0, 1, . . . ,M − 1}× {0, 1, . . . , N − 1} since, then, they can be extended periodically.
Thus, any function f ∈ `2 (Z/(M)× Z/(N)) can be represented by the finite matrix

f =

 f(0, 0) . . . f(0, N − 1)
...

...
f(M − 1, 0) . . . f(M − 1, N − 1)

 . (2.1.1)

5
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In order to simplify notation, we are going to denote ZM := Z/(M) for any
integer M .

The set `2(ZM × ZN) is a vector space over C with the usual componentwise
addition and scalar multiplication. Moreover, with the following inner product

〈f, g〉 =
M−1∑
m=0

N−1∑
n=0

f(m,n)g(m,n), ∀f, g ∈ `2(ZM × ZN)

it becomes a Hilbert space. Therefore, it is a Banach space with the norm

||f || = 〈f, f〉1/2 =

(
M−1∑
m=0

N−1∑
n=0

|f(m,n)|2
)1/2

.

The standard basis for `2(ZM × ZN) is the Euclidean one, defined as E =
{Ep,q}0≤p≤M−1,0≤q≤N−1, where

Ep,q(m,n) =

{
1, if m = p and n = q

0, otherwise
,

for all m ∈ {0, . . . ,M − 1}, n ∈ {0, . . . , N − 1} and, then, extended periodically.

Apart from this one, there is another basis that is going to be fundamental for
our purposes and is the so called Fourier basis. Let us now define it.

Proposition 2.1.1. Consider the subset F = {Fp,q}0≤p≤M−1,0≤q≤N−1 ⊂ `2(ZM×ZN)
with

Fp,q(m,n) =
1√
MN

e2πipm/Me2πiqn/N

for all m,n ∈ Z. Then, the set F is an orthonormal basis of the space `2(ZM ×ZN).
We will refer to the set F as the Fourier basis of the space `2(ZM × ZN).

Proof. Let us first check that F is certainly contained in `2(ZM × ZN). If we take
k1, k2 ∈ Z, then

Fp,q(m+ k1M,n+ k2N) =
1√
MN

e2πip(m+k1M)/Me2πiq(n+k2N)/N

=
1√
MN

e2πipm/Me2πipk1e2πiqn/Ne2πiqk2

=
1√
MN

e2πipm/Me2πiqn/N = Fp,q(m,n).

So the functions of F are M -periodic with respect to the first variable and N -periodic
with respect to the second variable, as we wanted to prove.
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Let us now see that the set F is orthonormal. Take 0 ≤ p1, p2 ≤ M − 1 and
0 ≤ q1, q2 ≤ N − 1. Then,

〈Fp1,q1 , Fp2,q2〉 =
M−1∑
m=0

N−1∑
n=0

Fp1,q1(m,n)Fp2,q2(m,n)

=
1

MN

M−1∑
m=0

N−1∑
n=0

e2πip1m/Me2πiq1n/Ne−2πip2m/Me−2πiq2n/N

=
1

MN

M−1∑
m=0

N−1∑
n=0

e2πi(p1−p2)m/Me2πi(q1−q2)n/N

=
1

MN

M−1∑
m=0

N−1∑
n=0

(
e2πi(p1−p2)/M

)m (
e2πi(q1−q2)/N

)n
=

1

MN

[
M−1∑
m=0

(
e2πi(p1−p2)/M

)m][N−1∑
n=0

(
e2πi(q1−q2)/N

)n]
.

At this point we will distinguish two cases depending on the values of p1, p2, q1 and
q2:

(i) If p1 = p2 and q1 = q2, then

〈Fp1,q1 , Fp1,q1〉 =
1

MN

(
M−1∑
m=0

1

)(
N−1∑
n=0

1

)
= 1.

(ii) Suppose now that p1 6= p2 or q1 6= q2. Without loss of generality, assume
p1 6= p2. Since 0 ≤ p1, p2 ≤ M − 1, then −M + 1 ≤ p1 − p2 ≤ M − 1 and hence
e2πi(p1−p2)/M 6= 1. Therefore, the sum is a geometric series, so

M−1∑
m=0

(
e2πi(p1−p2)/M

)m
=

1− (e2πi(p1−p2)/M)M

1− e2πi(p1−p2)/M
=

1− e2πi(p1−p2)

1− e2πi(p1−p2)/M

=
1− 1

1− e2πi(p1−p2)/M
= 0,

where we have used the fact that p1 − p2 ∈ Z. This implies that 〈Fp1,q1 , Fp2,q2〉 = 0.
This proves that the set F is orthonormal. In particular, the elements of F are

linearly independent. This result together with the fact that the space `2(ZM ×ZN)
has dimension M ·N implies that F generates all the space `2(ZM × ZN). So, F is
an orthonormal basis of `2(ZM × ZN).

Remark 2.1.2. An important feature of this basis is the fact that

Fp,q(m,n) = Fm,n(p, q)

for all 0 ≤ m, p ≤M − 1 and 0 ≤ n, q ≤ N − 1.
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So far we have seen that `2(ZM × ZN) is a Hilbert space with an orthonormal
basis called the Fourier basis. So we can now define the Fourier coefficients of the
elements of the space.

Definition 2.1.3. We define the Discrete Fourier Transform (DFT) as the map

`2(ZM × ZN)
∧−→ `2(ZM × ZN)

f 7→ f̂

where f̂(p, q) = 〈f, Fp,q〉 for all p ∈ {0, . . . ,M − 1}, q ∈ {0, . . . , N − 1} and then
extended periodically.

Notice that, due to the periodicity of the Fourier basis, this definition holds for
all p, q ∈ Z. Therefore, if f ∈ `2(ZM × ZN) and p, q ∈ Z, then

f̂(p, q) =
1√
MN

M−1∑
m=0

N−1∑
n=0

f(m,n)e−2πipm/Me−2πiqn/N . (2.1.2)

Observe that |f̂(p, q)| is the length of the projection of f onto the vector Fp,q of
the basis.

Remark 2.1.4. In particular, if f ∈ `2(ZM), which means taking N = 1, then, for
all p ∈ Z

f̂(p) =
1√
M

M−1∑
m=0

f(m)e−2πipm/M .

Proposition 2.1.5. Let f, g ∈ `2(ZM × ZN). Then, the following identities hold:

(i) 〈f, g〉 = 〈f̂ , ĝ〉.

(ii) ||f || = ||f̂ ||. This is the so called Parseval’s identity.

Proof.

(i) 〈f̂ , ĝ〉 =
M−1∑
p=0

N−1∑
q=0

f̂(p, q)ĝ(p, q)

=
M−1∑
p=0

N−1∑
q=0

(
M−1∑
m=0

N−1∑
n=0

f(m,n)Fp,q(m,n)

)M−1∑
m=0

N−1∑
n=0

g(m,n)Fp,q(m,n)


=

M−1∑
p=0

N−1∑
q=0

(
M−1∑
m=0

N−1∑
n=0

f(m,n)Fp,q(m,n)

)(
M−1∑
m=0

N−1∑
n=0

g(m,n)Fp,q(m,n)

)

=
M−1∑
p=0

N−1∑
q=0

(
M−1∑
m=0

N−1∑
n=0

M−1∑
r=0

N−1∑
s=0

f(m,n)Fp,q(m,n)g(r, s)Fp,q(r, s)

)

=
M−1∑
p=0

N−1∑
q=0

M−1∑
m=0

N−1∑
n=0

M−1∑
r=0

N−1∑
s=0

f(m,n)g(r, s)Fm,n(p, q)Fr,s(p, q)
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=
M−1∑
m=0

N−1∑
n=0

M−1∑
r=0

N−1∑
s=0

f(m,n)g(r, s)

(
M−1∑
p=0

N−1∑
q=0

Fm,n(p, q)Fr,s(p, q)

)

=
M−1∑
m=0

N−1∑
n=0

M−1∑
r=0

N−1∑
s=0

f(m,n)g(r, s)〈Fm,n, Fr,s〉

=
M−1∑
m=0

N−1∑
n=0

f(m,n)g(m,n) = 〈f, g〉,

where we have used Remark 2.1.2.
(ii) ||f ||2 = 〈f, f〉 = 〈f̂ , f̂〉 = ||f̂ ||2, where we have used (i).

Notice that, trivially, Parseval’s identity implies that the Discrete Fourier Trans-
form `2(ZM × ZN)

∧−→ `2(ZM × ZN) is an isometry.

Proposition 2.1.6. Let f ∈ `2(ZM × ZN). Then, f can be expressed in terms of
the Fourier basis as follows

f =
M−1∑
p=0

N−1∑
q=0

f̂(p, q)Fp,q. (2.1.3)

Proof. Let k1, k2 ∈ Z. Then,

M−1∑
p=0

N−1∑
q=0

f̂(p, q)Fp,q(k1, k2) =
M−1∑
p=0

N−1∑
q=0

〈f, Fp,q〉Fp,q(k1, k2)

=
M−1∑
p=0

N−1∑
q=0

(
M−1∑
m=0

N−1∑
n=0

f(m,n)Fp,q(m,n)

)
Fp,q(k1, k2)

=
M−1∑
p=0

N−1∑
q=0

M−1∑
m=0

N−1∑
n=0

f(m,n)Fp,q(m,n)Fp,q(k1, k2)

=
M−1∑
p=0

N−1∑
q=0

M−1∑
m=0

N−1∑
n=0

f(m,n)Fm,n(p, q)Fk1,k2(p, q)

=
M−1∑
m=0

N−1∑
n=0

f(m,n)

(
M−1∑
p=0

N−1∑
q=0

Fk1,k2(p, q)Fm,n(p, q)

)

=
M−1∑
m=0

N−1∑
n=0

f(m,n)〈Fk1,k2 , Fm,n〉 = f(k1, k2).

We have used Remarks 2.1.2 and, in the last equality, the fact that the Fourier basis
is orthonormal.

Proposition 2.1.7. The Discrete Fourier Transform is injective and surjective and,
therefore, invertible.
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Proof. (i) Let f, g ∈ `2(ZM × ZN) such that f̂(p, q) = ĝ(p, q) for all p, q ∈ Z. Then,
by equation (2.1.3),

f =
M−1∑
p=0

N−1∑
q=0

f̂(p, q)Fp,q =
M−1∑
p=0

N−1∑
q=0

ĝ(p, q)Fp,q = g

(ii) Let H ∈ `2(ZM ×ZN). Define h =
∑M−1

p=0

∑N−1
q=0 H(p, q)Fp,q ∈ `2(ZM ×ZN).

By equation (2.1.3), h =
∑M−1

p=0

∑N−1
q=0 ĥ(p, q)Fp,q. Since F = {Fp,q}0≤p≤M−1,0≤q≤N−1

is a basis, then H(p, q) = ĥ(p, q) for all p ∈ ZM , q ∈ ZN .

So the DFT `2(ZM × ZN)
∧−→ `2(ZM × ZN) is invertible. We denote the Inverse

Discrete Fourier Transform (IDFT) as `2(ZM × ZN)
∨−→ `2(ZM × ZN). As we have

seen, the inverse is given by equation (2.1.3). That is, if H ∈ `2(ZM × ZN), then

Ȟ =
M−1∑
p=0

N−1∑
q=0

H(p, q)Fp,q (2.1.4)

or componentwise

Ȟ(m,n) =
1√
MN

M−1∑
p=0

N−1∑
q=0

H(p, q)e2πipm/Me2πiqn/N , (2.1.5)

for all m,n ∈ Z.

Notice that Ȟ is certainly in `2(ZM × ZN). Let k1, k2 ∈ Z. Then,

Ȟ(m+ k1M,n+ k2N) =
M−1∑
p=0

N−1∑
q=0

H(p, q)Fp,q(m+ k1M,n+ k2N)

=
M−1∑
p=0

N−1∑
q=0

H(p, q)Fp,q(m,n) = Ȟ(m,n).

So if f ∈ `2(ZM × ZN), then (f̂)∨ = f . Although the IDFT is given by equa-
tion (2.1.5), it can also be expressed in terms of the DFT as the following theorem
shows.

Theorem 2.1.8 (Inversion). Let f ∈ `2(ZM ×ZN). Then,
ˆ̂
f ∈ `2(ZM ×ZN) and it

satisfies that, for any p, q ∈ Z,

ˆ̂
f(p, q) = f(−p,−q).

Notice that in order to carry out the IDFT of a function, it is enough to compute
its DFT and then change the sign of the components.
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Proof. We will begin by checking
ˆ̂
f ∈ `2(ZM × ZN). Take k1, k2 ∈ Z. Then,

ˆ̂
f(p+ k1M, q + k2N) =

1√
MN

M−1∑
m=0

N−1∑
n=0

f̂(m,n)e−2πi(p+k1M)m/Me−2πi(q+k2N)n/N

=
1√
MN

M−1∑
m=0

N−1∑
n=0

f̂(m,n)e−2πipm/Me−2πiqn/N =
ˆ̂
f(p, q).

Let us first take p ∈ {0,−1,−2, ...,−(M −1)} and q ∈ {0,−1,−2, ...,−(N −1)}.
Then,

ˆ̂
f(p, q) =

1√
MN

M−1∑
m=0

N−1∑
n=0

f̂(m,n)e−2πipm/Me−2πiqn/N

=
1√
MN

M−1∑
m=0

N−1∑
n=0

[
1√
MN

M−1∑
r=0

N−1∑
s=0

f(r, s)e
−2πimr
M e

−2πins
N

]
e
−2πipm
M e

−2πiqn
N

=
1√
MN

M−1∑
r=0

N−1∑
s=0

f(r, s)

[
M−1∑
m=0

N−1∑
n=0

e−2πimr/Me−2πins/Ne−2πipm/Me−2πiqn/N

]

=
M−1∑
r=0

N−1∑
s=0

f(r, s)

[
1

M

M−1∑
m=0

e−2πimr/Me−2πipm/M

][
1

N

N−1∑
n=0

e−2πins/Ne−2πiqn/N

]

=
M−1∑
r=0

N−1∑
s=0

f(r, s)〈F−p, Fr〉〈F−q, Fs〉 = f(−p,−q),

where we have used the fact that

〈F−p, Fr〉 =

{
0, if r 6= −p
1, if r = −p

〈F−q, Fs〉 =

{
0, if s 6= −q
1, if s = −q

since {Fp}0≤p≤M−1 is the Fourier basis in `2(ZM). Now, if p, q ∈ Z, then there exists
k1, k2 ∈ Z such that −(M − 1) ≤ p + k1M ≤ 0 and −(N − 1) ≤ q + k2N ≤ 0.

Therefore, using the periodicity of f and
ˆ̂
f , we get

ˆ̂
f(p, q) =

ˆ̂
f(p+ k1M, q + k2N) = f(−p− k1M,−q − k2N) = f(−p,−q),

as wished.

Let us now define the translation of a function and see how the transform
behaves over it.

Definition 2.1.9. Let f ∈ `2(ZM × ZN) and k1, k2 ∈ Z. We define the translation
of f by k1 and k2 as

(Rk1,k2f)(m,n) = f(m− k1, n− k2).
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Notice that Rk1,k2f ∈ `2(ZM × ZN) as well.

Proposition 2.1.10. Let f ∈ `2(ZM × ZN) and p, q, k1, k2 ∈ Z. Then,

(Rk1,k2f)∧(p, q) = e−2πipk1/Me−2πiqk2/N f̂(p, q).

Proof. Let p, q, k1, k2 ∈ Z. Then,

(Rk1,k2f)∧(p, q) =
1√
MN

M−1∑
m=0

N−1∑
n=0

(Rk1,k2f)(m,n)e−2πipm/Me−2πiqn/N

=
1√
MN

M−1∑
m=0

N−1∑
n=0

f(m− k1, n− k2)e−2πipm/Me−2πiqn/N

=
1√
MN

M−1−k1∑
r=−k1

N−1−k2∑
s=−k2

f(r, s)e−2πip(r+k1)/Me−2πiq(s+k2)/N

= e−2πipk1/Me−2πiqk2/N
1√
MN

M−1−k1∑
r=−k1

N−1−k2∑
s=−k2

f(r, s)e−2πipr/Me−2πiqs/N .

Take a, b ∈ Z such that k1 + aM ∈ {0, 1, ...,M − 1} and k2 + bN ∈ {0, 1, ..., N − 1}.
Then, we carry out the changes of variable u = r− aM and v = s− bM , so, we get

(Rk1,k2f)∧(p, q) = e
−2πipk1

M e
−2πiqk2

N
1√
MN

M−1−k1−aM∑
u=−k1−aM

N−1−k2−bN∑
v=−k2−bN

[f(u+ aM, v + bN)

× e−2πip(u+aM)/Me−2πiq(v+bN)N
]

= e−2πipk1/Me−2πiqk2/N
1√
MN

M−1−k1−aM∑
u=−k1−aM

N−1−k2−bN∑
v=−k2−bN

[f(u, v)

e−2πipu/Me−2πiqv/N
]
.

By defining ` = k1 + aM and t = k2 + bN (observe that ` ∈ {0, 1, ...,M − 1} and
t ∈ {0, 1, ..., N − 1}), we can rewrite the previous expression as

(Rk1,k2f)∧(p, q) = e−2πipk1/Me−2πiqk2/N
1√
MN

M−1−`∑
u=−`

N−1−t∑
v=−t

f(u, v)e−2πipu/Me−2πiqv/N︸ ︷︷ ︸
A

.

(2.1.6)
We are now going to compute A. Keeping in mind that u is fixed, we will distinguish
two cases.

• If t = 0, then

A =
N−1∑
v=0

f(u, v)e−2πipu/Me−2πiqv/N .
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• If 1 ≤ t ≤ N − 1, then

A =
−1∑
v=−t

f(u, v +N)e−2πipu/Me−2πiq(v+N)/N +
N−1−t∑
v=0

f(u, v)e−2πipu/Me−2πiqv/N

=
N−1∑
c=N−t

f(u, c)e−2πipu/Me−2πiqc/N +
N−t−1∑
v=0

f(u, v)e−2πipu/Me−2πiqv/N

=
N−1∑
v=0

f(u, v)e−2πipu/Me−2πiqv/N ,

where in the second equality we have considered, in the first addend, the
change of variable c = v +N .

Therefore, for all t ∈ {0, 1, ..., N − 1},

A =
N−1∑
v=0

f(u, v)e−2πipu/Me−2πiqv/N .

Hence, equation (2.1.6) can be rewritten as follows

(Rk1,k2f)∧(p, q) = e−2πipk1/Me−2πiqk2/N
1√
MN

M−1−`∑
u=−`

N−1∑
v=0

f(u, v)e−2πipu/Me−2πiqv/N︸ ︷︷ ︸
B

.

(2.1.7)
Let us now compute B. Again, we are going to distinguish two cases.

• If ` = 0, then

B =
M−1∑
u=0

N−1∑
v=0

f(u, v)e−2πipu/Me−2πiqv/N .

• If 1 ≤ ` ≤M − 1, then

B =
−1∑
u=−`

N−1∑
v=0

f(u+M, v)e
−2πip(u+M)

M e
−2πiqv
N +

M−1−`∑
u=0

N−1∑
v=0

f(u, v)e
−2πipu
M e

−2πiqv
N

=
M−1∑
c=M−`

N−1∑
v=0

f(c, v)e−2πipc/Me−2πiqv/N +
M−1−`∑
u=0

N−1∑
v=0

f(u, v)e−2πipu/me−2πiqv/N

=
M−1∑
u=0

N−1∑
v=0

f(u, v)e−2πipu/Me−2πiqv/N ,

where in the second equality we have considered the change of variable c = u+M
in the first addend.
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Therefore, for all ` ∈ {0, 1, ...,M − 1},

B =
M−1∑
u=0

N−1∑
v=0

f(u, v)e−2πipu/Me−2πiqv/N .

Hence, equation (2.1.7) can be rewritten as follows

(Rk1,k2f)∧(p, q) = e−2πipk1/Me−2πiqk2/N
1√
MN

M−1∑
u=0

N−1∑
v=0

f(u, v)e−2πipu/Me−2πiqv/N

= e−2πipk1/Me−2πiqk2/N f̂(p, q),

which is the result that we wanted to prove.

Remark 2.1.11. Notice that when proving

M−1−k1∑
r=−k1

N−1−k2∑
s=−k2

f(r, s)e−2πipr/Me−2πiqs/N =
M−1∑
u=0

N−1∑
v=0

f(u, v)e−2πipu/Me−2πiqv/N ,

we have just used the fact that, for any k1, k2 ∈ Z,

f(u+ k1M, v + k2N)e−2πip(u+k1M)/Me−2πiq(v+k2N)/N = f(u, v)e−2πipu/Me−2πiqv/N .

Therefore, for all h ∈ `2(ZM × ZN), it holds that

M−1−a∑
m=−a

N−1−b∑
n=−b

h(m,n) =
M−1∑
m=0

N−1∑
n=0

h(m,n),

for any a, b ∈ Z.

As we will see in the following chapters, processing an image consists in carrying
out a convolution between the image and what is called a filter. So let us now
define this operation between two elements of `2(ZM × ZN).

Definition 2.1.12. Let f, g ∈ `2(ZM × ZN). Then, we define the convolution as

(f ∗ g)(m,n) =
1√
MN

M−1∑
j=0

N−1∑
k=0

f(m− j, n− k)g(j, k)

for all m,n ∈ Z.

Observe that f ∗ g ∈ `2(ZM × ZN). One of the most important features of the
convolution is the following property.

Proposition 2.1.13. Let f, g ∈ `2(ZM × ZN). Then,

(f ∗ g)∧(p, q) = f̂(p, q)ĝ(p, q)

for all p, q ∈ Z.
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Proof.

(f ∗ g)∧(p, q) =
1√
MN

M−1∑
m=0

N−1∑
n=0

(f ∗ g)(m,n)e−2πipm/Me−2πiqn/N

=
1√
MN

M−1∑
m=0

N−1∑
n=0

(
1√
MN

M−1∑
j=0

N−1∑
k=0

f(m− j, n− k)g(j, k)

)
× e−2πipm/Me−2πiqn/N

=
1

MN

M−1∑
m=0

N−1∑
n=0

M−1∑
j=0

N−1∑
k=0

f(m− j, n− k)g(j, k)e−2πip(m−j)/Me−2πipj/M

× e−2πiq(n−k)/Ne−2πiqk/N

=
1

MN

M−1∑
j=0

N−1∑
k=0

g(j, k)e−2πipj/Me−2πiqk/N

×

(
M−1∑
m=0

N−1∑
n=0

f(m− j, n− k)e−2πip(m−j)/Me−2πiq(n−k)/N

)

By doing the changes of variable r = m− j and s = n− k and using the periodicity
of the exponentials and the function f , we obtain

1

MN

M−1∑
j=0

N−1∑
k=0

g(j, k)e−2πipj/Me−2πiqk/N

×

(
M−1∑
m=0

N−1∑
n=0

f(m− j, n− k)e−2πip(m−j)/Me−2πiq(n−k)/N

)

=
1

MN

M−1∑
j=0

N−1∑
k=0

g(j, k)e−2πipj/Me−2πiqk/N

(
M−1−j∑
r=−j

N−1−k∑
s=−k

f(r, s)e−2πipr/Me−2πiqs/N

)

=
1

MN

M−1∑
j=0

N−1∑
k=0

g(j, k)e−2πipj/Me−2πiqk/N

(
M−1∑
r=0

N−1∑
s=0

f(r, s)e−2πipr/Me−2πiqs/N

)

=

(
1√
MN

M−1∑
r=0

N−1∑
s=0

f(r, s)e−2πipr/Me−2πiqs/N

)

×

(
1√
MN

M−1∑
j=0

N−1∑
k=0

g(j, k)e−2πipj/Me−2πiqk/N

)
= f̂(p, q)ĝ(p, q).



2.2. The Discrete Fourier Transform as a change of basis 16

2.2 The Discrete Fourier Transform as a change

of basis

The equation (2.1.3) shows that, given f ∈ `2(ZM×ZN), the coordinates of this func-
tion with respect to the Fourier basis are the coefficients {f̂(p, q)}0≤p≤M−1,0≤q≤N−1.
Thus, we can regard the Discrete Fourier Transform as the change of coordinates
from the Euclidean basis to the Fourier basis. It is clear that the Discrete Fourier
Transform is a linear map, so it can be represented by a matrix, which is going to
be the change of basis matrix.

Let f ∈ `2(ZM×ZN). As we have already mentioned, f is completely determined
by its values in the interval {0, . . . ,M−1}×{0, . . . , N−1}, hence it is represented by
the matrix given in the expression (2.1.1). Consider v and v̂ as the vectors obtained
by joining the columns of the f and f̂ matrices respectively. That is

v =



f(0, 0)
...

f(M − 1, 0)
f(0, 1)

...
f(M − 1, 1)

...
f(0, N − 1)

...
f(M − 1, N − 1)


MN×1

v̂ =



f̂(0, 0)
...

f̂(M − 1, 0)

f̂(0, 1)
...

f̂(M − 1, 1)
...

f̂(0, N − 1)
...

f̂(M − 1, N − 1)


MN×1

(2.2.1)

So v is the vector of coordinates of f with respect to the Euclidean basis and v̂ is
the vector of coordinates of f with respect to the Fourier basis.

Let us now compute the change of basis matrix, that is W such that

v̂ = Wv.

By equation (2.1.2),

f̂(p, q) =
1√
MN

M−1∑
m=0

N−1∑
n=0

f(m,n)e−2πipm/Me−2πiqn/N

=
1√
MN

M−1∑
m=0

N−1∑
n=0

f(m,n)
(
e−2πi/M

)pm (
e−2πi/N

)qn
.

Denote, for any integer K,
ωK := e−2πi/K . (2.2.2)

Then, we can rewrite the previous expression as

f̂(p, q) =
1√
MN

M−1∑
m=0

N−1∑
n=0

f(m,n)ωpmM ωqnN . (2.2.3)
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Notice that f(m,n) = v(nM +m) and f̂(p, q) = v̂(qM + p). Hence,

v̂(qM + p) =
1√
MN

M−1∑
m=0

N−1∑
n=0

v(nM +m)ωpmM ωqnN .

Therefore,

W (qM + p, nM +m) =
ωpmM ωqnN√
MN

, (2.2.4)

for all 0 ≤ m, p ≤M − 1 and 0 ≤ n, q ≤ N − 1. Notice that W is symmetric

W (qM + p, nM +m) =
ωpmM ωqnN√
MN

=
ωmpM ωnqN√
MN

= W (nM +m, qM + p).

This result is formalised in the following proposition.

Proposition 2.2.1. Let f ∈ `2(ZM ×ZN) and v and v̂ be the finite vectors obtained
by joining the columns of f and f̂ respectively in the way shown in (2.2.1). Then,

v̂ = Wv, (2.2.5)

where W is the matrix given by equation (2.2.4). That is, the DFT is given by the
matrix W .

Similarly, we can find a change of basis matrix for the IDFT as shown in the
following proposition.

Proposition 2.2.2. Let H ∈ `2(ZM×ZN). Consider h and ȟ to be the finite vectors
obtained by joining the columns of H and Ȟ respectively in the way shown in (2.2.1).
Then,

ȟ = Wh, (2.2.6)

where W is the matrix given by equation (2.2.4). That is, the IDFT is given by the
matrix W .

Proof. By using the expression (2.2.2) in equation (2.1.5), we obtain

Ȟ(m,n) =
1√
MN

M−1∑
p=0

N−1∑
q=0

H(p, q)wpmM wqnN .

Let h and ȟ be the vectors obtained by joining the columns of the matrices H and
Ȟ respectively. Then, H(p, q) = h(qM + p) and Ȟ(m,n) = ȟ(nM + m). It allows
us to rewrite the previous expression in the following way

ȟ(nM +m) =
1√
MN

M−1∑
p=0

N−1∑
q=0

h(qM + p)wpmM wqnN .

Therefore, ȟ = Ah, where A is the matrix given by

A(nM +m, qM + p) =
wpmM wqnN√
MN

= W (qM + p, nM +m).

However, since W is symmetric, A(nM +m, qM + p) = W (nM +m, qM + p).
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2.3 Fourier coefficients and frequencies

As seen in (2.1.3), if f ∈ `2(ZM ×ZN), then it can be expressed in the Fourier basis

f =
M−1∑
p=0

N−1∑
q=0

f̂(p, q)Fp,q.

Thus the Fourier coefficient f̂(p, q) is the weight of the vector Fp,q used in making up
f and we are now going to see that it provides a frequency analysis of the function.
Recall that for all m,n ∈ Z

Fp,q(m,n) =
1√
MN

e2πipm/Me2πiqn/N .

We will first analyse the behaviour of the discrete function

e2πipm/M = cos(2πpm/M) + i sin(2πpm/M)

with m ∈ {0, . . . ,M − 1}. Let us first consider cos(2πpm/M) as a continuous
function of m defined in the interval [0,M ] and with p fixed. This function carries
out p full cycles of the cosine wave as m goes continuously from 0 to M . That is,
the function has frequency p. Therefore, as the value of p increases, the same does
the frequency of the cosine function. However, if m is defined in the discrete set
{0, 1, ...,M − 1} (as is the case in which we are interested) instead of the interval
[0,M ], then p is not necessarily the frequency. Let us see this fact.

Take p < M/2 a non-negative integer and define k = M − p. Observe that k is
the symmetric element of p with respect to M/2 in the interval [0,M ]. Then,

cos(2πkm/M) = cos(2π(M − p)m/M) = cos(2πm− 2πpm/M)

= cos(−2πpm/M) = cos(2πpm/M).

This implies that although cos(2πkm/M) has higher frequency with respect to
cos(2πpm/M) when m ∈ [0,M ], the samples that we obtain when taking m ∈
{0, 1, ...,M − 1} are the same. In other words, the discrete functions cos(2πkm/M)
and cos(2πpm/M) taking m ∈ {0, 1, ...,M−1} are the same and, in particular, their
frequencies are the same, p.

As an example we can consider M = 17, p = 4 and k = M − p = 13 as shown in
Figure 2.1. In this case it is clear that, although cos(2π13m/17) has higher frequency
than cos(2π4m/17) when m takes real values, they are the same function when m
takes integer values. Consequently, both functions are regarded as having period 4.

This behaviour is summarized by the fact that as p increases from 0 to the
closest integer to M/2, the discrete function cos(2πpm/M) oscillates more and more
rapidly (p is the frequency). However, as p increases from [M/2] + 1 to M − 1,
the discrete function cos(2πpm/M) oscillates more and more slowly (M − p is the
frequency). Therefore, higher frequencies are obtained for values of p near M/2 and
lower frequencies for values of p near 0 and M − 1.



19 Chapter 2. Discrete Fourier Transform

0 2 4 6 8 10 12 14 16
−1

−0.5

0

0.5

1

(a)

0 2 4 6 8 10 12 14 16
−1

−0.5

0

0.5

1

(b)

Figure 2.1 (a) Overlapping of the continuous and discrete functions cos(2π4m/17)
with m ∈ [0,17] and m ∈ {0, 1, ..., 16}. (b) Overlapping of the continuous and
discrete functions cos(2π13m/17) with m ∈ [0,17] and m ∈ {0, 1, ..., 16}.

Let us now see that the behaviour of the sinus wave is quite the same. Take the
function sin(2πpm/M), m ∈ {0, 1, ...,M − 1} with p < M/2 a non-negative integer
and k = M − p. Then,

sin(2πkm/M) = sin(2π(M − p)m/M) = sin(2πm− 2πpm/M)

= sin(−2πpm/M) = − sin(2πpm/M).

This means that the discrete functions sin(2πpm/M) and sin(2πkm/M) have the
same frequency. So, again, if 0 ≤ p ≤ [M/2], then p is the frequency and if
[M/2] < p ≤M − 1, then the frequency is M − p.

Therefore, the discrete function e2πipm/M carries out p full cycles as m goes from
0 to M − 1 if 0 ≤ p ≤ [M/2]. On the other hand, it carries out M − p full cycles
as m goes from 0 to M − 1 if [M/2] < p ≤ M − 1. Thus we regard e2πipm/M as a
high frequency vector for p near M/2 and as a low frequency vector for p near 0
or M − 1. This implies that the matrix Fp,q of the Fourier basis is considered as a
high frequency matrix if p is near M/2 and q is near N/2. On the other hand, it is
considered a low frequency matrix if p is near 0 or M − 1 and q is near 0 or N − 1.
Therefore, by the previous formula

f =
M−1∑
p=0

N−1∑
q=0

f̂(p, q)Fp,q,

since |f̂(p, q)| is the length of the projection of f onto Fp,q, then it can be regarded as
the strength of the frequency component Fp,q needed in making up f . That is, if the

values of |f̂(p, q)| are high for the higher frequency components, then f has strong
high-frequency components. On the other hand, if the values of |f̂(p, q)| are high
for the lower frequency components, then f has strong low-frequency components.
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Observe that if we consider the expression

f̂ =

 f̂(0, 0) . . . f̂(0, N − 1)
...

...

f̂(M − 1, 0) . . . f̂(M − 1, N − 1)

 ,

the coefficients located in the center of the matrix will correspond to higher frequen-
cies, whereas the ones located near the corners will correspond to lower frequencies.

Notice that |f̂(p, q)| provides information about the global behaviour of f in the
sense that it says whether f is made up by lower and/or higher frequency components
but it does not localise them.

So the modulus of the Fourier coefficients provide a frequency analysis of the
function. On the contrary, the information encoded in its phase is not so easy to
interpret.

Let us see an example of the behaviour of the modulus of the Fourier coeffi-
cients. In order to simplify visualisation we will take N = 1, so the function will be
one-dimensional. Consider f(m) = sin(πm2/1024) with m ∈ {0, ..., 119}. As Fig-
ure 2.2 (a) shows, this function seems to have strong low-frequency components (so
as to see this fact clearer we have drawn a blue line joining the points). Therefore,
Figure 2.2 (b) shows that the magnitude of the higher frequency Fourier coefficients
(m near 120/2) is low whereas the magnitude of the lower frequency Fourier coeffi-
cients (m near 0 and 119) is high. These coefficients were computed using Matlab.
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Figure 2.2 (a) f(m) = sin(πm2/1024) with m ∈ {0, ..., 119}. (b) |f̂(m)| with
m ∈ {0, ..., 119}.
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Fast Fourier Transform

As discussed in Section 2.2, in order to compute the Discrete Fourier Transform of a
function f ∈ `2(ZM ×ZN) it is enough to multiply it by the change of basis matrix.
That is

v̂ = Wv,

where v is the vector obtained by joining the columns of f and W is the change of
basis matrix given in the expression (2.2.4). Keeping in mind that v is an MN × 1
vector and W is an MN ×MN matrix, let us analyse the computational cost of
this change of basis. In order to do so, we are just going to take into account
multiplications since, computationally, they require much more time than sums.

When calculating the k-th component of the vector v̂, v̂(k) =
∑MN−1

n=0 W (k, n)v(n),
MN multiplications are required, which implies (MN)2 for the whole vector v̂MN×1.
Observe that these multiplications are of complex numbers and each one involves
three different real multiplications since

(a+ bi)(c+ di) = ac+ adi+ bci− bd = (ac− bd+ ad− ad) + (ad+ bc+ bd− bd)i

= [(a− b)d+ (c− d)a] + [(a− b)d+ (c+ d)b]i.

So in order to compute v̂ we need (MN)2 complex multiplications or, equivalently,
3(MN)2 real ones.

The Discrete Fourier Transform is one of the fundamental tools in the area of
signal processing and, in particular, in image processing. As we will see in the
following chapters, an image can be thought of as a matrix where each component
represents a pixel. That is, an image is regarded as an element of the set `2(ZM×ZN).
It is common to deal with images that have thousands or even millions of pixels, so
computing the Discrete Fourier Transform of an image by means of the change-of-
basis matrix appears to be a task that can take hours. For that reason, an algorithm
called the Fast Fourier Transform (FFT) is introduced.

At the beginning of this chapter we are going to develop the steps of this well-
known algorithm of the FFT following the approaches set in [2] and [8], which, like
most of the references on the topic, are only focused on vectors of length a power of
two. However, in contrast with them, we are going to distinguish its performance
over such vectors and those of even length but not a power of two. In both cases,

21
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we will detail the number of operations required as well as analysing the consequent
reduction. Moreover, since the last will appear to be greater when the length is a
power of two, we will then study under which conditions padding the vector speeds
up the whole process, which is a question usually skipped in most of the discussions
on the FFT. In doing so, it is going to be essential keeping the error under control.
That is the reason why we will pay special attention on finding an upper bound for
it. Therefore, the main goal of this chapter is to go deeper on those issues not usually
covered in the references on the FFT such as its performance on arbitrary vectors of
even length, the precise number of operations required or the setting where padding
improves the computation as well as bounding its error.

3.1 The Fast Fourier Transform algorithm

Let f ∈ `2(ZM × ZN) and take v ∈ `2(ZMN) the vector obtained by joining the
columns of f . Let us now develop the FFT algorithm in the computation of v̂.

By definition of the Discrete Fourier Transform (see Remark 2.1.4)

v̂(k) =
1√
MN

MN−1∑
m=0

v(m)e−2πik
m
MN

for all 0 ≤ k ≤ MN − 1. Assume that MN is an integer multiple of 2. Then, we
can split the previous expression as follows

v̂(k) =
1√
MN

MN
2
−1∑

m=0

v(2m)e−2πik
2m
MN +

1√
MN

MN
2
−1∑

m=0

v(2m+ 1)e−2πik
2m+1
MN

=
1√
MN

MN
2
−1∑

m=0

v(2m)e−2πik
2m
MN + e−2πi

k
MN

1√
MN

MN
2
−1∑

m=0

v(2m+ 1)e−2πik
2m
MN

=
1√
MN

MN
2
−1∑

m=0

v(2m)e
−2πik m

MN
2 + e−2πi

k
MN

1√
MN

MN
2
−1∑

m=0

v(2m+ 1)e
−2πik m

MN
2 .

Denoting

v̂0(k) =
1√
MN
2

MN
2
−1∑

m=0

v(2m)e
−2πik m

MN
2

v̂1(k) =
1√
MN
2

MN
2
−1∑

m=0

v(2m+ 1)e
−2πik m

MN
2 ,

we can rewrite

v̂(k) =
1√
2
v̂0(k) + e−2πi

k
MN

1√
2
v̂1(k).
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Notice that v̂0(k) and v̂1(k) are the k-th Fourier coefficients of the `2
(
ZMN

2

)
vectors

(v(0), v(2), ..., v(MN − 2)) and (v(1), v(3), ..., v(MN − 1)) respectively. Moreover,
taking 0 ≤ k ≤ MN

2
− 1, observe that

v̂

(
k +

MN

2

)
=

1√
2
v̂0

(
k +

MN

2

)
+ e−2πi

k+MN
2

MN +
1√
2
v̂1

(
k +

MN

2

)
=

1√
2
v̂0(k) + e−2πi

k
MN e−πi +

1√
2
v̂1(k)

=
1√
2
v̂0(k)− e−2πi

k
MN

1√
2
v̂1(k),

where we have used the fact that v̂0 and v̂1 have period MN
2

.
Therefore, for 0 ≤ k ≤ MN

2
− 1,

v̂(k) =
1√
2

[
v̂0(k) + e−2πi

k
MN v̂1(k)

]
v̂

(
MN

2
+ k

)
=

1√
2

[
v̂0(k)− e−2πi

k
MN v̂1(k)

]
.

This result is summarized in the following proposition.

Proposition 3.1.1. Let v ∈ `2(ZM) and M ∈ 2Z. Split the vector v in the following

vectors of `2
(
ZM

2

)
v0 = (v(0), v(2), v(4), ..., v(M − 2))

v1 = (v(1), v(3), v(5), ..., v(M − 1)).

Then, for all 0 ≤ k ≤ M
2
− 1, the Discrete Fourier Transform of v is

v̂(k) =
1√
2

[
v̂0(k) + e−2πi

k
M v̂1(k)

]
v̂

(
M

2
+ k

)
=

1√
2

[
v̂0(k)− e−2πi

k
M v̂1(k)

]
,

(3.1.1)

where v̂0 and v̂1 are the Discrete Fourier Transforms of v0 and v1 respectively.

Let us now see, following the notation just introduced in Proposition 3.1.1, the
computational advantage of this approach. To begin with, we are not going to
take into account the division by

√
2 since it is not as time consuming as complex

products. Then, the change-of-basis matrix needed in computing the DFT of the
vectors v0 and v1 is of size M/2 ×M/2. Therefore, the computation of v̂0 and v̂1
requires (M/2)2 complex multiplications each. Moreover, there are M/2 − 1 more
due to the multiplication by the exponentials (without considering k = 0). Thus it
all requires

2

(
M

2

)2

+
M

2
− 1 =

M2

2
+
M

2
− 1
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complex multiplications, which can be thought as M2

2
for M large enough. Recall

that we needed M2 of these operations in order to compute v̂ by means of the
change-of-basis matrix, so this approach cuts the computation time nearly in half.
The main point of this procedure is the fact that the computation of the DFT of an
M -vector is reduced to that of two M/2-vectors.

Then, returning to our initial function f ∈ `2(ZM × ZN) and its corresponding

vector v, this method will just perform (MN)2

2
+ MN

2
− 1 complex multiplications

when computing v̂, as long as MN ∈ 2Z.

In Proposition 3.1.1, we are just assuming M ∈ 2Z but notice that if M ∈ 4Z
as well, then we can also apply the already mentioned proposition to the vectors

v0, v1 ∈ `2
(
ZM

2

)
, which results on a further reduction. That is, we can divide v0

and v1 obtaining the following elements of `2
(
ZM

4

)

v0

{
v00 = (v(0), v(4), v(8), ..., v(M − 4))

v01 = (v(2), v(6), v(10), ..., v(M − 2))

v1

{
v10 = (v(1), v(5), v(9), ..., v(M − 3))

v11 = (v(3), v(7), v(11), ..., v(M − 1)).

Then, for 0 ≤ k ≤ M
4
− 1, we get

v̂0(k) =
1√
2

[
v̂00(k) + e−2πik/M v̂01(k)

]
, v̂0

(
M

4
+ k

)
=

1√
2

[
v̂00(k)− e−2πik/M v̂01(k)

]
v̂1(k) =

1√
2

[
v̂10(k) + e−2πik/M v̂11(k)

]
, v̂1

(
M

4
+ k

)
=

1√
2

[
v̂10(k)− e−2πik/M v̂11(k)

]
(3.1.2)

Therefore, the number of complex multiplications required this time is 4(M/4)2 (due
to the four DFT) plus M/4−1+M/4−1 (regarding the exponentials in (3.1.2) with-
out considering k = 0) plus another M/2−1 (regarding the exponentials in (3.1.1)).
That is

M2

4
+ 2

(
M

4
− 1

)
+
M

2
− 1 ≈ M2

4
for M large enough,

which is four times faster than using the change-of-basis matrix directly.
So the Fast Fourier Transform algorithm consists in applying Proposition 3.1.1

repeatedly to the vectors that appear at each stage until it encounters odd sized
vectors. That is, if M = 2mp for some m, p ∈ N and p odd, then the algorithm will
entail m stages. Notice that, in the last stage, there will be 2m vectors belonging to
`2(Zp). Then, the Fourier Transforms of these vectors will be calculated by means of
the change-of-basis-matrix. In the following sections, we are going to distinguish how
the Fast Fourier Transform applies when M = 2m and M = 2mp for some p ∈ N≥3
odd as well as discussing the ensuing reduction in the number of operations.
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3.2 Vector of size a power of 2

The algorithm of the Fast Fourier Transform that we have just developed leads us to
think that the most favourable case is when M = 2m for some m ∈ N, following the
notation introduced in Proposition 3.1.1. In this situation, the vector v ∈ `2(ZM)
can be subdivided m = log2M times. Notice that at the last stage of division
there are M vectors all belonging to `2(Z1), so their Discrete Fourier Transforms
are themselves. This implies that there is, actually, no need of computing any
Fourier Transform, thus the only complex multiplications involved are the ones
regarding the exponentials. Observe that, at the first stage of division (given by
equation (3.1.1)), there are M

2
− 1 multiplications of this type and, at the second

one (given by equation (3.1.2)), there are 2
(
M
4
− 1
)

= M
2
− 2. Then, at the third

stage there would be 4
(
M
8
− 1
)

= M
2
− 4. Hence, intuitively, in the k-th stage there

would be 2k−1
(
M
2k
− 1
)

= M
2
− 2k−1. Since there are log2M stages, it seems that

there are

M

2
log2M −

log2M−1∑
n=0

2n

multiplications regarding exponentials along the algorithm. The following proposi-
tion formalises this idea giving us the number of operations required.

Proposition 3.2.1. Let M = 2m for some m ∈ N. Denote as #FFT
M the maximum

number of complex multiplications required to compute the Discrete Fourier Trans-
form of a vector of length M by means of the Fast Fourier Transform algorithm.
Then,

#FFT
M =

1

2
M log2M −

log2M−1∑
n=0

2n = M

(
log2M

2
− 1

)
+ 1.

Proof. We begin by proving the second equality.

1

2
M log2M −

log2M−1∑
n=0

2n =
M

2
log2M −

1− 2log2M

1− 2
=
M

2
log2M + 1− 2log2M

=
M

2
log2M + 1−M = M

(
log2M

2
− 1

)
+ 1.

We are now going to prove #FFT
M = M

(
log2M

2
− 1
)

+ 1 using induction on m.

Let v ∈ `2(ZM). If m = 1, notice that v = (v0, v1). Then, v̂ = 1√
2
(v0+v1, v0−v1).

Since we don’t need any complex multiplication, #FFT
2 = 0. On the other hand,

M

(
log2M

2
− 1

)
+ 1 = 2

(
1

2
− 1

)
+ 1 = 0.

Therefore, the equality holds when m = 1.
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Assume the result true for m = k − 1. Let us now see that it also holds for
m = k. By Proposition 3.1.1, it is clear that

#FFT
M = 2#FFT

M
2

+
M

2
− 1 = 2#FFT

2k−1 + 2k−1 − 1.

Take M = 2k. Then,

#FFT
M = #FFT

2k = 2#FFT
2k−1 + 2k−1 − 1 = 2

(
2k−1

(
k − 1

2
− 1

)
+ 1

)
+ 2k−1 − 1

= 2k
(
k − 1

2
− 1

)
+ 2 + 2k−1 − 1 = 2k

k

2
− 2k−1 − 2k + 2k−1 + 1

= 2k
k

2
− 2k + 1 = 2k

(
k

2
− 1

)
+ 1 = M

(
log2M

2
− 1

)
+ 1,

where in the third equality we have used the hypothesis of induction.

Let us now see the reduction that ensues from the use of the Fast Fourier Trans-
form instead of the change-of-basis matrix. Keeping in mind that the latter requires
M2 operations, then

M2

#FFT
M

=
M2

M
(

log2M
2
− 1
)

+ 1
=

M
log2M

2
− 1 + 1

M

=
2m

m
2
− 1 + 1

2m

=
2m+1

m− 2 + 1
2m−1

≈ 2m+1

m− 2
for M big enough.

This means that the computation of v̂ ∈ `2(Z2m) by means of the FFT is 2m+1

m−2 times
faster than using the change-of-basis matrix. The behaviour of this reduction is
depicted in Figure 3.1 (a). As an example, take a vector of size 218. Then, the
Fast Fourier Transform will need 218 · 8 + 1 = 2 097 153 complex multiplications
in contrast with the (218)2 = 68 719 476 736 required by using the change-of-basis
matrix. Therefore, the computation becomes more than 32 000 times faster. In
Figure 3.1 (b), we can see a comparison of the number of operations required by
both methods.

3.3 Vector of even size but not a power of 2

Let us now discuss what happens if M = 2mp for some m ∈ N and p ∈ N≥3 odd,
again following the notation introduced in Proposition 3.1.1. In this case, the Fast
Fourier Transform algorithm consists on m stages where, at the last one, there
are 2m vectors belonging to `2(Zp) whose Fourier Transform must be calculated by
means of the change-of-basis matrix. So let us now count, intuitively, the number
of operations involved. Recall that we have already discussed that, at the k-th
stage of the algorithm, there are M

2
− 2k−1 multiplications regarding exponentials.
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Figure 3.1 (a) Plot of the function 2m+1

m−2 , that is the reduction due to the use of
the Fast Fourier Transform instead of the change-of-basis matrix. (b) Comparison
of the number of operations required by the Fast Fourier Transform and the change-
of-basis matrix when M = 2m.

Therefore, it seems that the FFT requires, on the one hand, mM
2
−
∑m−1

n=0 2n multi-
plications due to exponentials and, on the other hand, 2mp2 operations regarding the
Fourier transforms of the last stage vectors. This idea is formalised in the following
proposition.

Proposition 3.3.1. Let v ∈ `2(ZM) with M = 2mp for some m ∈ N and p ∈ N≥3
odd. Let #FFT

M be defined as in Proposition 3.2.1. Then, when computing v̂ by means
of the Fast Fourier Transform algorithm, we have

#FFT
M = m

M

2
−

m−1∑
n=0

2n + 2mp2 =
M2

2m
+M

(
m

2
− 1

p

)
+ 1.

Proof. Let us begin by proving the second equality.

m
M

2
−

m−1∑
n=0

2n + 2mp2 = m
M

2
− 1− 2m

1− 2
+ 2mp2 = m

M

2
+ 1− 2m + 2mp2

= m
M

2
+ 1− M

p
+ 2m

(
M

2m

)2

=
M2

2m
+M

(
m

2
− 1

p

)
+ 1.

We are now going to prove #FFT
M = M2

2m
+M

(
m
2
− 1

p

)
+ 1 by induction on m.

If m = 1, then the vector v can be divided just once. Therefore, by Propo-
sition 3.1.1, there are M

2
− 1 multiplications regarding exponentials plus another

2
(
M
2

)2
= 2p2 due to the computation of v̂0 and v̂1. That is, #FFT

M = M
2
− 1 + 2p2.

On the other hand,

M2

2m
+M

(
m

2
− 1

p

)
+ 1 =

4p2

2
+ 2p

(
1

2
− 1

p

)
+ 1 = 2p2 + p− 2 + 1 = 2p2 +

M

2
− 1.
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Therefore, the equality holds for m = 1.
Assume the result true for m − 1. Let us see that it also holds for m. Let

M = 2mp. By Proposition 3.1.1, it is clear that

#FFT
M = 2#FFT

M
2

+
M

2
− 1.

Then,

#FFT
M = 2#FFT

M
2

+
M

2
− 1 = 2#FFT

2m−1p +
M

2
− 1

= 2

(
2m−1p · 2m−1p

2m−1
+ 2m−1p

(
m− 1

2
− 1

p

)
+ 1

)
+

2mp

2
− 1

=
2mp · 2m−1p

2m−1
+ 2mp

(
m− 1

2
− 1

p

)
+ 2 +

2mp

2
− 1

=
2mp · 2mp

2m
+ 2mp

m

2
− 2mp

2
− 2mp

p
+

2mp

2
+ 1

=
M2

2m
+ 2mp

(
m

2
− 1

p

)
+ 1 =

M2

2m
+M

(
m

2
− 1

p

)
+ 1,

where in the third equality we have used the hypothesis of induction.

To get an idea of the power of this algorithm, let us now see the reduction in
the number of operations and, therefore, in computation time that the FFT entails
(with respect to the change-of-basis matrix) in this case.

M2

#FFT
M

=
M2

M2

2m
+M

(
m
2
− 1

p

)
+ 1

=
M2

M
(
p+ m

2
− 1

p

)
+ 1

=
M

p+ m
2
− 1

p
+ 1

M

=
2mp

p+ m
2
− 1

p
+ 1

2mp

=
2m

1 + m
2p
− 1

p2
+ 1

2mp2

≈ 2m

1 + m
2p
− 1

p2

≈ 2m

1 + m
2p

,

where in the first approximation we are assuming M big enough and in the second
one we are using the fact that p ≥ 3, so 1− 1

p2
≈ 1.

This means that the FFT is 2m

1+m
2p

times faster than using the change-of-basis

matrix. Notice that, if m is fixed, then

lim
p→∞

2m

1 + m
2p

= 2m,

which causes the plot of the function to display a layer-like structure. This behaviour
is depicted in Figure 3.2 (a) and, mostly, (b). Moreover, observe that, as opposed
to the situation stated in Section 3.2, the reduction, which is not as high, is not an
increasing function.

So if p is big enough, the FFT algorithm becomes 2m times faster. In Figure 3.3,
we can see a comparison of the number of operations required by both methods.
Notice that we can write

#FFT
M = 2mp2 + 2mp

(
m

2
− 1

p

)
+ 1,
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Figure 3.2 (a) and (b) show the plots of the function 2m

1+m
2p

on two different domains.

therefore, if m is fixed, then its plot is quadratic in p, as can be seen in the image.
However, observe that, since the domain is M and not p, the smaller is m, the more
increasing is #FFT

M .
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Figure 3.3 Comparison of the number of operations required by the Fast Fourier
Transform and the change-of-basis matrix when M = 2mp.

So far, we have analysed the computational difference between the Fast Fourier
Transform algorithm and the calculation of the Fourier Transform through the
change-of-basis matrix distinguishing whether M = 2m or M = 2mp for some m ∈ N
and p ∈ N≥3 odd. In particular, we have seen that the latter method is always more
time-consuming. Putting together the results seen in Proposition 3.2.1 and Propo-
sition 3.3.1, we can plot #FFT

M for all M ∈ N≥2 even, as Figure 3.4 shows. The blue
values correspond to points of the type M = 2mp whereas the red ones correspond
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to points of the type M = 2m. Since the latter appear to be lower, it makes sense
to set out under which circumstances it could be useful to pad the vector. This is
what we are going to discuss next.
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Figure 3.4 Plot of #FFT
M where the blue dots are for M = 2mp and the red ones for

M = 2m.

3.4 Padding of an even sized vector

Let us begin by defining what it means to pad a vector.

Definition 3.4.1. Let v ∈ `2(ZM) with M ∈ N such that M 6= 2m for all m ∈ N. Let
k ∈ N be such that 2k−1 < M < 2k. Denote as MPAD = 2k. Let vPAD ∈ `2(ZMPAD

)
be defined as

vPAD(n) =

{
v(n), if 0 ≤ n < M

0, if M ≤ n < MPAD

.

Then, we will say that the vector vPAD is the vector v padded.

In other words, padding a vector consists in filling it with 0’s at the end until its
length becomes a power of 2.

Remark 3.4.2. Following the notation just introduced in Definition 3.4.1, let us
now find k in terms of M .

2k−1 < M < 2k ⇔ k − 1 < log2M < k,

hence k = [log2M ] + 1, where [log2 p] means the integer part of log2 p. Therefore,

MPAD = 2[log2M ]+1.
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Proposition 3.4.3. Let M ∈ N such that M 6= 2m for all m ∈ N. Suppose
v ∈ `2(ZM). Define v̂PAD|M as the first M components of the Fourier Transform of
the padded vector. Then,

||v̂PAD|M − v̂||∞ ≤ ||v||2 sup
1≤n≤M−1

[
M

MPAD

+ 1 +
1√

M ·MPAD

× sin

(
M2πn

(
1

M
− 1

MPAD

)) sin
(

2πn
(

1
M
− 1

MPAD

))
1− cos

(
2πn

(
1
M
− 1

MPAD

))


1
2

.

Proof. By definition of Discrete Fourier Transform and of vPAD,

||v̂PAD|M − v̂||∞ = sup
0≤n≤M−1

|v̂PAD(n)− v̂(n)|

= sup
0≤n≤M−1

∣∣∣∣∣ 1√
MPAD

MPAD−1∑
k=0

vPAD(k)e
−2πink
MPAD − 1√

M

M−1∑
k=0

v(k)e
−2πink
M

∣∣∣∣∣
= sup

0≤n≤M−1

∣∣∣∣∣ 1√
MPAD

M−1∑
k=0

v(k)e
−2πink
MPAD − 1√

M

M−1∑
k=0

v(k)e
−2πink
M

∣∣∣∣∣
= sup

0≤n≤M−1

∣∣∣∣∣
M−1∑
k=0

v(k)

(
1√

MPAD

e
−2πink
MPAD − 1√

M
e
−2πink
M

)∣∣∣∣∣
≤ sup

0≤n≤M−1

M−1∑
k=0

∣∣∣∣v(k)

(
1√

MPAD

e
−2πink
MPAD − 1√

M
e
−2πink
M

)∣∣∣∣
≤ sup

0≤n≤M−1
||v||2

(
M−1∑
k=0

∣∣∣∣ 1√
MPAD

e
−2πink
MPAD − 1√

M
e
−2πink
M

∣∣∣∣2
) 1

2

,

where in the last step we have used Hölder’s inequality. Recall that it states that
|w1w2|1 ≤ |w1|p|w2|p′ for all w1, w2 ∈ `1(Zk) and p, p′ satisfying 1

p
+ 1

p′
= 1. Let us

now compute the modulus.∣∣∣∣ 1√
MPAD

e
−2πink
MPAD − 1√

M
e
−2πink
M

∣∣∣∣2 =

[
1√

MPAD

cos

(
2πnk

MPAD

)
− 1√

M
cos

(
2πnk

M

)]2
+

[
1√
M

sin

(
2πnk

M

)
− 1√

MPAD

sin

(
2πnk

MPAD

)]2
=

1

MPAD

cos2
(

2πnk

MPAD

)
+

1

M
cos2

(
2πnk

M

)
− 2

1√
MPADM

cos

(
2πnk

MPAD

)
× cos

(
2πnk

M

)
+

1

MPAD

sin2

(
2πnk

MPAD

)
+

1

M
sin2

(
2πnk

M

)
− 2

1√
MPADM

× sin

(
2πnk

MPAD

)
sin

(
2πnk

M

)
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=
1

MPAD

+
1

M
− 2

1√
MPADM

[
cos

(
2πnk

MPAD

)
cos

(
2πnk

M

)
+ sin

(
2πnk

MPAD

)
sin

(
2πnk

M

)]
=

1

MPAD

+
1

M
− 2√

MPADM
cos

(
2πnk

MPAD

− 2πnk

M

)
,

where in the last equality we have used the following trigonometric identity

cos(α− β) = cos(α) cos(β) + sin(α) sin(β). (3.4.1)

Then,

||v̂PAD|M − v̂||∞ ≤

≤ ||v||2 sup
0≤n≤M−1

[
M−1∑
k=0

(
1

MPAD

+
1

M
− 2√

MPADM
cos

(
2πnk

MPAD

− 2πnk

M

))] 1
2

≤ ||v||2 sup
0≤n≤M−1

[
M

MPAD

+ 1− 2√
MPADM

M−1∑
k=0

cos

(
2πnk

MPAD

− 2πnk

M

)] 1
2

= ||v||2 sup
1≤n≤M−1

[
M

MPAD

+ 1− 2√
MPADM

M−1∑
k=0

cos

(
2πnk

MPAD

− 2πnk

M

)] 1
2

,

(3.4.2)

where the last equality is due to the fact that the cos
(

2πnk
MPAD

− 2πnk
M

)
reaches its max-

imum value when n = 0. Let us now compute the finite sum. Since cos(x) = eix+e−ix

2
,

then

M−1∑
k=0

cos

(
2πnk

MPAD

− 2πnk

M

)
=

M−1∑
k=0

cos

(
2πnk

M
− 2πnk

MPAD

)

=
1

2

M−1∑
k=0

[
e
i2πn

(
1
M
− 1
MPAD

)]k
+

1

2

M−1∑
k=0

[
e
−i2πn

(
1
M
− 1
MPAD

)]k
(3.4.3)

Keeping in mind that 1 ≤ n ≤M − 1, observe that

n

(
1

M
− 1

MPAD

)
=
n(MPAD −M)

M ·MPAD

< 1,

since n
M
< 1 and MPAD−M

MPAD
< 1. Therefore, 0 < 2πn

(
1
M
− 1

MPAD

)
< 2π, which means

that the ratios of the geometric series appearing on equation (3.4.3) are different
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from 1. Then, this equation can be expressed as follows

M−1∑
k=0

cos

(
2πnk

MPAD

− 2πnk

M

)
=

1

2
· 1− ei2πn

(
1
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− 1
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)
M
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) +
1

2
· 1− e−i2πn

(
1
M
− 1
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)
M
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)
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2
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)
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)
M

+ e
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)
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)
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+
1

2
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1
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)
− e−i2πn
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1
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)
M

+ e
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1
M
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)
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1
M
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)
− e−i2πn

(
1
M
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)

=
1

2
·

2− 2 cos
(

2πn
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1
M
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MPAD

))
− 2 cos

(
2πnM

(
1
M
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MPAD

))
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(
2πn

(
1
M
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+

1

2
·
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(

2πn(M − 1)
(

1
M
− 1
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(
2πn

(
1
M
− 1

MPAD

))
=

1

2
·

1−
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(

2πn− 2πnM
MPAD

)
− cos

(
− 2πnM
MPAD

+ 2πn
MPAD

+ 2πn− 2πn
M

)
1− cos

(
2πn

(
1
M
− 1

MPAD

))


=
1

2

1−
cos
(

2πnM
MPAD

)
− cos

(
2πn

(
1
M
− 1

MPAD

)
+ 2πnM

MPAD

)
1− cos

(
2πn

(
1
M
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MPAD
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=
1

2

1−
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(

2πnM
MPAD

)
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(
2πn

(
1
M
− 1

MPAD
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cos
(

2πnM
MPAD

)
1− cos

(
2πn

(
1
M
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MPAD
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−

sin
(

2πn
(

1
M
− 1

MPAD

))
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(

2πnM
MPAD

)
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(
2πn

(
1
M
− 1

MPAD
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=
1

2
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(
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)
+

sin
(

2πn
(

1
M
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MPAD

))
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(

2πnM
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)
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2πn

(
1
M
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MPAD
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=
1

2

1− cos

(
2πnM

MPAD

)
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(
2πnM

MPAD

− 2πnM

M

) sin
(

2πn
(

1
M
− 1

MPAD

))
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(
2πn

(
1
M
− 1

MPAD

))


=
1

2

(
1− cos

(
2πnM

MPAD

)
− sin

(
M2πn

(
1

M
− 1

MPAD

))

×
sin
(

2πn
(

1
M
− 1

MPAD

))
1− cos

(
2πn

(
1
M
− 1

MPAD

))
 ,

(3.4.4)
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where we have used the trigonometric identity

cos(α + β) = cos(α) cos(β)− sin(α) sin(β).

Then, we can rewrite equation (3.4.2) as follows

||v̂PAD − v̂||∞ ≤ ||v||2 sup
1≤n≤M−1

[
M

MPAD

+ 1− 1√
MPADM

+
1√

MPADM
cos

(
2πnM

MPAD

)
+

1√
MPADM

sin

(
M2πn

(
1

M
− 1

MPAD

))

×
sin
(

2πn
(

1
M
− 1

MPAD

))
1− cos

(
2πn

(
1
M
− 1

MPAD

))


1
2

≤ ||v||2 sup
1≤n≤M−1

[
M

MPAD

+ 1− 1√
MPADM

+
1√

MPADM
+

1√
MPADM

× sin

(
M2πn

(
1

M
− 1

MPAD

)) sin
(

2πn
(

1
M
− 1

MPAD

))
1− cos

(
2πn

(
1
M
− 1

MPAD

))


1
2

= ||v||2 sup
1≤n≤M−1

[
M

MPAD

+ 1 +
1√

MPADM

× sin

(
M2πn

(
1

M
− 1

MPAD

)) sin
(

2πn
(

1
M
− 1

MPAD

))
1− cos

(
2πn

(
1
M
− 1

MPAD

))


1
2

,

(3.4.5)

as we wanted to see.

Remark 3.4.4. Notice that, in expression (3.4.5), we could have finished the com-
putations after the first inequality, obtaining

||v̂PAD − v̂||∞ ≤ ||v||2 sup
1≤n≤M−1

[
M

MPAD

+ 1− 1√
MPADM

+
1√

MPADM
cos

(
2πnM

MPAD

)
+

1√
MPADM

sin

(
M2πn

(
1

M
− 1

MPAD

))

×
sin
(

2πn
(

1
M
− 1

MPAD

))
1− cos

(
2πn

(
1
M
− 1

MPAD

))


1
2

,

which is a more accurate bound than the one given in the statement. However,
observe that both have the same behaviour for large values of M . Therefore, it is
preferable to work with the latter since it is more manageable.
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Corollary 3.4.5. Let v ∈ `2(ZM) with M ∈ N such that M 6= 2m for all m ∈ N.
Let v̂PAD|M be as defined in Proposition 3.4.3. Then,

||v̂PAD|M − v̂||∞ ≤
√

6||v||2.

Proof. From equation (3.4.4) it follows that

−2
M−1∑
k=0

cos

(
2πnk

MPAD

− 2πnk

M

)
= −1 + cos

(
2πnM

MPAD

)
+ sin

(
M2πn

(
1

M
− 1

MPAD

))

×
sin
(

2πn
(

1
M
− 1

MPAD

))
1− cos

(
2πn

(
1
M
− 1

MPAD

)) .
(3.4.6)

Since the left term is upper bounded from above by 2M and

−2 ≤ −1 + cos

(
2πnM

MPAD

)
≤ 0,

then

sin

(
M2πn

(
1

M
− 1

MPAD

)) sin
(

2πn
(

1
M
− 1

MPAD

))
1− cos

(
2πn

(
1
M
− 1

MPAD

)) ≤ 2M + 2.

Therefore, using the result seen in Proposition 3.4.3,

||v̂PAD|M − v̂||∞ ≤ ||v||2 sup
1≤n≤M−1

[
M

MPAD

+ 1 +
1√

M ·MPAD

× sin

(
M2πn

(
1

M
− 1

MPAD

)) sin
(

2πn
(

1
M
− 1

MPAD

))
1− cos

(
2πn

(
1
M
− 1

MPAD

))


1
2

≤ ||v||2 sup
1≤n≤M−1

[
M

MPAD

+ 1 +
2M + 2√
MPADM

] 1
2

= ||v||2

[
M

MPAD

+ 1 + 2

√
M

MPAD

+
2√

MPADM

] 1
2

≤
√

6||v||2.

Remark 3.4.6. Notice that applying the argument used in the proof of the Corol-
lary 3.4.5, in particular equation (3.4.6), to the bound mentioned in Remark 3.4.4,
we get

||v̂PAD|M − v̂||∞ ≤ ||v||2
[

M

MPAD

+ 1 +
2M√

MPADM

] 1
2

≤ 2||v||2,

which is a bit more accurate.
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Figure 3.5 shows a plot of the function

sup
1≤n≤M−1

[
M

MPAD

+ 1 +
1√

M ·MPAD

sin

(
M2πn

(
1

M
− 1

MPAD

))

×
sin
(

2πn
(

1
M
− 1

MPAD

))
1− cos

(
2πn

(
1
M
− 1

MPAD

))


1
2 (3.4.7)

for the values of M on the interval 0 < M ≤ 1 000 000. There, we can see that it
actually remains below

√
6 ∼ 2.45.
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Figure 3.5 Plot of the function (3.4.7) in two different domains

So, provided that ||v̂PAD|M − v̂||∞ is small enough, the discussion of the Sec-
tions 3.2 and 3.3 brings up the question of when it could be useful to compute v̂
through v̂PAD. That is, instead of applying the FFT to v, applying it to vPAD and
then just keep the first M components of the latter. One situation in which it is
preferable to compute v̂PAD instead of v̂ is when the number of multiplications re-
quired in computing v̂ is higher in comparison to that of v̂PAD. Let us now see when
such situation occurs.

Let v ∈ `2(ZM) with M = 2mp for some m ∈ N and p ∈ N≥3 odd. Then, by
Propositions 3.2.1 and 3.3.1 and Remark 3.4.2, we know that

#FFT
MPAD

= MPAD

(
log2MPAD

2
− 1

)
+ 1 =

MPAD

2
log2MPAD −MPAD + 1

=
2m · 21+[log2 p]

2
(m+ 1 + [log2 p])− 2m · 21+[log2 p] + 1

#FFT
M =

M2

2m
+M

(
m

2
− 1

p

)
+ 1 =

2m · 2mp2

2m
+ 2mp

(
m

2
− 1

p

)
+ 1

= 2mp2 +
2mpm

2
− 2m + 1.
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We want to see when #FFT
M > #FFT

MPAD
. That is,

2mp2 +
2mpm

2
− 2m + 1 >

2m · 21+[log2 p]

2
(m+ 1 + [log2 p])− 2m · 21+[log2 p] + 1

m

p2 +
pm

2
− 1 > 2[log2 p] (m+ 1 + [log2 p])− 21+[log2 p]

m
pm

2
− 2[log2 p]m > 2[log2 p] (1 + [log2 p])− 21+[log2 p] + 1− p2.

(3.4.8)

Observe that p
2
− 2[log2 p] < 0 since

p

2
− 2[log2 p] < 0⇔ p

2
< 2[log2 p] ⇔ p < 2[log2 p]+1, (3.4.9)

which is true for all p ∈ N. Therefore, #FFT
M > #FFT

MPAD
if and only if

m <
2[log2 p] (1 + [log2 p])− 21+[log2 p] + 1− p2

p
2
− 2[log2 p]

=
2[log2 p] ([log2 p]− 1) + 1− p2

p
2
− 2[log2 p]

=
2[log2 p]+1 ([log2 p]− 1) + 2− 2p2

p− 2[log2 p]+1
.

In conclusion, #FFT
M > #FFT

MPAD
if and only if

m <
2[log2 p]+1 ([log2 p]− 1) + 2− 2p2

p− 2[log2 p]+1
. (3.4.10)

So in case m satisfies inequality (3.4.10), it is faster to compute v̂PAD and then
keeping the first M components than computing v̂. Let us now analyse the behaviour
of this function.

By looking at Figure 3.6 (a) and (b), we get an idea of the performance of the
expression (3.4.10) as a function of p. However, by looking at (c), we can see that
the larger p is, the wider the range of values of m satisfying inequality (3.4.10) is.
However, we also observe that there is a certain set of points where the values of
the function

2[log2 p]+1 ([log2 p]− 1) + 2− 2p2

p− 2[log2 p]+1

blow up. Notice that these are the points where the denominator takes lower values,
that is, when p approaches 21+[log2 p] or, equivalently, when log2 p−[log2 p] approaches
1. In other words, these are the values of p near the jumps of the function [log2 p],
which can be seen in Figure 3.6 (d).

Going back to the inequality (3.4.10), if, for instance, M = 218 · 3, then

18 = m ≮
2[log2 p]+1 ([log2 p]− 1) + 2− 2p2

p− 2[log2 p]+1
= 16.
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Figure 3.6 (a) and (b) show the plots of the function 2[log2 p]+1([log2 p]−1)+2−2p2
p−2[log2 p]+1 on two

different domains. (c) Shows the plot of the same function than (a) and (b) although
in a much larger domain and with its image limited to the interval [0,20000]. (d) Is
a comparative of the functions log2 p and [log2 p].

Thus, in this case, we would compute v̂ directly using the FFT rather than padding
the vector and computing its transform. On the contrary, if M = 218 · 93, then

18 = m <
2[log2 p]+1 ([log2 p]− 1) + 2− 2p2

p− 2[log2 p]+1
≈ 476.

Therefore, in this situation, it would take less time computing the transform of the
padded vector, as long as ||v̂PAD|M − v̂||∞ is small enough.

Observe that

#FFT
M

#FFT
MPAD

=

M2

2m
+M

(
m
2
− 1

p

)
+ 1

MPAD

2
log2MPAD −MPAD + 1

=
2mp2 + 2mp

(
m
2
− 1

p

)
+ 1

2m+[log2 p] (1 +m+ [log2 p])− 2m+1+[log2 p] + 1
≈

2mp2 + 2mp
(
m
2
− 1

p

)
2m+[log2 p] (−1 +m+ [log2 p]) + 1

.
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Then, cancelling terms and using the fact that 2[log2 p] < p,

#FFT
M

#FFT
MPAD

≈
p2 + p

(
m
2
− 1

p

)
2[log2 p](−1 +m+ [log2 p]) + 1

2m

>
p2 + p

(
m
2
− 1

p

)
p(−1 +m+ [log2 p]) + 1

2m

=
p+

(
m
2
− 1

p

)
m− 1 + [log2 p] + 1

2mp

−−−→
p→∞

∞.

So if m satisfies inequality (3.4.10), then the larger p is, the faster the computation
of v̂PAD is in comparison to v̂ (by means of the Fast Fourier Transform). This
behaviour can be seen in Figure 3.7, where we have compared #FFT

M and #FFT
MPAD

for
m = 500. In (a) we can see that if p is, approximately, less than 160, then #FFT

MPAD

is not necessarily less than #FFT
M , so the vector should not be padded. However, (b)

shows that as p increases, #FFT
MPAD

becomes much lower than #FFT
M , so padding the

vector would save a lot of time.
Putting these results together, assume that v ∈ `2(Z2mp) for some m ∈ N and

p ∈ N≥3 odd and we want to compute v̂. Then, if m satisfies inequality (3.4.10)
and ||v̂PAD|M − v̂|| is small enough, then it is faster to compute v̂PAD (by means
of the FFT) and then keeping the first M components of it. On the contrary, if
one of these two conditions fails to be true, then we have to apply the Fast Fourier
Transform algorithm to the vector v itself.
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Figure 3.7 (a) Shows a comparative of #FFT
M and #FFT

MPAD
for M = 2500p on a small

domain. (b) Shows the same as (a) but on a larger domain.





Chapter 4

Extension of the Fast Fourier
Transform

In this chapter we are going to state the result on which the FFT algorithm is based,
Proposition 4.1.1, which can be found in [2]. Following this idea, we are going to
extend this algorithm to another one that applies to vectors of any size, not just
even. Hence, the first concern is going to be its performance over vectors of odd
length. The results found will lead to the mixed algorithm, an improvement of the
FFT for the vectors of even length but not a power of two which will arise, again, the
padding discussion. In each of these two cases mentioned, we are going to precise the
number of operations required by the corresponding approach as well as analysing
the reduction that follows. Since we will end up with a wide range of algorithms,
Section 4.5 provides a summary of the different situations that we can encounter
and gives the algorithm that should be used in each of them.

4.1 Extension of the Fast Fourier Transform al-

gorithm

Let us begin by formulating the main result behind the FFT that, as mentioned
above, will allow its extension.

Proposition 4.1.1. Let v ∈ `2(ZM) and M = pq for some p, q ∈ N>1. Define the
vectors x0, x1, ..., xp−1 ∈ `2(Zq) as

x`(k) = v(kp+ `) for k = 0, 1, ..., q − 1.

Then, for a = 0, 1, ..., p− 1 and b = 0, 1, ..., q − 1

v̂(aq + b) =
1
√
p

p−1∑
k=0

e−2πik(
b
M

+a
p)x̂k(b). (4.1.1)

Notice that every m = 0, 1, ...,M − 1 can be expressed as m = aq + b for some
a ∈ {0, 1, ..., p − 1} and b ∈ {0, 1, ..., q − 1}, so equation (4.1.1) gives the full DFT
of v.

41
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Proof. Let 0 ≤ m ≤M − 1 and a ∈ {0, 1, ..., p− 1}, b ∈ {0, 1, ..., q− 1} be such that
m = aq + b. Then,

v̂(m) = v̂(aq + b) =
1√
M

M−1∑
k=0

v(k)e−2πi(aq+b)k/M .

Notice that there exist r ∈ {0, 1, ..., q−1} and s ∈ {0, 1, ..., p−1} such that k = rp+s.
Hence,

v̂(aq + b) =
1√
M

p−1∑
s=0

q−1∑
r=0

v(rp+ s)e−2πi(aq+b)(rp+s)/(pq).

Since,
e−2πi(aq+b)(rp+s)/(pq) = e−2πiare−2πias/pe−2πibr/qe−2πibs/(pq),

then

v̂(aq + b) =
1√
M

p−1∑
s=0

e−2πias/pe−2πibs/M
q−1∑
r=0

v(rp+ s)e−2πibr/q

=
1
√
p

p−1∑
s=0

e−2πias/pe−2πibs/M

(
1
√
q

q−1∑
r=0

xs(r)e
−2πibr/q

)

=
1
√
p

p−1∑
s=0

e−2πias/pe−2πibs/M x̂s(b) =
1
√
p

p−1∑
s=0

e−2πis(
a
p
+ b
M )x̂s(b).

The reduction that this approach entails is based on the fact that, by equa-
tion (4.1.1), for each value of a, we need to compute x̂k for all k. So, the algorithm
that we are now going to develop recognises this fact and calculates x̂k just once.

Notice that, if q is not a prime number, then we can apply again Proposition 4.1.1
so as to compute x̂` for all 0 ≤ ` ≤ p− 1. This iteration of the procedure allows the
development of the following algorithm. We are going to follow the notation just
introduced. Let M = p1p2 · · · pr for some p1, p2, ..., pr prime numbers, not necessarily
different, strictly greater than 1. For reasons that we are going to see afterwards, in
Remark 4.2.2, let p1 ≥ p2 ≥ p3 ≥ ... ≥ pr. Now, take p = p1 and q = p2p3 · · · pr and
apply Proposition 4.1.1. Then, for a = 0, 1, ..., p− 1 and b = 0, 1, ..., q − 1

v̂(aq + b) =
1
√
p

p−1∑
k=0

e−2πik(
b
M

+a
p)x̂k(b).

In order to compute x̂`, take p = p2 and q = p3p4 · · · pr and, again, apply the previous
result to the vector x ∈ `2(Zp2p3···pr). Then, for c = 0, 1, ..., p−1 and d = 0, 1, ..., q−1

v̂(cq + d) =
1
√
p

p−1∑
k=0

e
−2πik

(
d

p2p3···pr
+ c
p

)
ŷk(d),
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where
y`(k) = x(kp+ l) for k = 0, 1, ..., q − 1.

One more time, we implement the result to y` taking p = p3 and q = p4p5 · · · pr so as
to obtain ŷ`. And we keep applying the proposition in order to compute the Fourier
Transforms until a set of vectors of size pr arises. At this point we perform the last
step of the algorithm, which consists in calculating its transforms by means of the
change-of-basis matrix, since pr is prime.

Notice that, apart from the algorithm that we have just set out, Proposition 4.1.1
gives rise to many others. For instance, we could take, in the first step, p = p1p2 and
q = p3p4...pr. So, a wide range of different algorithms could be developed as long as
they are computationally faster than using the change-of-basis matrix, which is the
main goal.

Remark 4.1.2. In the particular case of M even, Proposition 4.1.1 becomes Propo-
sition 3.1.1 and, therefore, the preceding algorithm almost becomes the Fast Fourier
Transform. That is the reason why, from now on, we are going to refer to it as the
extended algorithm. Let us now see this fact. Taking p = 2, we get the vectors

x0 = (v(0), v(2), v(4), ..., v(2q − 2)) = (v(0), v(2), v(4), ..., v(M − 2))

x1 = (v(1), v(3), v(5), ..., v(2q − 1)) = (v(1), v(3), v(5), ..., v(M − 1)).

Hence, for all 0 ≤ b ≤ M
2
− 1,

v̂(b) =
1√
2

1∑
k=0

e−2πikb/M x̂k(b) =
1√
2

[
x̂0(b) + e−2πib/M x̂1(b)

]
v̂

(
M

2
+ b

)
=

1√
2

1∑
k=0

e−2πik(
b
M

+ 1
2)x̂k(b) =

1√
2

[
x̂0(b) + e−2πi(

b
M

+ 1
2)x̂1(b)

]
=

1√
2

[
x̂0(b)− e−2πib/M x̂1(b)

]
.

Notice that, actually, the extended algorithm does not recognise the fact that
for a = 0 and a = 1 the products by the exponentials are the same. In other words,
equation (4.1.1) shows that the algorithm carries out p− 1 multiplications for each
value of a. This implies that, in the particular case when M is even, it is less time
consuming applying the Fast Fourier Transform rather than the extended algorithm.
So, we will only implement the latter in the case M is odd and non-prime. Observe
that, in this case, it is not possible to obtain a reduction in the number of products
since such a reduction can only occur if

e−2πik(
b
M

+a
p)x̂k(b) = −e−2πikb/M x̂k(b)

for some values of k and a, as happened when M was even and we took p = 2. If
M is odd, so must be p, which implies that 2ka/p could never be an odd integer for
any values of k and a. Therefore,

e−2πik(
b
M

+a
p)x̂k(b) 6= −e−2πikb/M x̂k(b)
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for all possible values of k and a. So, as opposed to the case when M is even, in
this case we cannot reduce the number of multiplications by the exponential.

Since, as already mentioned, the FFT is preferable over the extended algorithm
when M is even, let us now focus on the case when M is odd.

4.2 Vector of odd size but not prime (extended

algorithm)

In this section we are going to centre attention on how the extended algorithm
performs when computing the Fourier Transform of a vector of length M with
M = p1p2 · · · pr for some p1, p2, ..., pr prime numbers strictly greater than one.
Moreover, we are going to assume r ≥ 2, since if M is prime, the algorithm does
not apply.

Let us begin by studying the number of complex multiplications required in
carrying out the algorithm. First, let us count the complex products needed in
each of its steps or, equivalently, the ones appearing in Proposition 4.1.1. If we
define, similarly as we have done in Chapter 3, #ext

M as the number of these type
of operations that arise in computing the DFT of a vector of length M using the
extended algorithm, then we need, on the one hand, x̂` for all 0 ≤ ` ≤ p− 1, which
is p#ext

q . As we have already discussed at the end of Section 4.1, there are, on the
other hand, p− 1 more products due to the multiplications by the exponentials for
each value of a. Hence, the number of operations required in Proposition 4.1.1 is

#ext
M = p#ext

q + p(p− 1). (4.2.1)

Recall that we are not taking into account the multiplication by 1√
p

since this is not

as time consuming as a complex product. Keeping in mind the number of products
required at each step, we can now state the total number of them needed along the
algorithm.

Proposition 4.2.1. Let v ∈ `2(ZM) and M an odd and non-prime number. That
is, M = p1p2 · · · pr for some pj ∈ Z≥3 prime for all 1 ≤ j ≤ r. Then, the number of
complex multiplications required along the extended algorithm is

#ext
M = M

(
pr +

r−1∑
k=1

pr−k − 1∏k−1
j=0 pr−j

)
= M

(
pr +

pr−1 − 1

pr
+
pr−2 − 1

pr−1pr
+ · · ·+ p1 − 1

p2p3...pr

)
.

Proof. We are going to prove it by induction on r. Let r = 2, that is M = p1p2. In
this case we just have to apply Proposition 4.1.1 once. Then, by equation (4.2.1),

#ext
M = p1 #ext

p2
+ p1(p1 − 1) = p1p

2
2 + p1(p1 − 1) = M

(
p2 +

p1 − 1

p2

)
.
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Assume, now, the result true for r. Let us now see that it also holds for r + 1, so
we are taking M = p1p2 · · · pr+1. By equation (4.2.1),

#ext
M = p1 #ext

p2p3···pr+1
+ p1(p1 − 1)

= p1

[
p2p3 · · · pr+1

(
pr+1 +

r−1∑
k=1

p(r+1)−k − 1∏k−1
j=0 p(r+1)−j

)]
+ p1(p1 − 1)

= M

(
pr+1 +

r−1∑
k=1

p(r+1)−k − 1∏k−1
j=0 p(r+1)−j

)
+ p1(p1 − 1)

= M

(
pr+1 +

r−1∑
k=1

p(r+1)−k − 1∏k−1
j=0 p(r+1)−j

+
p1 − 1

p2p3 · · · pr

)

= M

(
pr+1 +

r∑
k=1

p(r+1)−k − 1∏k−1
j=0 p(r+1)−j

)
where in the second equality we have used the hypothesis of induction.

Remark 4.2.2. Notice that, when r = 2, the function p2 + p1−1
p2

satisfies the follow-
ing.

• If p1 ≈ p2, then p2 + p1−1
p2
≈ p1 + p2−1

p1
.

• If p1 < p2, then p2 < p2 + p1−1
p2

< p2 + 1. Hence, p2 + p1−1
p2
≈ p2.

• If p1 >> p2, then p2 + p1−1
p2

< p2 + p1
p2
<< p1.

Therefore, taking p1 ≥ p2 ≥ ... ≥ pr seems to be a good choice for reducing the
number of operations. That is the reason why, when the developing the algorithm,
we have sorted the prime numbers as a decreasing sequence.

In order to analyse the computational advantage that this approach entails,
we are going to compare the two values #ext

M and M2. We will use the fact that
p1 ≥ pj ≥ 3 for all possible values of j.

M2

#ext
M

=
p1 · · · pr

pr + pr−1−1
pr

+ pr−2−1
pr−1pr

+ · · ·+ p1−1
p2···pr

≥ p1 · · · pr
pr + pr−1

pr
+ pr−2

pr−1pr
+ · · ·+ p1

p2···pr

≥ p1 · · · pr
p1 + p1

pr
+ p1

pr−1pr
+ · · ·+ p1

p2···pr
=

1
1

p2···pr + 1
p2···pr−1p2r

+ 1
p2···pr−2p2r−1p

2
r

+ · · ·+ 1
p22···p2r

≥ 1

r 1
p2···pr

=
p2 · · · pr

r
≥ 3r−1

r
≥ 3

2
> 1.

The second-to-last step is due to the fact that r ≥ 2 and the function 3r−1

r
is

increasing in this set of values. So, since, for all values of M , M2 > #ext
M , the

extended algorithm is always faster. Moreover, notice that, on the one hand,

p2 · · · pr
r

−−−−→
p
p1
→∞

∞
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and, on the other hand,
p2 · · · pr

r
≥ 3r−1

r
−−−→
r→∞

∞,

which implies that the reduction in the number of operations increases as p or r
grows, or equivalently, as M grows, as can be seen in Figure 4.1 (a). Moreover,
notice that the tendency of #ext

M is

#ext
M ≈ p1 · · · pr−1p2r + p1 · · · pr−2p2r−1 + · · ·+ p1p

2
2 + p21

if the prime numbers are big enough. Therefore, fixing p2, p3, ..., pr, it is quadratic
on p1, although this behaviour can only be observed when p1 is, by far, greater than
the other primes. This fact is depicted in Figure 4.1 (b).
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Figure 4.1 (a) Comparison of the number of operations required by the extended
algorithm and the change-of-basis matrix when M is odd and non-prime. (b) Plot
of the function #ext

M when M is odd and non-prime.

Recall that we said that, for even values of M , it was faster to use the FFT than
the extended algorithm. However, since, as we have seen, the latter is faster than
the matrix, it seems that we could obtain an even faster algorithm for when M is
even if we mixed the FFT and the extended one. That is what we are going to study
next.

4.3 Vector of even size but not a power of 2 (mixed

algorithm)

Let us begin by recalling how the Fast Fourier Transform performed over vectors of
size M = 2mp for some m ∈ N and p ∈ N≥3 odd.

In Section 3.3 we saw that, for such an M , the FFT consisted on m stages where,
at the last one, there were 2m vectors belonging to `2(Zp) whose Fourier Transform
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must be calculated by means of the change-of-basis matrix. Then, Proposition 3.3.1
showed that the number of operations required was

#FFT
M = 2mp2 +M

(
m

2
− 1

p

)
+ 1,

where M
(
m
2
− 1

p

)
+ 1 was due to the product by the exponentials whereas 2mp2

resulted from the computation of the 2m Fourier Transforms of length p. However,
notice that, if p is not a prime number, then the transforms can be computed by
means of the extended algorithm, which, as we have seen in Section 4.2, is faster.
Therefore, if we denote as #mix

M as the number of complex products required when
applying this mixed algorithm, that is FFT until we get 2m vectors of length p and
then the extended algorithm for computing its transforms, then

#mix
M = 2m#ext

p +M

(
m

2
− 1

p

)
+1 = 2mp

(
pr +

r−1∑
k=1

pr−k − 1∏k−1
j=0 pr−j

)
+M

(
m

2
− 1

p

)
+1,

(4.3.1)
where we are assuming p = p1, p2 · · · , pr for p1 ≥ p2 ≥ · · · ≥ pr are prime numbers
strictly greater than 1. Notice that if p is prime, then #mix

M = #FFT
M since p = pr

and the sum will have no terms.
Figure 4.2 (a) shows a comparative of the functions #FFT

M and #mix
M for that values

of M = 2mp where p is not a prime number. In it, we can see the significant reduction
that the mixed algorithm entails. Moreover, notice that, if we fix m, the behaviour
of #mix

M is going to be determined by that of #ext
p , which we have already discussed

in Section 4.2. However, in comparison to the latter, the quadratic behaviour of the
former requires greater values of M to be appreciated as Figure 4.2 (b) shows.
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Figure 4.2 (a) Plot of the functions #FFT
M and #mix

M at the points M = 2mp where
p is not a prime number. (b) Plot of the function #mix

M for the same points as (a).
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4.4 Padding

So far, we have developed three different algorithms depending on the size of the
vector: FFT (if it is a power of two), extended (if it is odd and non-prime) and
mixed (if it is even but not a power of two). Since the first one appears to entail
the greatest reduction, we are now going to analyse whether it is worth to pad the
vector so as to apply the FFT. That is on what we are going to focus now.

As discussed in Section 3.4, padding is going to be useful as long as the error
that follows from performing the FFT of the padded vector is small enough and
the number of operations is reduced. Since Proposition 3.4.3 already gave an upper
bound for the former, let us now fix our attention on the latter.

From now on, M is going to denote the length of the vector.

4.4.1 Vector of prime size

Notice that none of the algorithms developed so far apply to vectors of prime length,
which means that its Fourier Transform can only be computed by means of the
change-of-basis matrix, involving M2 operations. Let us now analyse under which
conditions #FFT

MPAD
< M2. Observe that we can assume M ≥ 3 since if M = 1,

the Fourier Transform is the vector itself and if M = 2, M = MPAD. Then, by
Remark 3.4.2 and Proposition 3.2.1,

#FFT
MPAD

= 2[log2M ]+1

(
log2 2[log2M ]+1

2
− 1

)
+ 1 = 2[log2M ]+1

(
[log2M ] + 1

2
− 1

)
+ 1

= 2[log2M ] ([log2M ]− 1) + 1 < 2[log2M ][log2M ] < M2,

where the first inequality is due to the fact that 2[log2M ] > 1 for M ≥ 3.
Therefore, if M is prime, it is always faster to compute the FFT of the padded

vector and then keep the first M components, as Figure 4.3 (a) shows (provided that
the error is small enough). Moreover, as can be seen in Figure 4.3 (b), the reduction
that the padding entails is greater as M grows, although it is not an increasing
function.

4.4.2 Vector of odd size but not prime

Following the notation introduced in Section 4.2, let M = p1p2...pr. In this case,
the vector should be padded if #FFT

MPAD
< #ext

M , that is, using the computations done
above,

2[log2M ] ([log2M ]− 1) + 1 < M

(
pr +

r−1∑
k=1

pr−k − 1∏k−1
j=0 pr−j

)
. (4.4.1)

Unlike the other cases where we have studied the implementation of the padding,
we are not going to manipulate this expression in order to isolate one of its variables
since, when doing so, we get a less manageable inequality. Figure 4.4 (a) shows a
comparison of these two functions. There, we can see that there are some points
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Figure 4.3 (a) Comparison of the functions M2 and #FFT
MPAD

over prime values of

M . (b) Plot of the function M2

#FFT
MPAD

for M prime.

where padding is more time consuming, such as M = 273 or M = 297. Let us now
see the reduction that follows from padding. Since M ≤ 2[log2M ] for M ≥ 2, then

#ext
M

#FFT
MPAD

=

M

(
pr +

∑r−1
k=1

pr−k−1∏k−1
j=0 pr−j

)
2[log2M ] ([log2M ]− 1) + 1

≥
pr +

∑r−1
k=1

pr−k−1∏k−1
j=0 pr−j

[log2M ]− 1 + 1
M

=
pr + pr−1−1

pr
+ pr−2−1

pr−1pr
+ · · ·+ p1−1

p2p3...pr

[log2M ]− 1 + 1
M

−−−−→
p1→∞

∞.

Therefore, as p1 increases so does the reduction. However, notice that this growth
becomes significant when p1 >> p2, p3, ..., pr. This behaviour is depicted in Fig-
ure 4.4 (b).

4.4.3 Vector of even size but not a power of two

Following the notation introduced so far, recall that, for M = 2mp, we get

MPAD = 2m+1+[log2 p]

#FFT
MPAD

= 2m+[log2 p](m+ 1 + [log2 p])− 2m+1+[log2 p] + 1

#mix
M = 2mp

(
pr +

r−1∑
k=1

pr−k − 1∏k−1
j=0 pr−j

)
+ 2mp

(
m

2
− 1

p

)
+ 1.
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Figure 4.4 (a) Comparison of the functions #ext
M and #FFT

MPAD
over odd and non-

prime values of M . (b) Plot of the function
#ext
M

#FFT
MPAD

for M odd and non-prime.

After simplifying some terms, we see that #mix
M > #FFT

MPAD
if and only if

p

(
pr +

r−1∑
k=1

pr−k − 1∏k−1
j=0 pr−j

)
+
pm

2
− 1 > 2[log2 p](m+ 1 + [log2 p])− 21+[log2 p]

m

pm

2
− 2[log2 p]m > 2[log2 p](1 + [log2 p])− 21+[log2 p] − p

(
pr +

r−1∑
k=1

pr−k − 1∏k−1
j=0 pr−j

)
+ 1.

As we observed in expression (3.4.9), p
2
− 2[log2 p] < 0 for all p ∈ N, which implies

that #mix
M > #FFT

MPAD
if and only if

m <

2[log2 p](1 + [log2 p])− 21+[log2 p] − p
(
pr +

∑r−1
k=1

pr−k−1∏k−1
j=0 pr−j

)
+ 1

p
2
− 2[log2 p]

=

2[log2 p]+1(1 + [log2 p])− 22+[log2 p] − 2p

(
pr +

∑r−1
k=1

pr−k−1∏k−1
j=0 pr−j

)
+ 2

p− 2[log2 p]+1

=

2[log2 p]+1([log2 p]− 1)− 2p

(
pr +

∑r−1
k=1

pr−k−1∏k−1
j=0 pr−j

)
+ 2

p− 2[log2 p]+1
. (4.4.2)

Observe that this inequality shares some of the features of (3.4.10) as, for example,
the fact that both functions blow up at those values of p where [log2 p] is discontin-
uous. However, by looking at Figure 4.5, the function seems to carry out different
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behaviours. For instance, notice that there are some values of p for which it is neg-
ative, which means that none of the vectors of length M = 2mp should be padded
for such values of p.
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Figure 4.5 (a) Plot of the function given in (4.4.2) for values of p even and non-
prime. (b) Plot of the same function than (a) but on a wider domain and limiting
the y axis.

Observe that

#mix
M

#FFT
MPAD

=

2mp

(
pr +

∑r−1
k=1

pr−k−1∏k−1
j=0 pr−j

)
+ 2mp

(
m
2
− 1

p

)
+ 1

2m+[log2 p](m+ 1 + [log2 p])− 2m+1+[log2 p] + 1

≈
2mp

(
pr +

∑r−1
k=1

pr−k−1∏k−1
j=0 pr−j

)
+ 2mp

(
m
2
− 1

p

)
2m+[log2 p](m+ 1 + [log2 p])− 2m+1+[log2 p] + 1

=

p

(
pr +

∑r−1
k=1

pr−k−1∏k−1
j=0 pr−j

)
+ p

(
m
2
− 1

p

)
2[log2 p](m+ 1 + [log2 p])− 21+[log2 p] + 1

2m

=

p

(
pr +

∑r−1
k=1

pr−k−1∏k−1
j=0 pr−j

)
+ p

(
m
2
− 1

p

)
2[log2 p](m− 1 + [log2 p]) + 1

2m

.
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Now, using the fact that 2[log2 p] < p, we get

#mix
M

#FFT
MPAD

>

p

(
pr +

∑r−1
k=1

pr−k−1∏k−1
j=0 pr−j

)
+ p

(
m
2
− 1

p

)
p(m− 1 + [log2 p]) + 1

2m

=
pr +

∑r−1
k=1

pr−k−1∏k−1
j=0 pr−j

+ m
2
− 1

p

m− 1 + [log2 p] + 1
2mp

=
pr + pr−1−1

pr
+ pr−2−1

pr−1pr
+ · · ·+ p1−1

p2p3...pr
+ m

2
− 1

p

m− 1 + [log2 p] + 1
2mp

−−−−→
p1→∞

∞.

Therefore, if we fix p2, p3, ..., pr, then the larger p1 is, the faster the computation of
v̂PAD is in comparison to v̂ (by means of the Fast Fourier Transform), provided that
m satisfies inequality (4.4.2).

Summarising the results seen so far, assume that v ∈ `2(Z2mp) for some m ∈ N
and p ∈ N≥3 odd and non-prime. Then, if m satisfies inequality (4.4.2) and
||v̂PAD|M − v̂|| is small enough, it is faster to compute v̂PAD (by means of the
FFT) and then keeping the first M components of it. On the contrary, if one of
these two conditions fails to be true, we have to apply the mixed algorithm to the
vector v itself.

4.5 General procedure to compute the Fourier

Transform (summary)

Let us now put together all the results seen so far. In order to compute the Fourier
Transform of a vector of length M , we have different approaches available depending
on M and on the vector itself. We need to distinguish four different situations:

• If M is a power of two, then we apply the FFT, which, by Proposition 3.2.1,
will give rise to

#FFT
M = M

(
log2M

2
− 1

)
+ 1.

• Assume that M is not a power of two but is even, that is, M = 2mp for some
p odd. If p is prime and m satisfies inequality (3.4.10) or p is non-prime and
m satisfies inequality (4.4.2), then we apply the FFT to the padded vector, as
long as ||v̂PAD|M− v̂||∞ is small enough (see Proposition 3.4.3). Otherwise, we
apply the mixed algorithm which, as shown in expression (4.3.1), will require

#mix
M = 2mp

(
pr +

r−1∑
k=1

pr−k − 1∏k−1
j=0 pr−j

)
+M

(
m

2
− 1

p

)
+ 1.

• Following the notation introduced in Section 4.2, take M odd and non-prime.
If inequality 4.4.1 is satisfied and, again, ||v̂PAD|M − v̂||∞ is small enough,
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then we apply the FFT to the padded vector. Otherwise, we apply the ex-
tension of the algorithm that we have developed in this chapter which, by
Proposition 4.2.1, will perform

#ext
M = M

(
pr +

r−1∑
k=1

pr−k − 1∏k−1
j=0 pr−j

)
.

• Finally, if M is prime, we compute the transform of the padded vector. How-
ever, if the ensuing error is huge, we can only use the change-of-basis matrix,
which implies M2 products.

Notice that this allows us to define the following functions

#M =


#FFT
M , if M is a power of two

#mix
M , if M is even but not a power of two

#ext
M , if M is odd and non-prime

M2, if M is prime

#PAD
M =

{
#FFT
M , if M is a power of two

#FFT
MPAD

, otherwise

that gives the number of operations for each M depending on whether the padding
can be implemented.

Figure 4.6 shows the plot of the function #M for 1 ≤ M ≤ 1000. By looking at
M ’s of the same type we can see that, although the function is not increasing over
them, its global tendency is. In addition, it shows that this tendency to increase is
greater when M is prime. Then, it gets lower for M even and even lower for M odd.
And, finally, it is the lowest when M is a power of 2.

In Figure 4.7 we can see the plot of the function #PAD
M for 1 ≤ M ≤ 1000.

As expected, it is an increasing function that remains constant along each dyadic
partition. Moreover, its growth is moderate and much lower than the one observed
in #M , which shows its importance and justifies its implementation.

By looking at both figures, we realise that #M may take very distinct values on
two consecutive points. However, this variability is not so pronounced in #PAD

M since
that difference only occurs for that values of M near the discontinuity points and,
besides, the length of the jump is rather moderate. Let us now illustrate this fact
with an example.

Take M = 512 = 29. Since it is a power of two, its Fourier Transform is computed
using the FFT, which involves

#512 = #PAD
512 = #FFT

512 = 512

(
log2 512

2
− 1

)
+ 1 = 1793.

Now, consider M = 510 = 2 · 255. Since p = 255 is non-prime (255 = 3 · 5 · 17) and
m = 1 satisfies inequality (4.4.2), then we apply the FFT to the padded vector, as
long as the error is small enough. Observe that MPAD = 512, hence

#PAD
510 = #FFT

512 = 1793.
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Figure 4.6 Plot of the function #M .

However, if the error is too large for our purposes, padding cannot be implemented,
which implies that the computations have to be done by means of the mixed algo-
rithm. That means

#510 = #mix
510 = 510

(
3 +

5− 1

3
+

17− 1

3 · 5

)
+ 510

(
1

2
− 1

255

)
+ 1 = 3008,

which is greater but not that much. Notice that 510 and 512 belong to the same
dyadic partition, thus #PAD

510 = #PAD
512 . However, if we increase the value of M until

it reaches the next partition, that is M = 514, we expect #PAD
514 to be greater. Since

514 = 2 · 257 satisfies inequality (3.4.10) (notice that now p = 257 is prime), we can
apply the FFT to the padded vector (now MPAD = 1024) giving rise to

#PAD
514 = #FFT

1024 = 1024

(
log2 1024

2
− 1

)
+ 1 = 4097.

However, if ||v̂PAD|514 − v̂||∞ is not negligible, the mixed algorithm must be used.
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Figure 4.7 Plot of the function #PAD
M .

Then,

#514 = #mix
514 = 514 · 257 + 514

(
1

2
− 1

257

)
+ 1 = 132 354,

which becomes more than 32 times slower. Recall that if p is prime, #mix
2mp = #FFT

2mp .
Take now M = 519 = 3 · 173, which is odd and non-prime. Since it satisfies
inequality (4.4.1), then, provided that the error is not significant, we apply the FFT
to the padded vector, so

#PAD
519 = #FFT

1024 = 4097.

Otherwise, we compute the Fourier Transform through the extended algorithm,
which performs

#519 = #ext
519 = 519

(
3 +

173− 1

3

)
= 31 313.

Finally, let M = 521, which is prime. Recall that in Section 4.4.1 we saw that
padding such values of M always speeds up the computations. In this particular
case it becomes more than 66 times faster

#PAD
521 = #FFT

1024 = 4097

#521 = 5212 = 271 441.





Chapter 5

Digital image processing

In this chapter we are going to set the basis of digital image processing as well as
developing the role played by the Discrete Fourier Transform. We will begin by
giving the relationship between filtering, convolution and the DFT, which is going
to be the key point [2]. After that, in Section 5.3, 5.4, 5.5 and 5.6 we will develop
different examples of image processing that illustrates different applications of the
DFT [1, 3, 7]. Such sections as well as the notation followed in them are introduced
at the end of Section 5.2.

Throughout the chapter we are going to discuss different strategies to process a
digital image which will be illustrated with particular examples. The codes used in
such examples are shown in the Appendix.

5.1 Introduction to image processing

Let us begin by setting out what is going to be the object of study in this chapter, the
images. An image can be regarded as a positive and finite two-dimensional function,
f(x, y), where the variables x and y, usually referred to as spatial coordinates, are
continuously defined on a certain spatial domain. That is, (x, y) ∈ [0, x0]× [0, y0] for
some x0, y0 ∈ R. The value of the function at each point is called intensity or, since
the images that we are going to deal with are grey-scaled, grey-level. However, when
processing an image, this must be digital. This means that the spatial domain and
the intensity values of f have to be discrete quantities. Therefore, the image has
to undergo a previous step consisting of sampling (digitizing the spatial domain)
and quantization (digitizing the intensity values). Although we are not going to
go deeper in this previous step (in [3] is discussed in detail), it is important to
mention that the discrete points obtained in the spatial domain are vertically and
horizontally equidistant and that, for reasons concerning storage and quantizing
hardware, the number of intensity levels is usually a power of two, being 28 = 256
the most common.

Notice that, since the spatial coordinates become equidistant discrete quantities,
we can assume without loss of generality that x ∈ {0, 1, 2, ...,M − 1} and that
y ∈ {0, 1, 2, ..., N − 1} for some M,N ∈ N. Therefore, a digital image given by a

57
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function f can be regarded as an M ×N matrix. That is,

f =


f(0, 0) f(0, 1) . . . f(0, N − 1)
f(1, 0) f(1, 1) . . . f(1, N − 1)

...
...

f(M − 1, 0) f(M − 1, 1) . . . f(M − 1, N − 1)

 ,

where each of its elements is called a pixel. For reasons that will become clear later
on, we can extend them periodically, which implies that f ∈ `2(ZM × ZN).

From now on, we are going to deal with digital images, simply referred to as
images, whose intensity levels take values in a partition of the interval [0, 1] consist-
ing in 256 equidistant points. The first element of the partition is 0, which stands
for black, and the last one is 1, which stands for white. As mentioned above, we are
always considering ZM × ZN as the spatial domain and, in order to be consistent
with the notation used so far, we are going to denote the spatial coordinates by
(m,n) instead of (x, y).

Among all the different types of image processing, we are just going to consider
those consisting in applying a linear and translation-invariant transformation, T ,
to a given image, f , so as to obtain another, g,

f
T−−→ g.

For instance, f could be a noisy picture and T an appropriate transformation for
reducing such noise.

Notice that since T is linear, then the effect of the transformation on two images
together is the sum of its effects on each image. Moreover, if we multiply the input
picture by some amount, the output picture will be multiplied by that amount as
well. Let us now define what a translation-invariant transformation is according to
the notation introduced in Definition 2.1.9.

Definition 5.1.1. A transformation T : `2(ZM × ZN) −→ `2(ZM × ZN) is said to
be translation-invariant if, for all k1, k2 ∈ Z and all f ∈ `2(ZM × ZN),

T (Rk1,k2f) = Rk1,k2T (f).

Thus, it means that the value of the response at one point only depends on the
value of f at that point, not on its position. Therefore, the assumptions made on
the transformation T seem reasonable.

5.2 Filtering

In Section 5.1 we have seen that processing an image consists in performing a linear
and translation-invariant transformation that results in an image more suitable for
a particular purpose. However, finding or carrying out such transformations is not
always an easy task, and here is where convolution and the Fourier Transform come
to play. Let us begin by introducing the key elements needed for achieving our
target.
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Definition 5.2.1. Given g ∈ `2(ZM × ZN), let Tg : `2(ZM × ZN) −→ `2(ZM × ZN)
be defined as

Tg(f) = g ∗ f,
for all f ∈ `2(ZM×ZN). Any linear transformation of this form is called a convolution
operator.

Theorem 5.2.2. If T : `2(ZM × ZN) −→ `2(ZM × ZN) is a linear and translation-
invariant transformation, then each element of the Fourier basis is an eigenvector
of T .

Proof. Let Fp,q be an element of the Fourier basis, which was defined in Proposi-
tion 2.1.1. Notice that, since F is a basis of `2(ZM ×ZN), then there exist complex
coefficients {ar,s}0≤r≤M−1,0≤s≤N−1 such that

T (Fp,q)(m,n) =
M−1∑
r=0

N−1∑
s=0

ar,sFr,s(m,n) =
1√
MN

M−1∑
r=0

N−1∑
s=0

ar,se
2πirm/Me2πisn/N

(5.2.1)
for all m,n ∈ Z. Now, observe that

R1,1Fp,q(m,n) = Fp,q(m− 1, n− 1) =
1√
MN

e2πip(m−1)/Me2πiq(n−1)/N

= e−2πip/Me−2πiq/NFp,q(m,n).

Applying T to the previous expression, it becomes

T (R1,1Fp,q)(m,n) = e−2πip/Me−2πiq/NT (Fp,q)(m,n)

= e−2πip/Me−2πiq/N
M−1∑
r=0

N−1∑
s=0

ar,sFr,s(m,n)

=
M−1∑
r=0

N−1∑
s=0

e−2πip/Me−2πiq/Nar,sFr,s(m,n),

due to equation (5.2.1) and the linearity of T . On the other hand, using again
equation (5.2.1),

(R1,1T (Fp,q))(m,n) = T (Fp,q)(m− 1, n− 1)

=
1√
MN

M−1∑
r=0

N−1∑
s=0

ar,se
2πir(m−1)/Me2πis(n−1)/N

=
M−1∑
r=0

N−1∑
s=0

ar,se
−2πir/Me−2πis/NFr,s(m,n).

Since T is translation-invariant,

M−1∑
r=0

N−1∑
s=0

e−2πip/Me−2πiq/Nar,sFr,s(m,n) =
M−1∑
r=0

N−1∑
s=0

e−2πir/Me−2πis/Nar,sFr,s(m,n).
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Using the uniqueness of the coefficients of an expression in terms of a basis, we get

e−2πip/Me−2πiq/Nar,s = e−2πir/Me−2πis/Nar,s.

Since 0 ≤ p, r ≤ M − 1 and 0 ≤ q, s ≤ N − 1, then ar,s = 0 when r 6= p and s 6= q.
Therefore, equation (5.2.1) becomes

T (Fp,q)(m,n) = ap,qFp,q(m,n),

that is

T (Fp,q) = ap,qFp,q.

Thus, any element of the Fourier basis is an eigenvector of T .

Let us now give the main result that relates convolution with image processing.

Theorem 5.2.3. Let T : `2(ZM ×ZN) −→ `2(ZM ×ZN) be a linear transformation.
Then, the following statements are equivalent:

(i) T is translation invariant.

(ii) T is a convolution operator.

Proof. Let us begin by proving that (ii) ⇒ (i). Let g ∈ `2(ZM × ZN) be such that
T (f) = Tg(f) = g ∗ f . Take f ∈ `2(ZM × ZN) and k1, k2 ∈ Z. Then, for any
m,n ∈ Z,

Tg(Rk1,k2f)(m,n) = (g ∗Rk1,k2f)(m,n) =
1√
MN

M−1∑
r=0

N−1∑
s=0

g(m− r, n− s)Rk1,k2f(r, s)

=
1√
MN

M−1∑
r=0

N−1∑
s=0

g(m− r, n− s)f(r − k1, s− k2).

We now make the change of variables `1 = r − k1 and `2 = s − k2. Then, by
Remark 2.1.11,

Tg(Rk1,k2f)(m,n) =
1√
MN

M−1−k1∑
`1=−k1

N−1−k2∑
`2=−k2

g(m− `1 − k1, n− `2 − k2)f(`1, `2)

=
1√
MN

M−1∑
`1=0

N−1∑
`2=0

g(m− `1 − k1, n− `2 − k2)f(`1, `2)

= (g ∗ f)(m− k1, n− k2) = Rk1,k2(g ∗ f)(m,n)

= (Rk1,k2Tg(f))(m,n).

Thus, Tg is translation invariant.
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Let us now see that (i)⇒ (ii). Let f ∈ `2(ZM×ZN). Then, by Proposition 2.1.6,

f =
M−1∑
p=0

N−1∑
q=0

f̂(p, q)Fp,q.

By Theorem 5.2.2, for each Fp,q ∈ F there exists λp,q ∈ C such that T (Fp,q) =
λp,qFp,q. Then, since T is a linear transformation,

T (f) =
M−1∑
p=0

N−1∑
q=0

f̂(p, q)T (Fp,q) =
M−1∑
p=0

N−1∑
q=0

f̂(p, q)λp,qFp,q.

Let us now define the matrix A ∈ `2(ZM × ZN) such that A(p, q) = λp,qf̂p,q. Then,
using equation (2.1.4),

T (f) =
M−1∑
p=0

N−1∑
q=0

A(p, q)Fp,q =
∨

A. (5.2.2)

Notice that, if we define the matrix H ∈ `2(ZM × ZN) as H(p, q) = λp,q and let .∗
denote the component-wise product of matrices, then

A = f̂ . ∗H,

which meansA(m,n) = f̂(m,n)H(m,n). Thus, by Proposition 2.1.13, equation (5.2.2)
becomes

T (f) = (H. ∗ f̂)∨ =

(
∨̂

H. ∗ f̂
)∨

=

((
∨

H ∗ f
)∧)∨

=
∨

H ∗ f = T ∨
H

(f).

Therefore, T is a convolution operator.

This theorem states that, for any linear translation-invariant transformation T ,
there exists a suitable element g ∈ `2(ZM × ZN), called filter, such that applying
T to an image is equivalent to performing the convolution of g with that image.
However, this approach has two main drawbacks. Firstly, it is not always an easy
task to find an appropriate filter and, what is more, convolution is a very time-
consuming operation due to the large amount of multiplications that it requires. In
view of this fact, we can take its Fourier Transform which, along with the result
seen in Proposition 2.1.13, allows us to rewrite it as follows

(T (f))∧ = (g ∗ f)∧ = ĝ. ∗ f̂ .

Or, equivalently,
T (f) = (ĝ. ∗ f̂)∨. (5.2.3)

As a result, the computation of the convolution is almost reduced to that of a
component-wise product of matrices since, as we have already discussed, the calcu-
lation of the DFT and the IDFT can be speeded up by means of the FFT. Let us
now analyse such reduction.



5.2. Filtering 62

On the one hand, it is clear that f ∗g requires (MN)2 operations (without taking
into account the product by 1/

√
MN). Observe that if g takes real values, all the

products involved in the convolution are real, since f always takes real values in
the interval [0, 1]. This means that, at least, the convolution performs (MN)2 real
multiplications.

On the other hand, we are going to assume that MN = 2m for some m ∈ N
since, as we already discussed in Section 3, it is the most favourable case so as to
apply the FFT. This assumption is indeed reasonable due to the fact that most of
the images are of size M × N with both M and N a power of two. Let us now
compute the number of complex products required in carrying out equation (5.2.3).
First of all, notice that in the same way that we developed the FFT in Section 3.1,
we could have developed the Inverse Fast Fourier Transform (IFFT) by working
with the expression

∨
v(k) =

1√
MN

MN−1∑
m=0

v(m)e2πik
m
MN

instead of

v̂(k) =
1√
MN

MN−1∑
m=0

v(m)e−2πik
m
MN ,

which would have given rise to the same number of operations. Therefore, by Propo-
sition 3.2.1, the number of complex multiplications required by equation (5.2.3) are

3#FFT
MN +MN = 3MN

(
log2(MN)

2
− 1

)
+ 3 +MN = MN

(
3 log2(MN)

2
− 2

)
+ 3,

where 3#FFT
MN and MN are due to the Fourier transforms and the component-wise

product of matrices respectively. As we showed at the beginning of Chapter 3,
each complex product requires three real multiplications, which means that equa-
tion (5.2.3) needs

P FFT
real (MN) = 3MN

(
3 log2(MN)

2
− 2

)
+ 9

real products.
Figure 5.1 (a) shows a comparison of the number of operations required by both

approaches whereas (b) depicts the reduction ensued from the use of the FFT, that
is

(MN)2

P FFT
real (MN)

.

For instance, if we take a picture of size 512× 512, as we will do in Section 5.4, the
computations by means of the FFT become almost 3 500 times faster.

In brief, if given a transformation T it is easy to find an appropriate filter g just
by inspection of the spatial domain, then T (f) can be quickly computed, for all
f ∈ `2(ZM ×ZN), using equation (5.2.3). Notice that, when doing so, ĝ takes action
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Figure 5.1 (a) Comparison of the number of real products required by the con-
volution (black) and equation (5.2.3) (blue). (b) Quotient of the two expressions
shown in (a).

on the Fourier Transform of the image, whose domain is called frequency domain.
Thus, the filtering process is carried out in the frequency domain. This approach is
based on inferring the filter by analysing the spatial domain. However, the choice of
the filter depends on the purpose of the processing and there are some situations in
which the information encoded in the spatial domain is not so easy to understand.
If this is the case, an easier approach could be to interpret the frequency domain so
as to obtain the filter, although this new filtering process will not follow at all the
procedure shown in equation (5.2.3) but

T (f) = (G. ∗ f̂)∨,

where G is the filter inferred by inspection of the frequency domain and, recall, .∗ is
the component-wise product of matrices. Notice that, on the one hand, the DFT is
used for speeding up the whole process and, on the other hand, for deducing a filter
using the information encoded in the frequency domain.

Let us now stablish the setting for the following sections, which are examples of
image processing based on filtering. In Section 5.3, we are going to infer the filter
by inspection of the spatial domain whereas in Section 5.4 we are going to use the
information encoded in the frequency domain so as to deduce a filter. The filtering
process will be

ffilt = (ĝ. ∗ f̂)∨ (5.2.4)

ffilt = (G. ∗ f̂)∨, (5.2.5)

respectively. Similarly to the latter, Section 5.5 will show how the modelling of a cer-
tain degradation function can lead to the definition of an appropriate filter. Finally,
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in Section 5.6 we are going to develop an algorithm that allows the reconstruction
of a picture with missing pixels by means of the DFT.

The notation that we are going to follow from now on, and that we have already
used in equations (5.2.4) and (5.2.5), is the following: f is the input image, g and G
are the filters in the spatial and frequency domains respectively and ffilt is the output
or filtered image. Recall that we regard f , G and ffilt as elements of `2(ZM ×ZN)
and that .∗ stands for component-wise product of matrices. In addition, we are going
to regard M and N as even integers since it is the first step in the development of
the techniques that we will consider next. Incidentally, [3] extends it to a general
case.

5.3 Edge detection

In this section we are going to work on a kind of image processing where the output
is a certain attribute of the input image: its edges. Given a picture, we define an
edge as a set of consecutive pixels where the intensity changes abruptly within a
small neighbourhood. In order to detect such features, we are going to determine a
filter in the spatial domain so as to apply equation (5.2.4). The introduction of a
discrete version of the Laplacian is going to be fundamental.

Take f ∈ `2(ZM × ZN). Then, we define

∂2f(m,n)

∂m2
= f(m+ 1, n) + f(m− 1, n)− 2f(m,n)

∂2f(m,n)

∂n2
= f(m,n+ 1) + f(m,n− 1)− 2f(m,n).

Therefore, the Laplacian is

∆2f(m,n) = f(m+ 1, n) + f(m− 1, n) + f(m,n+ 1) + f(m,n− 1)− 4f(m,n).

This operation has associated a so-called mask, which is a 3× 3 matrix defined and
denoted as follows

Mk =

0 1 0

1 -4 1

0 1 0

.

Computing the Laplacian of f at (m,n) is equivalent to centre the mask at (m,n)
and then add the nine products resulting from multiplying each element of the mask
with the corresponding component of f . In other words,

∆2f(m,n) = Mk(0, 0)f(m− 1, n− 1) +Mk(0, 1)f(m− 1, n)

+Mk(0, 2)f(m− 1, n+ 1) +Mk(1, 0)f(m,n− 1) +Mk(1, 1)f(m,n)

+Mk(1, 2)f(m,n+ 1) +Mk(2, 0)f(m+ 1, n− 1) +Mk(2, 1)f(m+ 1, n)

+Mk(2, 2)f(m+ 1, n+ 1).
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Thus, it is enough to slide the mask along f to compute its Laplacian. Notice that
this is equivalent to perform the convolution between f and the `2(ZM × ZN) filter

g =
√
MN

0 0 . . . 0 0 1

0 0
...

...

0 0

0 0 . . . 0 0 1

1 0 . . . 0 1 −4




(5.3.1)

where all the missing components are 0. The framed elements in the top left, top
right, bottom left and bottom right of the matrix are the elements located at bottom
right, bottom left, top right and top left, respectively, in the mask. In fact, this is
the procedure followed when obtaining a filter from a given mask.

What makes the Laplacian so suitable for detecting fine detail is the following
behaviour.

• It is zero in areas of constant intensity.

• It is zero in areas where the intensity increment in the horizontal and vertical
directions is constant. If, for instance, the intensity values are integers in the
interval [1, 8], a region of this type could be

* * * * * 1 2 3 4
* * * * 1 2 3 4 5
* * * 1 2 3 4 5 6
* * 1 2 3 4 5 6 7
* 1 2 3 4 5 6 7 8
* 2 3 4 5 6 7 8 *
2 3 4 5 6 7 8 * *

.

This type of regions are called ramps.

• It is non-zero at the onset and end of a ramp and step discontinuity (abrupt
change).

Therefore, since edges are mainly characterised by relatively strong transitions in the
intensity levels, the convolution of a picture with the filter given in equation (5.3.1)
results in a black image showing the edges. As widely discussed in Section 5.2,
convolution is implemented by means of the Fourier Transform (in order to speed
computations) as shown in equation (5.2.4). Figure 5.2 and Figure 5.3 are two
examples of the performance of this procedure. Notice the weird intensity levels of
the pixels located in the right and bottom border due to the periodic extension of
the image when filtering.

Notice that the difference of an image and its Laplacian results in a sharpened
version of the first one, as shown in Figure 5.4.
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(a) (b)

Figure 5.2 (a) Original picture. (b) Laplacian of (a).

(a) (b)

Figure 5.3 (a) Picture of the north pole of the moon taken from NASA’s web page.
(b) Laplacian of (a).
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(a) (b)

Figure 5.4 (a) Result of performing the difference between the images shown in
Figure 5.2. (b) Result of performing the difference between the images shown in
Figure 5.3.

Notice that the Laplacian identifies all edges in an image. However, there are
other masks that can detect them in a particular direction. For instance,

.

-1 2 -1

-1 2 -1

-1 2 -1

-1 -1 -1

2 2 2

-1 -1 -1

(5.3.2)

recognise vertical and horizontal lines respectively. This is due, on the one hand, to
their behaviour in areas where the intensity is constant or increases constantly and
at the onset and end of a step discontinuity or ramp and, on the other hand, at the
weight of its coefficients. Figure 5.5 shows an example of the performance of such
masks. Recall that we first compute the filter using the method explained above
and then we perform the convolution, which is actually computed using Discrete
Fourier Transforms.

5.4 Periodic noise reduction

One of the most common degradation phenomenon is periodic noise, which is caused
by electrical and electromechanical interference during the image capturing process.
This type of alteration can be approximated by a finite sum of certain sinusoids as
follows.
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(a) (b) (c)

Figure 5.5 (a) Original picture. (b) and (c) are the results of applying the masks
shown in expression (5.3.2) to (a).

Definition 5.4.1. Let k ∈ N and take {Aj}1≤j≤k,{ϕj}1≤j≤k ⊂ R sequences of real
numbers. Assuming M and N even integers, take {uj}1≤j≤k ⊂ {0, 1, 2, ...,M/2− 1}
and {vj}1≤j≤k ⊂ {0, 1, 2, ..., N/2 − 1}. Then, we say that η ∈ `2(ZM × ZN) is a
periodic noise if it can be expressed as follows

η(m,n) =
k∑
j=1

Aj sin
(

2πuj
m

M
+ 2πvj

n

N
+ ϕj

)
.

Remark 5.4.2. In Section 2.3, we discussed in detail the fact that

sin
(

2πuj
m

M
+ 2πvj

n

N
+ ϕj

)
= sin

(
2π(M − 1− uj)

m

M
+ 2π(N − 1− vj)

n

N
+ ϕj

)
,

for 0 ≤ uj ≤M/2 and 0 ≤ vj ≤ N/2. Therefore, there is no loss of generality when
regarding the frequencies on the finite sets {uj}1≤j≤k ⊂ {0, 1, 2, ...,M/2 − 1} and
{vj}1≤j≤k ⊂ {0, 1, 2, ..., N/2− 1}.

Notice that this type of noise is spatial dependant. Following the notation in-
troduced at the end of Section 5.2, the input image f will be of the form

f = forig + η,

where forig is the original picture without the noise. Notice that f will look as the
original image with some repeating pattern superimposed, as shown in Figure 5.6.
Our aim is to obtain a filtered image that is as close as possible to the original one.

In order to characterise periodic noise the information encoded in the spatial
domain is not enough whereas, as we will now see, the one given by the frequency
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Figure 5.6 Corrupted image due to periodic noise.

domain is. Therefore, the strategy will consist in finding a suitable filter G so as to
apply equation (5.2.5). In order to achieve so, we are going to take advantage of the
following feature of the Fourier Transform of a sinusoid.

Lemma 5.4.3. Let η ∈ `2(ZM × ZN) be a sinusoid

η(m,n) = A sin
(

2πu
m

M
+ 2πv

n

N
+ ϕ

)
,

where A ∈ R+, 0 ≤ u ≤ M
2
− 1, 0 ≤ v ≤ N

2
− 1 and ϕ ∈ R. Then, its Fourier

spectrum satisfies

|η̂(p, q)| =


A
√
MN
2

, if p = u and q = v
A
√
MN
2

, if p = M − u and q = N − v
0, otherwise

.

Proof. Take 0 ≤ p ≤M − 1 and 0 ≤ q ≤ N − 1. Then,

η̂(p, q) =
1√
MN

M−1∑
m=0

N−1∑
n=0

A sin
(

2πu
m

M
+ 2πv

n

N
+ ϕ

)
e−2πipm/Me−2πiqn/N

=
A

2i
√
MN

M−1∑
m=0

N−1∑
n=0

(
e2πi(u

m
M

+v n
N
+ϕ) − e−2πi(u

m
M

+v n
N
+ϕ)
)
e−2πipm/Me−2πiqn/N

=
A

2i
√
MN

e2πiϕ
M−1∑
m=0

N−1∑
n=0

e2πium/Me2πivn/Ne−2πipm/Me−2πiqn/N

− A

2i
√
MN

e−2πiϕ
M−1∑
m=0

N−1∑
n=0

e−2πium/Me−2πivn/Ne−2πipm/Me−2πiqn/N
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=
Ae2πiϕ

√
MN

2i
〈Fu,v, Fp,q〉 −

Ae−2πiϕ
√
MN

2i
〈F−u,−v, Fp,q〉

=
iAe−2πiϕ

√
MN

2
〈F−u,−v, Fp,q〉 −

iAe2πiϕ
√
MN

2
〈Fu,v, Fp,q〉

=


iAe2πiϕ

√
MN

2
, if p = u and q = v

iAe−2πiϕ
√
MN

2
, if p = −u and q = −v

0, otherwise

.

Therefore,

|η̂(p, q)| =


A
√
MN
2

, if p = u and q = v
A
√
MN
2

, if p = −u and q = −v
0, otherwise

.

Finally, using the periodicity of η̂ we get the desired result.

This result implies that, if the periodic noise is as shown in Definition 5.4.1 and
the amplitudes are big enough, then the spectrum of the Fourier Transform of the
input image (|f̂ |) will show a collection of 2k intensity bursts, where each sinusoid
contributes the pair located at (p, q) = (uj, vj) and (p, q) = (M − uj, N − vj). Since

f ∈ `2(ZM × ZN), we can shift the matrix representation of |f̂ | so as to be centred
at the origin. That is, the point (p, q) = (0, 0) is located at the centre of the matrix.
Observe that in such matrices, from now on referred to as |f̂ |shift, the points of
each burst pair are located in the conjugate positions (M/2− 1 + uj, N/2− 1 + vj)

and (M/2− 1− uj, N/2− 1− vj). The main point of f̂shift is the fact that it eases
visualisation facilitating the choice of the filter. This fact is illustrated in Figure 5.7,
which is the centred Fourier spectrum of the picture shown in Figure 5.6. In it, we
can see two pairs of intensity spikes located on top of the vertical and horizontal
light stripes that intersect in the center of the image. In order to ease visualisation,
we have added four red circles surrounding them.

Let us now see how the periodic noise reduction is carried out. As mentioned
above, such noise is identified by intensity spikes, which leads us to think that the
filter should act as a patch that cancels them. Such filters are called notches and
are constructed as follows.

Let f be an image that has been altered by a periodic noise whose parameters
satisfy the hypothesis stated in Definition 5.4.1. That is, f = ffilt + η, where

η(m,n) =
k∑
j=1

Aj sin
(

2πuj
m

M
+ 2πvj

n

N
+ ϕj

)
.

Then, the notch is defined as

G(p, q) =
k∏
j=1

Hj(p, q)H−j(p, q), (5.4.1)
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Figure 5.7 Centered Fourier spectrum of the picture shown in Figure 5.6. The red
circles were added to highlight the intensity spikes caused by the periodic noise.

where Hj and H−j are the patch functions. The main goal of each patch func-
tion is to eliminate one of the bursts without changing the other values of the
frequency domain. This fact justifies the notation used for such functions: Hj

and H−j are supposed to remove the pair of bursts corresponding to the sinusoid
Aj sin

(
2πuj

m
M

+ 2πvj
n
N

+ ϕj
)
. As widely discussed in [3], there are different choices

for the patch functions but, since the Gaussian is one of the most intuitive, this
is the one that we are going to implement. Let us now define a Gaussian patch
function.

Definition 5.4.4. We say that H ∈ `2(ZM × ZN) is a Gaussian patch function
centred at coordinates (a, b) if it is of the form

H(p, q) = 1− e
−D(p,q)2

2D2
0 ,

where D0 ∈ R\{0} is the cut-off frequency and D(p, q) is the distance between the
location (p, q) and (a, b). That is,

D(p, q) =
[
(p− a)2 + (q − b)2

] 1
2 .
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Usually, Gaussian patches are centred at the center of the matrix, which is the
point (M/2− 1, N/2− 1). Then,

D(p, q) =

[(
p− M

2
+ 1

)2

+

(
q − N

2
+ 1

)2
] 1

2

.

Figure 5.8 shows a plot of a Gaussian patch function along with its image represen-
tation. The latter has a black border in order to distinguish the picture from the
background. Therefore, when multiplying component-wise a Gaussian patch with
a Fourier spectrum, the frequency where the patch is centred together with some
neighbourhood determined by D0 become essentially zero whereas the other values
remain almost unchanged.

0

0.2

0.4

0.6

0.8

1

(a) (b)

Figure 5.8 (a) Plot of a Gaussian patch function. (b) Image representation of (a).
The black borders were added for clarity.

Now, it is clear that, in order to eliminate the intensity spikes, the patch functions
have to be Gaussians centred at these points. In other words, expression (5.4.1) can
be rewritten as follows

G(p, q) =
k∏
j=1

(
1− e

−Dj(p,q)
2

2D2
0

)(
1− e

−D−j(p,q)
2

2D2
0

)
,

where D0 ∈ R\{0} and Dj(p, q) is the distance between the location (p, q) and the
point (M/2− 1 + uj, N/2− 1 + vj), that is,

Dj(p, q) =

[(
p− M

2
+ 1− uj

)
+

(
q − N

2
+ 1− vj

)2
] 1

2

D−j(p, q) =

[(
p− M

2
+ 1 + uj

)
+

(
q − N

2
+ 1 + vj

)2
] 1

2

. (5.4.2)
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Unless we had some information about the periodic noise, the parameters D0, uj
and vj are usually chosen by trial and error. Notice that the Gaussians are centred
at (M/2 − 1 + uj, N/2 − 1 + vj) and (M/2 − 1 − uj, N/2 − 1 − vj), which are the

coordinates of the bursts in |f̂ |shift. Thus, the processing is

(ffilt) = ((G. ∗ f̂shift)?)∨, (5.4.3)

where ? stands for reverting the shifting. Notice that this procedure is slightly
different from the one shown in equation (5.2.5). Coming back to the previous
example, Figure 5.7 leads us to take the notch depicted in Figure 5.9 (a), which
was obtained by taking D0 = 5, (u1, v1) = (200, 0) and (u2, v2) = (0, 200). The
black border is drawn for clarity. Finally, by performing the right hand-side of
equation (5.4.3), we obtained the picture shown in Figure 5.9 (b). Notice that we
have actually eliminated the periodic noise, which revealed as a repeating pattern.

(a) (b)

Figure 5.9 (a) Notch used for reducing the periodic noise present in Figure 5.6.
(b) Figure 5.6 after filtering it using the notch in (a).

5.5 Blur reduction

In Section 5.4 we have modelled a particular case of degradation function as is peri-
odic noise. The main point of such approach was to construct a filter G by inspection
of the frequency domain so as to implement the formula shown in equation (5.2.5).
In this section, however, the strategy is going to be slightly different. We are go-
ing to see how the modelling of a certain type of degradation functions can result,
straightforwardly, in a useful filter. To some extent, it can be thought as another
way of deducing equation (5.2.5), although the underlying idea is the same.
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Throughout this section we are going to consider linear and translation-invariant
degradation functions T . Notice that the periodic noise considered in Section 5.4
does not satisfy these conditions. Following the notation introduced at the beginning
of Section 5.4, the input image can be expressed as

f = T (forig) + η,

where forig is the original image that we pretend to restore and η ∈ `2(ZM ×ZN) is
some noise. By Theorem 5.2.3, there exists an element h ∈ `2(ZM × ZN) such that

f = h ∗ forig + η

and, by Proposition 2.1.13,
f̂ = ĥ. ∗ f̂orig + η̂.

Let us denote H = ĥ and assume that H(p, q) 6= 0 for all p and q. Since the aim is
the recovery of forig, then

forig =

(
f̂ − η̂
H

)∨
=

(
f̂

H

)∨
−

(
η̂

H

)∨
, (5.5.1)

where f̂−η̂
H

has to be understood as the component-wise division. As we said at
the introduction of the chapter, we assume that we have some knowledge about the
degradation function. That is, we have enough information about T so as to model
the functions h or H but we don not know anything about the noise. Therefore, by
equation (5.5.1), the filtered image must be

ffilt =

(
f̂

H

)∨
, (5.5.2)

which, by taking G ∈ `2(ZM × ZN) as G(m,n) = 1/H(m,n), can be expressed as

ffilt = (G. ∗ f̂)∨.

Notice that, proceeding this way, not only have we obtained equation (5.2.5), but also
the particular filter G. Thus, as long as H has non-zero components, equation (5.5.1)
can be rewritten as

forig = ffilt −
(
η̂

H

)∨
,

where ffilt is given by equation (5.5.2). If we now take their Fourier Transforms, we
get

f̂filt = f̂orig +
η̂

H
.

Observe that the larger are the values of H, the closer is ffilt to forig. Therefore, we
need some technique to prevent η̂/H from blowing up.
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Let us begin by noticing an important feature of the Discrete Fourier Transform.
Let t ∈ `2(ZM × ZN) be such that it takes values on R≥0. Then,

∣∣t̂(p, q)∣∣ =
1√
MN

∣∣∣∣∣
M−1∑
m=0

N−1∑
n=0

t(m,n)e−2πipm/e−2πiqn/N

∣∣∣∣∣
≤ 1√

MN

M−1∑
m=0

N−1∑
n=0

∣∣t(m,n)e−2πipm/e−2πiqn/N
∣∣

=
1√
MN

M−1∑
m=0

N−1∑
n=0

t(m,n) = t̂(0, 0).

This implies that, under such hypothesis, the highest intensity is attained at the
location (0, 0). This leads us to think that, as long as H takes non-negative values,
we could perform the division by H just at some neighbourhood of (0, 0) (since,
apparently, it reduces the probability of encountering zero-valued intensities) and,
then, setting to zero the other values of the resulting matrix. This strategy makes
sense since, as discussed in Section 2.3, a high value of the modulus of a particular
Fourier coefficient implies a strong contribution of that frequency component to the
image. Therefore, by doing so, we do not lose relevant information, which allows
the properly recovery of the image. The filtering of the neighbourhood can be easily
achieved by means of a patch function in the following way

P. ∗ (f̂filt)shift = P. ∗ f̂shift
Hshift

,

where P is some patch function that behaves as an identity matrix over frequencies
near (0, 0) (which are now located at the centre of the matrix) while lowering the
others. Notice that we want the performance of P to be the opposite of that of a
Gaussian patch centred at the centre of the matrix. Therefore, we can define

P (p, q) = 1−

(
1− e

−D(p,q)2

2D2
0

)
= e

−D(p,q)2

2D2
0 , (5.5.3)

where the distance is given by

D(p, q) =

[(
p− M

2
+ 1

)2

+

(
q − N

2
+ 1

)2
] 1

2

.

Figure 5.10 shows a plot of such P along with its image representation. Thus, the
filtered image is obtained as follows

ffilt =

((
P. ∗ f̂shift

Hshift

)?)∨
, (5.5.4)

where P is as given above and, recall, ? stands for reverting the shifting.
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(a) (b)

Figure 5.10 (a) Plot of the patch function given in equation (5.5.3). (b) Image
representation of (a).

Notice that, although we need the assumption that H takes strictly positive
values, it is not enough to guarantee an accurate result. The reason is that the
construction of the patch is based on the fact that the probability of encountering
small values near the frequency (0, 0) is low. Thus, if H is one of these non-probable
matrices with small intensities near (0, 0), then the method cannot be applied. This
means that, even though H takes positive values, the procedure may not work
properly. Therefore, this approach does not give a general way of proceeding but a
well-suited approach for most of the cases encountered.

Let us finally see some examples of the performance of this strategy. We are
going to consider the degradation caused by atmospheric turbulence, which is a
linear and translation-invariant transformation. The model we are going to work
with is the one proposed in [5], which is defined as

H(p, q) = e−k(p
2+q2)

5/6

,

where k depends on the environmental conditions. This phenomenon is quite com-
mon in images taken by satellites and produces a blurred image, as can be seen in
Figure 5.11. In these cases, k = 0.0025 and k = 0.0015 respectively. Notice that the
centred filter is given by

Hshift(p, q) = e
−k
(
(p−M2 +1)

2
+(q−N2 +1)

2
)5/6

, (5.5.5)

which satisfies the condition of taking strictly positive values, although it becomes
really small at the locations that are farthest from the centre of the matrix. These
are the values that we want to get rid of.

In order to obtain the filtered image, given by expression (5.5.4), we need to
determine the patch P . In other words, we have to find an appropriate value for
the parameter D0. As we have already discussed, this parameter is chosen so as to
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(a) (b)

Figure 5.11 Images blurred due to atmospherical turbulence.

eliminate the smallest values of the centred spectrum Hshift. Therefore, D0 could be
approximated by inspection of Hshift, although, as mentioned in Section 5.4, such
parameters are ultimately chosen by trial and error.

On the one hand, when filtering the image shown in Figure 5.11 (a), the patch
with D0 = 125 proves to give the best result. In Figure 5.12 (a) we can see the
filtered image obtained by performing equation (5.5.4) with such D0.

On the other hand, when filtering the image shown in Figure 5.11 (b), we realise
(after trial-and-error) that no patch is actually required. In other words, the patch
function is a constant matrix whose coefficients are all equal to 1. This means that,
in this case, any value of the following component-wise division

f̂shift
Hshift

blow up. Therefore, there is no need of using a patch. Figure 5.12 (b) shows the
filtered image obtained.

5.6 Image reconstruction

In this section we are going to see the role played by the Fourier transform when
reconstructing an image from a picture where some of its pixels have been removed.
We are going to assume that the missing pixels are uniformly distributed. Fig-
ure 5.13 (a) and the first column of Figure 5.14 show some pictures with a few
number of available pixels where the missing ones are depicted in white to ease vi-
sualisation. This type of degradation usually arises when the signal sampling is not
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(a) (b)

Figure 5.12 (a) Result of filtering the image shown in Figure 5.11 (a) with D0 =
125. (b) Result of filtering the image shown in Figure 5.11 (b) without using a
patch. In both pictures the blurring effect has disappeared.

carried out properly or due to the lose of some parts of the signal during transmis-
sion.

Let XM×N be a signal where only the pixels located at Ωa ⊂M×N are available.
Then, we define YM×N as

Y (m,n) =

{
X(m,n) if (m,n) ∈ Ωa

0 if (m,n) ∈ Ωm

,

for all (m,n) ∈ M × N where Ωm = M × N \Ωa. As discussed in Section 2.3, the
module of the (p, q) coefficient of the Fourier transform of a signal is a measure of
the strength of that frequency component in making up the signal. Since, in general,
an image has a small number of strong frequency components, most of its Fourier
coefficients are going to be almost zero. Therefore, a signal ZM×N that minimises

||
∧

Z||1

can be regarded as a good approximation of X as long as Z(m,n) = X(m,n) for
all (m,n) ∈ Ωa. Notice that in order to reconstruct X properly, Z must keep the
same frequency information. In other words, the spikes in the frequency domain
must be the same although the smaller coefficients may vary. Thus, the more pixels
X preserves, the more accurate is going to be the reconstruction, as can be seen
comparing the first row of Figure 5.13 and the second one in Figure 5.14. Hence,
the strategy to recover X consists in developing an algorithm that at each iteration
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changes the values of the pixels of Y located at Ωm in such a way that

||
∧

Y `||1 > ||
∧

Y `+1||1,

where Y` is the `-th iteration.
Let us now develop the algorithm. Since we want to minimise the function

||F(·)||1, where F stands for the Fourier Transform, we are going to use the dis-
crete version of the well-known gradient descent algorithm. It states that if G is a
differentiable function, then the sequence

ak+1 = ak − µk∇G

converges to a minimum of G. Therefore, the sequence {Yk}k obtained as

Yk+1(m,n) =

{
Yk(m,n) if (m,n) ∈ Ωa

Yk(m,n)− µk
||F(Yk+Hk

(m,n)
)||1−||F(Yk−Hk

(m,n)
)||1

2hk
if (m,n) ∈ Ωm

,

where Hk
(m,n) is a null matrix with value hk at the component (m,n), converges

component-wise to Z and, consequently, to X. Following the notation introduced
so far, the algorithm that allows the reconstruction of the signal X is the following.

Require: Y, Ωa, Ωm, h0, µ0, it, α and β.
Set Y0 = Y
for t ∈ {1, 2, ..., it} do

for (m,n) ∈ Ωa ∪ Ωm do
if (m,n) ∈ Ωm then

Gradk(m,n) =
||F(Yk+Hk

(m,n)
)||1−||F(Yk−Hk

(m,n)
)||1

2hk
else

Gradk(m,n) = 0
end if

end for
Yk+1 = Yk − µkGradk

hk+1 = hk/α
µk+1 = µk/β
k ← k + 1

end for
return Yk

As discussed in previous sections, the way of determining the most appropriate
values for the parameters is trial and error. However, there are some techniques
([1],[6]) to stablish the number of iterations required so as to bound the error caused,
although we are not going to discuss them deeper. Figure 5.13 shows some examples
obtained by varying the parameter values. In it we can see that modifying a bit the
value of one parameter can result in a less accurate recovering. However, this fact
can sometimes be resolved by increasing the number of iterations, as happens in (c)
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(a) (b)

(c) (d)

Figure 5.13 (a) Shows an image with 30% of its pixels removed. (b), (c) and
(d) are the reconstructed images taking 5 iterations, h0 = 1 and µ0 = 0.5, 5, 0.5,
α = 2, 2, 0.2 and β = 2, 2, 5 respectively.
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if we consider 20 iterations. Picture (d), on the other hand, does not improve after
500 iterations.

Figure 5.14 shows two pictures where 70% and 90% of its pixels are missing along
with the best recovery obtained after trial and error. Notice that although many
pixels are missing, both pictures can be restored quite well. In Figure 5.15 we can see
two more examples of image reconstruction. Notice that, in Figure 5.15 (a) and (b),
the restoration procedure does a great job recovering the background, although the
silhouette of the man and the camera does not appear to be sharp. One of the
reasons for the latter is the fact that it is displayed in a larger size than the original
picture, which was 256× 256. On the other hand, the recovered image shown in (d)
is very accurate even though (c) has only 15% of its pixels available.

So far, we have developed a method for reconstructing an image where the pixels
removed were uniformly distributed. Let us now see if this approach works as well
when a whole square of pixels is missing. Figure 5.16 shows some examples. First
of all, the pictures, which were of size 256× 256, are displayed in a larger size so as
to ease visualisation, which causes some blurring. In the images we can see that the
method performs well in regions of constant intensity or similar texture, as shown
in (d), (e) and (k). Moreover, in picture (j) we have recovered the outline of the hat,
which was removed. Finally, observe that the method is not well suited for restoring
sharp or detailed pieces, as illustrated in (f) and (l).

In summary, the method developed above is appropriate for reconstructing im-
ages where the removed pixels were uniformly distributed. Moreover, it yields good
results when recovering missing squares located in regions of constant or similar
texture as well as restoring outlines in areas with very few detail. In the Appendix
we can find the code of three Matlab functions that implement the algorithm for
reconstructing an image (with both missing squares or uniformly distributed pixels).
As mentioned there, the procedure is not carried out in the whole picture but in
each of the 8× 8 blocks that form the image. The reason is the fact that this proce-
dure not only works for the Fourier Transform but for any other transformation for
which most of the coefficients in the new basis are almost zero. For instance, the
Discrete Cosine Transform (DCT) is a transformation very suitable for reconstruct-
ing purposes since it strongly satisfies this condition. Although we are not going
to introduce the DCT here, we mention the fact that it is applied to a matrix by
performing the transformation on each of its 8× 8 blocks. Therefore, programming
the function this way allows the implementation of the algorithm for both the DFT
and the DCT. Moreover, it is less expensive computationally.

Due to this fact, the pixels removed in the examples were uniformly distributed
within each block of 8×8. That is the reason why the degraded pictures may appear
to be split into blocks.
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(a) (b)

(c) (d)

Figure 5.14 (a) and (c) show two pictures with 70% and 90% of its pixels removed.
(b) and (d) are the reconstructed images taking 10 iterations, h0 = 1, µ0 = 1,
α = 1.5 and β = 1.5.
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(a) (b)

(c) (d)

Figure 5.15 (a) and (c) show two pictures with 60% and 85% of its pixels removed.
(b) and (d) are the reconstructed images taking h0 = 0.5, µ0 = 1.5, α = 1.2 and
β = 1.2 and 20 and 50 iterations respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.16 Pictures (d), (e), (f), (j), (k) and (l) are the reconstructions of (a),
(b), (c), (g), (h) and (i) respectively. The parameters used are 100 iterations,
h0 = 0.5, µ0 = 1, α = β = 1.2 and the squares are of size 10× 10 pixels.



Appendix

Along Chapter 5 we have developed different instances of digital image processing
and, in each of them, the approaches set were illustrated by means of different
examples. In the appendix we present the codes of the functions developed so as
to implement such strategies. These functions, which are programmed in Matlab,
were used to carry out all the examples appearing in the already mentioned chapter.

The aim of Section 5.3 was to obtain the edges of a given image. In order to
achieve so we created a function, EdgeDetect, such that given an input image and
a mask computes the filter associated to the latter and implements equation (5.2.4).
The code is as follows.

function EdgeDetect (Im ,Mk)
Im=imread (Im) ;
Im=im2double (Im) ;
i f s ize (Im , 3 ) ˜=1

Im=rgb2gray (Im) ;
end
M=s ize (Im , 1 ) ;
N=s ize (Im , 2 ) ;

ImExt=[Im Im Im ; Im Im Im ; Im Im Im ] ;
f i l t e r=zeros (3∗M,3∗N) ;
a=(s ize (Mk, 1 )−1) /2 ;
b=(s ize (Mk, 2 )−1) /2 ;
f i l t e r (3∗M−a :3∗M,3∗N−b :3∗N)=Mk( 1 : a+1 ,1:b+1) ; %bottom r i g h t
f i l t e r (3∗M−a :3∗M, 1 : b)=Mk( 1 : a+1,b+2:2∗b+1) ; %bottom l e f t
f i l t e r ( 1 : a , 1 : b )=Mk( a+2:2∗a+1,b+2:2∗b+1) ; %top l e f t
f i l t e r ( 1 : a , 3∗N−b :3∗N)=Mk( a+2:2∗a+1 ,1:b+1) ; %top r i g h t
f i l t e r=sqrt (M∗N) ∗ f i l t e r ;

FourTransImExt=f f t2 ( ImExt ) /sqrt (M∗N) ;
FourTransFi l ter=f f t2 ( f i l t e r ) /sqrt (M∗N) ;
Conv=sqrt (M∗N) ∗ i f f t 2 ( FourTransImExt .∗ FourTransFi l ter ) ;
Fi l t Im=Conv(M+1:2∗M,N+1:2∗N) ;
imshow ( Fi l t Im )
end

Notice that we regard images as elements of `2(ZM×ZN), so they should be extended
periodically (as shown in line 10). Therefore, the computations are done with finite
matrices of sizes 3M × 3N . However, the result that we are looking for is not the
filtered 3M × 3N matrix but the middle submatrix of size M ×N (line 23).

85
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Moreover, this function works for any mask of length (2a + 1) × (2b + 1) for
a, b ∈ Z, although all the masks considered in Section 5.3 where of size 3 × 3, that
is, a = b = 1.

In order to ease visualisation in the pictures shown in Figure 5.2 and 5.3, we
added the command

Fi l t Im=5.5∗ log(1+Fi l t Im ) ;

and

Fi l t Im=7.5∗ log(1+Fi l t Im ) ;

before the imshow respectively. Its purpose was to extend a narrow range of inten-
sity levels located near 1 since, otherwise, the edges were too light.

Observe that this function is very general because it computes the convolution of
an image with the filter associated to the input mask. Since we were just interested
in edge detection, we executed it for the particular masks associated to that task.

In order to eliminate periodic noise (Section 5.4), we generated a function,
PerNoise, such that, given the noisy picture and the notch, it performs the fil-
tering and shows the result.

function PerNoise (NoisyIm , Notch )
i f i s c h a r ( NoisyIm )==1

NoisyIm=imread (NoisyIm ) ;
end
NoisyIm=im2double ( NoisyIm ) ;
i f s ize (NoisyIm , 3 ) ˜=1

NoisyIm=rgb2gray (NoisyIm ) ;
end
M=s ize (NoisyIm , 1 ) ;
N=s ize (NoisyIm , 2 ) ;

FourTrans=f f t2 ( NoisyIm ) /sqrt (M∗N) ;
Recovered=sqrt (M∗N) ∗ real ( i f f t 2 ( i f f t s h i f t (Notch .∗ f f t s h i f t ( FourTrans ) ) ) ) ;
imshow ( Recovered )
end

In our case, the degraded picture seen in Figure 5.6 was created by adding periodic
noise to the original one. The procedure was

eta1=zeros (M,N) ;
eta2=zeros (M,N) ;
for m=1:1:M

for n=1:N
eta1 (m, n)=0.5∗ sin (2∗pi ∗200∗(m−1)/M) ;
eta2 (m, n)=0.5∗ sin (2∗pi ∗200∗(n−1)/N) ;

end
end
eta=eta1+eta2 ;
NoisyIm=Im+eta ;

where Im is the original grey-scaled image expressed as a matrix with values in [0, 1].
Finally, the notch, which is shown in Figure 5.9 (a), was constructed as follows
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CtOf=5; % cut−o f f f requency
Notch=zeros (M,N) ;
for p=1:M

for q=1:N
A=norm ( [ p−M/2−200 q−N/2 ] , 2 ) ˆ2 ;
B=norm ( [ p−M/2+200 q−N/2 ] , 2 ) ˆ2 ;
C=norm ( [ p−M/2 q−N/2−200] ,2) ˆ2 ;
D=norm ( [ p−M/2 q−N/2+200] ,2) ˆ2 ;
Notch (p , q )=(1−exp(−A/(2∗CtOfˆ2) ) )∗(1−exp(−B/(2∗CtOfˆ2) ) )∗(1−exp

(−C/(2∗CtOfˆ2) ) )∗(1−exp(−D/(2∗CtOfˆ2) ) ) ;
end

end

Notice that the distances considered are slightly different than the ones seen in
equation (5.4.2) due to the fact that matlab indexes matrices beginning at 1, not
at 0.

In Section 5.5 we saw how to filter an image that had been degraded by a linear
and translation-invariant transformation whose corresponding filter H (following the
notation introduced then) can be modelled. In order to perform such filtering, we
designed a function, BlurRed, that follows the strategy shown in equation (5.5.4).
The inputs are the noisy picture, the shifted model H and the cut-off value for the
patch function.

function BlurRed (NoisyIm , HShift , CtOf )
i f i s c h a r ( NoisyIm )==1

NoisyIm=imread (NoisyIm ) ;
end
NoisyIm=im2double ( NoisyIm ) ;
i f s ize (NoisyIm , 3 ) ˜=1

NoisyIm=rgb2gray (NoisyIm ) ;
end
M=s ize (NoisyIm , 1 ) ;
N=s ize (NoisyIm , 2 ) ;

Patch=zeros (M,N) ;
for p=1:M

for q=1:N
Patch (p , q )=exp(−norm ( [ p−M/2 q−N/2 ] , 2 ) ˆ2/(2∗CtOfˆ2) ) ;

end
end

FourSpec=f f t2 ( NoisyIm ) /sqrt (M∗N) ;
Recovered=sqrt (M∗N) ∗ real ( i f f t 2 ( i f f t s h i f t ( Patch .∗ f f t s h i f t ( FourSpec ) . /

HShi ft ) ) ) ;
imshow ( Recovered )

end

The examples that we worked on consisted in images degraded due to atmospheric
turbulence. Therefore, according to equation (5.5.5), the second input of the func-
tion had to be

k=0.0025;
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HShift=zeros (M,N) ;
for p=1:M

for q=1:N
HShift (p , q )=exp(−k ∗ ( ( p−M/2)ˆ2+(q−N/2) ˆ2) ˆ(5/6) ) ;

end
end

In fact, the noisy image was obtained by applying H to the Fourier Transform of
the original image and then computing its Inverse Fourier Transform. That is

FourIm=f f t2 (Im) /sqrt (M∗N) ;
NoisyIm=sqrt (M∗N) ∗ real ( i f f t 2 ( i f f t s h i f t ( f f t s h i f t (FourIm) .∗ HShift ) ) ) ;

where Im is the original image and HShift is the filter defined above. Finally, as
discussed in the section itself, the cut-off chosen for Figure 5.11 (a) was 125 whereas
for Figure 5.11 (b) the patch was a constant matrix with all its components equal
to 1. Therefore, in order to filter the latter we can execute the function taking a
large enough cut-off or we can modify it by suppressing the Patch.

Finally, in Section 5.6 we gave an algorithm for reconstructing an image with
missing pixels. In order to implement it, we designed a function, Reconstruction,
that removes s pixels (uniformly distributed) of a given image and then reconstructs
it. Since, as already mentioned in Section 5.6, the recovery is carried out in each
of the 8× 8 blocks that composes the picture, we defined another function which is
called by the first one, BlckRecons, that adds noise and restores each of the blocks.
The notation for the parameters is the one introduced in the already mentioned
section.

function Reconstruct ion (Im , s , i t e r , h 0 , mu 0 , alpha , beta )
Im=imread (Im) ;
i f s ize (Im , 3 ) ˜=1

Im=rgb2gray (Im) ;
end
Im=im2double (Im) ;
M=s ize (Im , 1 ) ;
N=s ize (Im , 2 ) ;

i f f loor (M/8)==M/8
auxM=M/8 ;

else
auxM=f loor (M/8)+1;

end
i f f loor (N/8)==N/8

auxN=N/8 ;
else

auxN=f loor (N/8)+1;
end

ImExt=[Im Im ; Im Im ] ;
Blocks=c e l l (auxM, auxN) ;
BlocksRec=c e l l (auxM, auxN) ;
BlocksNoisy=c e l l (auxM, auxN) ;
for i =1:auxM
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for j =1:auxN
Blocks { i , j}=ImExt (8∗ ( i −1)+1:8∗( i −1)+1+7,8∗( j−1)+1:8∗( j−1)+1+7) ;
[ BlocksNoisy { i , j } , BlocksRec{ i , j }]=BlckRecons ( Blocks { i , j } , s , i t e r

, h 0 , mu 0 , alpha , beta ) ;
end

end

NoisyIm=ce l l 2mat ( BlocksNoisy ) ;
RecIm=ce l l 2mat ( BlocksRec ) ;
NoisyIm=NoisyIm ( 1 :M, 1 :N) ;
RecIm=RecIm ( 1 :M, 1 :N) ;

subplot ( 1 , 2 , 1 ) ; imshow (NoisyIm ) , t i t l e ( ’ Degraded ’ )
subplot ( 1 , 2 , 2 ) ; imshow (RecIm) , t i t l e ( ’ Reconstructed ’ )
end

where

function [ BlVis , y]=BlckRecons ( Block , s , i t e r , h 0 , mu 0 , alpha , beta )
M=8;
N=8;
Rows=f loor (1+(M−1)∗rand (1 , s ) ) ;
Colms=f loor (1+(N−1)∗rand (1 , s ) ) ;
NoisyBl=Block ;
BlVis=Block ;
for i =1: s

NoisyBl (Rows( i ) ,Colms ( i ) )=0;
BlVis (Rows( i ) ,Colms ( i ) )=1;

end

%Gradient descent a l gor i thm
y=NoisyBl ;
mu=mu 0 ;
for t=1: i t e r

Grad=zeros (M,N) ;
for i =1: s

a=Rows( i ) ;
b=Colms ( i ) ;
Aux=zeros (M,N) ;
Aux(a , b)=h 0 ;
X pos=f f t2 ( y+Aux) /sqrt (M∗N) ;
X neg=f f t2 (y−Aux) /sqrt (M∗N) ;
Grad (a , b)=1/(2∗h 0 ) ∗(sum(sum(abs ( X pos ) ) )−sum(sum(abs ( X neg

) ) ) ) ;
end
y=y−mu∗Grad ;

h 0=h 0/alpha ;
mu=mu/beta ;

end
end

Notice that the given image is extended periodically. Finally, we implemented a
function, QuadRec, that adds a square of size quad × quad to a given image in a
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random location and uses the gradient descent algorithm to restore it.

function QuadRec(Im , i t e r , h 0 , mu 0 , alpha , beta ,quad)
Im=imread (Im) ;
i f s ize (Im , 3 ) ˜=1

Im=rgb2gray (Im) ;
end
Im=im2double (Im) ;
M=s ize (Im , 1 ) ;
N=s ize (Im , 2 ) ;

Rows=f loor (1+(M−quad+1)∗rand ) ;
Colms=f loor (1+(N−quad+1)∗rand ) ;
NoisyIm=Im ;
ImVis=Im ;
NoisyIm (Rows :Rows+quad , Colms : Colms+quad)=0;
ImVis (Rows : Rows+quad , Colms : Colms+quad)=1;

%Gradient descent a l gor i thm
y=NoisyIm ;
mu=mu 0 ;

for t=1: i t e r
Grad=zeros (M,N) ;

for i=Rows :Rows+quad
for j=Colms : Colms+quad
a=i ;
b=j ;
Aux=zeros (M,N) ;
Aux(a , b)=h 0 ;
X pos=f f t2 ( y+Aux) /sqrt (M∗N) ;
X neg=f f t2 (y−Aux) /sqrt (M∗N) ;
Grad (a , b)=1/(2∗h 0 ) ∗(sum(sum(abs ( X pos ) ) )−sum(sum(abs ( X neg

) ) ) ) ;
end

end
y=y−mu∗Grad ;
h 0=h 0/alpha ;
mu=mu/beta ;

end
subplot ( 1 , 2 , 1 ) ; imshow ( ImVis ) , t i t l e ( ’ Degraded ’ )
subplot ( 1 , 2 , 2 ) ; imshow (y ) , t i t l e ( ’ Reconstructed ’ )
end
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[7] I. Stanković, Recovery of Images with Missing Pixels using a Gradient Com-
pressive Sensing Algorithm, (2014), https://arxiv.org/abs/1407.3695.

[8] J. S. Walker, Fast Fourier Transforms, CRC Press, 1996.

91

https://arxiv.org/abs/1407.3695

	Introduction
	Discrete Fourier Transform
	Fundamentals of the Discrete Fourier Transform
	The Discrete Fourier Transform as a change of basis
	Fourier coefficients and frequencies

	Fast Fourier Transform
	The Fast Fourier Transform algorithm
	Vector of size a power of 2
	Vector of even size but not a power of 2
	Padding of an even sized vector

	Extension of the Fast Fourier Transform
	Extension of the Fast Fourier Transform algorithm
	Vector of odd size but not prime (extended algorithm)
	Vector of even size but not a power of 2 (mixed algorithm)
	Padding
	Vector of prime size
	Vector of odd size but not prime
	Vector of even size but not a power of two

	General procedure to compute the Fourier Transform (summary)

	Digital image processing
	Introduction to image processing
	Filtering
	Edge detection
	Periodic noise reduction
	Blur reduction
	Image reconstruction

	Appendix
	Bibliography

