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Introduction

The interest in Fourier and Wavelets Transforms is because Harmonic Analysis is

very useful in signal processing nowadays. Signal compression, de-noising, recogni-

tion are some examples of its range. In Mathematics, we know its development in

continuous (R) and discrete time (Z), but here we will deal only with the discrete

part. All the signals will be treated like vectors and matrices. We will not only deal

with Harmonic Analysis, but also with other fields in signal processing like Morpho-

logical operations and Image filtering. All these topics have a theoretical part based

on rigorous mathematical theories, that will be explained in detail. But our goal is

to go further by implementing, on a computer, the most important techniques and

algorithms used to develop in practice these methods.

In first and second chapter, Discrete Fourier Transform and Fast Fourier

Transform respectively, we will prove why is used the fast algorithm to compute

the Fourier transform. The fact is that, if we compute the discrete transform, the

time required is of the order of N2, where N is the length of the signal; but if we

compute the fast algorithm, the time spend in it will be of N logN . For example, if

we spent 100s to compute the Discrete Fourier Transform, we will spend 33s in the

Fast Fourier Transform.

Morphological operations are used to determine features of the analysed ob-

jects, their form, their neighborhood. In the chapter of Intensity Images and Filter-

ing we will work in the space domain and in the frequency domain, because in this

moment we will have the necessary tools to compute the Fourier transform.

In each chapter there is a section of Matlab Implementation. All the functions

1

comes from the fact that























In the first and second chapters

why the fast algorithm is used

spent will be of the order of Nlog N operations, which is a very big im provement.

need

only require

¿Puedes poner 10000 ms y unos 600 ms para que se vea mejor la reducción?

neighborhood, etc.

taking the advantage that we will already have

El capítulo 3 no se llama Intensity Images and Filtering y no has dicho nada de los capítulos 4, 5 y 6.



2 CONTENTS

and GUI’s (Graphical user interface’s) have been implemented with the program

Matlab (Matrix Laboratory). The IDE (Integrated development environment) used

in the project has been Microsoft Visual C++ 2008 Express Edition and Matlab

R2009b. The languages supported are C/C++ and Matlab, its own language, re-

spectively.

Matlab has a compile library in C++ to compute the Fast Fourier Transform,

so for this reason, we use Microsoft Visual. First, the code is implemented in C++

with the libraries OpenCV (Open Computer Vision) and the header of Matlab,

mex.h. Then a mex file is created from Matlab to make the code works on it. This

new file works like another function in the program. The code of each function is

at the end of its corresponding chapter to clarify its development. The GUI’s code

has not been included since it is to large, around 200 lines of code for each one.

each one, and there are a total of XXX programs.





Chapter 1

The Discrete Fourier Transform

In this chapter we will introduce and deal with the discrete Fourier transform. First,

we will introduce the notation, definitions and properties, followed by its matrix

representation, its code implementation in one and two dimensions, and finally some

examples of the implemented algorithms.

1.1 Properties of the Discrete Fourier Transform

Notation 1.1. In the discrete case we work with CN vectors, sequences of N complex

numbers. See [1].

1. Now we consider z as a function defined in the finite set ZN = {0, ..., N − 1} .
We will write the z’s components in this way z = (z (0) , ..., z (N − 1)) .

2. For the finite dimensional case we introduce the vector space over C

�2 (ZN) = {z | z (j) ∈ C , 0 ≤ j ≤ N − 1} .

Note that the Euclidean basis is an orthogonal basis of this space.

3. Inner product

�z, w� =
N−1�

k=0

z (k)w (k).

3



4 1 . The Discrete Fourier Transform

4. �2 (ZN)−norm

�z� =

�
N−1�

k=0

|z (k)|2
�1/2

.

5. We can extend the sequence of z to any j ∈ Z assuming that z is periodic with

period N :

z (j +N) = z (j) , for all j ∈ Z.

The definition and lemma below are necessary for introducing the Discrete

Fourier Transform (DFT ).

Definition 1.2. Define E0, ..., EN−1 ∈ �2 (ZN) by

(1.1) Em (n) =
1√
N
e2πimn/N , 0 ≤ m,n ≤ N − 1.

Lemma 1.3. The set {E0, ..., EN−1} is an orthonormal basis of �2 (ZN).

Proof. Suppose m,m� ∈ {0, ..., N − 1}. Then

�Em, Em�� =
N−1�

n=0

Em(n)Em�(n) =
N−1�

n=0

1√
N
e2πimn/N 1√

N
e−2πim�n/N

=
1

N

N−1�

n=0

e2πi(m−m�)n/N .

If m = m�

�Em, Em� =
1

N

N−1�

n=0

e2πi(m−m)n/N =
1

N

N−1�

n=0

1 = 1.

If m �= m�

�Em, Em�� = 1

N

N−1�

n=0

e2πi(m−m�)n/N =
1

N

N−1�

n=0

�
e2πi(m−m�)/N

�n

=
1

N

�
e2πi(m−m�)/N

�N−1
e2πi(m−m�)/N − 1

e2πi(m−m�)/N − 1
=

1

N

e2πi(m−m�) − 1

e2πi(m−m�)/N − 1
= 0.
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Since {E0, ..., EN−1} is an orthonormal basis for �2 (ZN), we have for all z, w ∈
�2 (ZN) the following properties:

(1.2) z =
N−1�

m=0

�z, Em�Em

(1.3) �z, w� =
N−1�

m=0

�z, Em� �w,Em�

(1.4) �z�2 =
N−1�

m=0

|�z, Em�|2

where

(1.5) �z, Em� =
N−1�

m=0

z (n)
1√
N
e2πimn/N =

1√
N

N−1�

m=0

z (n) e−2πimn/N

Definition 1.4. Suppose z = (z (0) , ..., z (N − 1)) ∈ �2 (ZN). For m = 0, ..., N − 1

define

(1.6) ẑ (m) =
N−1�

n=0

z (n) e−2πimn/N .

Let

(1.7) ẑ = (ẑ (0) , ..., ẑ (N − 1)) .

Then ẑ ∈ �2 (ZN) and the map z −→ ẑ is called the discrete Fourier transform

DFT .

Remark 1.5. It is easy to see that the map

�2 (ZN) −̂→�2 (ZN)

z �−→ ẑ

is a linear transformation.
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We observe that ẑ is also an N -periodic vector:

ẑ (m+N) =
N−1�

n=0

z (n) e−2πi(m+N)n/N =
N−1�

n=0

z (n) e−2πimn/Ne−2πiNn/N = ẑ (m) .

Note that

(1.8) ẑ (m) =
√
N �z, Em� .

Theorem 1.6. Let z = (z (0) , ..., z (N − 1)), w = (w (0) , ..., w (N − 1)) ∈ �2 (ZN).

Then

1. Fourier inversion formula:

(1.9) z (n) =
1

N

N−1�

m=0

ẑ (m) e2πimn/N , for n = 0, ..., N − 1.

2. Parseval’s relation:

(1.10) �z, w� = 1

N

N−1�

m=0

ẑŵ =
1

N
�ẑ, ŵ� .

3. Plancherel’s formula:

(1.11) �z�2 = 1

N

N−1�

m=0

|ẑ (m)|2 = 1

N
�ẑ�2 .

Proof.

1.

z (n) =
N−1�

m=0

�z, Em�Em (n) =
N−1�

m=0

1√
N
ẑ (m)

1√
N
e2πimn/N =

1

N

N−1�

m=0

ẑ (m) e2πimn/N .

2.

�z, w� =
N−1�

m=0

�z, Em� �w,Em� =
N−1�

m=0

1√
N
ẑ (m)

1√
N
ŵ (m) =

1

N

N−1�

m=0

ẑ (m) ŵ (m).
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3.

�z�2 =
N−1�

m=0

|�z, Em�|2 =
1

N

N−1�

m=0

|ẑ (m)|2 .

Remark 1.7.

1. We call {E0, ..., EN−1} the Fourier basis for �2 (ZN).

2. The vector representing z with respect to the Fourier basis is ẑ.

3. The Fourier inversion formula in the above theorem is the change of basis

formula for the Fourier basis.

4. The DFT components ẑ (m) are the components of z in the Fourier basis.

Definition 1.8. The convolution of z, w ∈ �2 (ZN) is defined as

(1.12) (z ∗ w)(n) =
N−1�

l=0

z(l) · w(n− l), n = 0, ..., N − 1.

Theorem 1.9. Suppose z, w ∈ �2 (ZN). Then,

(1.13) (z ∗ w)∧(n) = ẑ(n) · ŵ(n), n = 0, ..., N − 1.

Proof.

(z ∗ w)∧(n) =
N−1�

m=0

�
N−1�

l=0

z(l) · w(m− l)

�
e−2πimn/N

=
N−1�

l=0

z(l)

�
N−1�

m=0

w(m− l) · e−2πi(m−l)n/N

�
e−2πiln/N

=

�
N−1�

l=0

z(l) · e−2πiln/N

��
N−1�

m=0

w(m) · e−2πimn/N

�

= ẑ(n) · ŵ(n).
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1.1.1 Matrix representation of DFT

Notation 1.10.

- ωN = e−2πi/N .

- ωmn
N = e−2πimn/N .

- ẑ (m) =
�N−1

m=0 z (n)ω
mn
N

Definition 1.11. Let WN be the matrix (wmn)0≤m,n≤N−1 such that wmn = ωmn
N





1 1 . . . 1

1 ωN . . . ωN−1
N

...
...

. . .
...

1 ωN−1
N . . . ω(N−1)(N−1)

N





Regarding z, ẑ ∈ �2 (ZN) as column vectors, we can write

ẑ = WN · z

Signal processing deals with images, sounds and others, so we will refer to

images and sounds like signals.

Definition 1.12. Let us consider a signal f of size M × N . We define the 2D

Discrete Fourier Transform

(1.14) f̂(u, v) =
M−1�

j=0

N−1�

k=0

f(j, k)e−2πi(uj/M+vk/N),

where u = 0, ...,M − 1 and v = 0, ..., N − 1.
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1.2 DFT Matlab implementation

Implementation of DFT using the W’s matrix.

Code
function Z = DFT_mat(z)

N = length(z);

W = ones(N);

w = exp(-2*pi*i/N);

% Auxiliar array&matrix %

x = 1:N-1;

mat = zeros(N-1);

for k=1:N-1

mat(k,:) = x.*k;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%

% %% Matrix of w’s %%

W(2:end,2:end) = w.^(mat);

%% Check if z is a column vector %%

[r,c] = size(z);

if c == N

Z = W*z’;

else

Z = W*z;

end
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Implementation of DFT using the definition of the map

ẑ (m) =
N−1�

n=0

z (n) e−2πimn/N

Code
function Z=DFT(z)

N = length(z);

Z = zeros(1,N);

for m=1:N

for n=1:N

Z(m) = Z(m) + z(n)*exp(-2*pi*i*((m-1)*(n-1)/N));

end

end

2D DFT Matlab implementation.

Code
function F=DFT2(signal)

[r,c] = size(signal);

F = zeros(r,c);

for u=1:r

for v=1:c

for j=1:r

for k=1:c

F(u,v) = F(u,v) + signal(j,k)*exp(-2*pi*i*((v-1)*(k-1)/c)

+ (j-1)*(u-1)/r);

end

end



1.3. Examples 11

end

end

1.3 Examples

Definition 1.13. The spectrum of the Fourier Transform of a signal is its absolute

values.

Let us consider,

1. z0 = (1, 0,−3, 4) ∈ �2 (Z4),

(a) z0 (b) Spectrum of ẑ0

Figure 1.1: DFT of z0 = (1, 0,−3, 4)

2. z1 = cos (2π15n/16) ∈ �2 (Z16),

(a) z1 (b) Spectrum of ẑ1

Figure 1.2: DFT of z1(n) = cos (2π15n/16)
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3. z2 = sin (πn2/256) ∈ �2 (Z128),

(a) z2 (b) Spectrum of ẑ2

Figure 1.3: DFT of z2(n) = sin (πn2/256)

4. z3(n) = 3 sin (2π7n/512)− 4 cos (2π8n/512) ∈ �2 (Z512).

(a) z3 (b) Spectrum of ẑ3

Figure 1.4: DFT of z3(n) = 3 sin (2π7n/512)− 4 cos (2π8n/512)

The following table represents the time (seconds) spent in processing the sig-

nals above. The first column DFTmat and the second column DFT represent the

algorithms 1.1.1 and 1.6 respectively.

Length DFTmat (s) DFT (s)

4 1.5142 · 10−4 9.1352 · 10−5

16 6.8640 · 10−4 4.1234 · 10−4

128 0.0654 0.0179

512 0.6629 0.1993

1024 2.8469 0.6662
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Figure 1.5 represents the graph of time varying the length of the signals. It can be

observe that the algorithm that uses the matrix to calculate the Fourier Transform

is slower than the one that applies the definition directly.

Figure 1.5: Time comparison





Chapter 2

The Fast Fourier Transform

In this chapter we will introduce the Fast Fourier Transform to compute Fourier

definition explained above, to improve the execution time in computers.

2.1 Description of FFT

The DFT can be computed by a fast algorithm, known as the fast Fourier trans-

form (FFT). We will see the efficiency of FFT by comparing the number of complex

multiplications in each algorithm, DFT vs FFT. We do not make reference to the

number of complex additions because complex multiplications have slowly time com-

putation. We have ẑ = WN · z, where the matrix WN has dimensions N × N , and

hence the number of complex multiplications is N2. See [3].

We consider only the case in which the length N of the vector is even, and in

particular a power of 2. The lemma below shows the basic idea behind the FFT .

Lemma 2.1. Suppose M ∈ N, and N = 2M . Let z ∈ �2 (ZN). Define u, v ∈ �2 (ZM)

by

u (k) = z (2k) for k = 0, ...,M − 1,

v (k) = z (2k + 1) for k = 0, ...,M − 1.

15
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In other words,

u = (z (0) , z (2) , ..., z (N − 4) , z (N − 2)) ,

v = (z (1) , z (3) , ..., z (N − 3) , z (N − 1)) .

Let ẑ denote the DFT of z, given by ẑ = WNz. Let û and v̂ denote the DFTs

of u and v respectively, defined for M = N/2, û = WM · u, v̂ = WM · v. Then, for

m = 0, ...,M − 1,

(2.1) ẑ (m) = û (m) + e−2πim/N v̂ (m) ;

and for m = M, ..., N − 1 and l = m−M , we have

(2.2) ẑ (l +M) = û (l)− e−2πil/N v̂ (l) .

Proof. For any m = 0, ..., N − 1

ẑ (m) =
N−1�

n=0

z (n) e−2πimn/N .

The sum over n = 0, ..., N−1 can be broken into the sum over the even values n = 2k,

k = 0, ...,M − 1 plus the sum over the odd values n = 2k + 1, k = 0, ...,M − 1:

ẑ (m) =
M−1�

k=0

z (2k) e−2πi2km/N +
M−1�

k=0

z (2k + 1) e−2πi(2k+1)m/N

=
M−1�

k=0

u (k) e−2πikm/(N/2) + e−2πim/N
M−1�

k=0

v (k) e−2πikm/(N/2)

=
M−1�

k=0

u (k) e−2πikm/M + e−2πim/N
M−1�

k=0

v (k) e−2πikm/M .(2.3)

In the case of m = 0, ...,M − 1 we obtain

û (m) + e−2πim/N v̂ (m) .

Suppose m = M, ..., N − 1 and l = m−M , so that l = 0, ..,M − 1. By writing
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m = l +M in the expression 2.3 we get

ẑ (m) =
M−1�

k=0

u (k) e−2πik(l+M)/M + e−2πi(l+M)/N
M−1�

k=0

v (k) e−2πik(l+M)/M

=
M−1�

k=0

u (k) e−2πikl/M − e−2πil/N
M−1�

k=0

v (k) e−2πikl/M ,

since e−2πiM/N = e−2πi(N/2)/N = e−πi = −1. Then, in the case m = M, ..., N − 1

û (m)− e−2πim/N v̂ (m) .

2.2 FFT algorithm: Decimation in Time, Radix2

We will assume that N is a power of 2, N = 2n, with n ∈ Z+, Walker [3]. By the

Lemma 2.1 we write

ẑ (m) = û (m) + ωm
N · v̂ (m) , m = 0, ...,M − 1,

ẑ (m) = û (m)− ωm
N · v̂ (m) , m = M, ..., N − 1,

where ωm
N = e−2πim/N . These calculations can be plotted as

û(m)

v̂(m)

ẑ(m) = û(m) + ωm
N v̂(m)

ẑ(m+M) = û(m)− ωm
N v̂(m), m = 0, ...,M − 1❥

✯

Figure 2.1: Butterfly diagram.

To apply equations (2.1) and (2.2), we first compute û and v̂. Each of these is

a vector of length M = N/2, so each can be computed with M2 complex multipli-

cations.
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Then we compute the products ωm
N · v̂ (m), m = 0, ...,M − 1. This requires M

multiplications. So the total number of complex multiplications required to compute

ẑ is at most

2M2 +M = 2

�
N

2

�2

+
N

2
=

1

2

�
N2 +N

�
.

For N large, this is essentially N2/2, whereas N2 multiplications are required to

compute ẑ directly.

Notation 2.2. We define #N as the least number of complex multiplications required

to compute the DFT of a vector of length N ∈ Z+.

If N = 2M , then equations (2.1) and (2.2) reduce the computation of ẑ to the

computation of two DFTs of size M , plus M additional complex multiplications

(2.4) #N ≤ 2#M +M.

Lemma 2.3. Suppose N = 2n for some n ∈ N. Then,

#N ≤ 1

2
N log2 N.

Proof. By induction on n:

Let n = 1. In this case we have a vector of length 21, z = (z1, z2). Then,

ẑ = W2z =

�
1 1

1 ω2

��
z1

z2

�
=

�
z1 + z1

z1 − z2

�
,

where ω2 = e−πi.

This computation does not require any complex multiplication, so

#2 = 0 < 1 =
1

2
2 log2 2.

By induction, assume it holds for n− 1. Then,

#2n ≤����
(2.4)

2#2n−1 + 2n−1 ≤ 2

�
1

2
2n−1 log2 2

n−1

�
+ 2n−1

= 2n−1 (n− 1) + 2n−1 = n2n−1 =
1

2
n2n =

1

2
n log2 n.
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Example 2.4. Let us consider a vector of length N = 23.

û(0)

û(1)

û(3)

û(2)

v̂(0)

v̂(1)

v̂(2)

v̂(3)

✲

✲

✲

✲

✲

✲

✲

✲✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓✓✼

✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓✓✼

✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓✓✼

✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓✓✼

❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙❙✇

❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙❙✇

❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙❙✇

❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙❙✇

û(0) + v̂(0)

û(1) + ωN v̂(1)

û(2) + ω2
N v̂(2)

û(3) + ω3
N v̂(3)

û(0)− v̂(0)

û(1)− ωN v̂(1)

û(2)− ω2
N v̂(2)

û(3)− ω3
N v̂(3)

Figure 2.2: First reduction in FFT algorithm for N = 8.
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We can split û and v̂ into two DFT half-size of the original vector and so on.

In this example we will consider the vector z = (1, 2, 0, i, 1,−1, 3,−i). The length of

the vector is 8 = 23. This means that we can split û and v̂ three times to obtain the

DFT of vectors of length 1. Figure 2.3 shows the three splits to calculate its FFT.

1 2 0 i 1 −1 3 −i

1 1 3 20 −1 −ii

1 01 3 2 −1 i −i

1 1 0 3 2 −1 i −i ✛

Bit reversed

1

1

0

3

2

−1

i

−i

✯

✯

✯

✯

❥

❥

❥

❥

2

0

3

−3

1

3

0

2i

�

�

�

�

✸

✸

✸

✸

5

3i

−1

−3i

1

5

1

1

ω0
8 ω0

8,ω
2
8

⑦

⑦

⑦

⑦

❃

❃

❃

❃

6

5
√
2

2 + 3i−5
√
2i

2

−1− i

−
√
2
2 − 3i+

√
2i

2

4

−5
√
2

2 + 3i+5
√
2i

2

−1 + i

√
2
2 − 3i−

√
2i

2

ω0
8,ω

1
8,ω

2
8,ω

3
8

Figure 2.3: FFT for N = 8.

Example 2.5. Let us consider the same data of the Section 1.3. In the table 2.1

we compare the times spent in the DFT and FFT algorithms.
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Length DFTmat (s) DFT (s) fft (s)

4 6.4813 · 10−5 3.9111 · 10−5 2.6260 · 10−5

16 1.5477 · 10−4 1.0392 · 10−4 2.7657 · 10−5

128 0.0103 0.0042 3.4083 · 10−5

512 0.1286 0.0648 4.9168 · 10−5

Table 2.1: Comparison between DFT and FFT times.

Figure 2.4 represents the time spent in the differents algoritms: DFTmat, DFT

and FFT. We represent only the FFT inside a graph because its values cannot be

seen in the first graph.

(a) DFTmat, DFT and FFT time graph (b) FFT time graph

Figure 2.4: Comparison of DFTmat, DFT and FFT algorithms
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2.3 Code implementation

2.3.1 FFT Matlab implementation

Auxiliar functions: padding1D and iterative twiddle.

Code
function l_pad = padding1D(n)

l_pad = 2;

while n>l_pad

l_pad = l_pad*2;

end

Code
function y = iterative_twiddle(x,N,w)

y = bitrevorder(x);

for i=1:log2(N)

d = pow2(i);

ktwiddle = 1;

for k=1:d/2

for m=k:d:N

t = w(ktwiddle)*y(m+d/2);

z = y(m);

y(m) = z + t;

y(m+d/2) = z - t;

end

ktwiddle = ktwiddle + pow2(log2(N)-i);
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end

end

Main function FFT iterative

Code
function FFT = FFT_iterative(signal)

N = length(signal);

%% Check N is a power of 2 %%

if isinteger(log2(N))

N_pad = N;

else

N_pad = padding1D(N);

end

w = twiddle(N_pad);

signal_pad = zeros(1,N_pad);

signal_pad(1:N) = signal;

FFT = iterative_twiddle(signal_pad,N_pad,w);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% EXECUTION

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% z = [1 1 1 i 1 -1 1 -i];

%% tic;FFT_iterative(z);t=toc

%% tic;fft(z);t=toc

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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2.3.2 2D FFT Matlab implementation

The main program uses the same auxiliary functions as the one dimensional.

Code
function fft_2 = FFT2_iterative(im)

[rows,cols] = size(im);

%% Check N is a power of 2 %%

if isinteger(log2(rows))

rows_pad = rows;

else

rows_pad = padding1D(rows);

end

if isinteger(log2(cols))

cols_pad = cols;

else

cols_pad = padding1D(cols);

end

%% Pad image %%

im_pad = zeros(rows_pad,cols_pad);

im_pad(1:rows,1:cols) = im;

wc = twiddle(cols_pad);

wr = twiddle(rows_pad);

for i=1:rows_pad

fft(i,:) = iterative_twiddle(im_pad(i,:),cols_pad,wc);

end

for j=1:cols_pad

fft_2(:,j) = iterative_twiddle(im_pad(:,j),rows_pad,wr);
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end

2.3.3 FFT C++ implementation

Twiddles function. In this function we calculate the ωN values, so we only have to

calculate the elements till N/2.

Code
void

FFT::Compute_TWIDDLES(int N)

{

for(int k = 0; k < N/2; k++)

twiddles[k] = polar(1.0, -2*pi*(k/(double)N));

}

Bit reversal function. This function reorders the vector. First, we compute

the positions of the vector in bits, and then we swap the bit string. For example,

the position 1 in the vector corresponds with the bit string 001, and it becomes the

bit string 100. It can be seen better in the Figure 2.3.

Code
void

FFT::BitReversal(Mat &mat,int p)

{
unsigned long x = mat.cols;

unsigned long h = 0;

int i = 0;

int k, k_aux;

complex<double> temp;
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int *v;

v = new int[mat.cols];

Mat m_aux = mat.clone();

for(k = x-1; k >= 0 ;k--){
k_aux = k;

for(h = i = 0; i < p; i++){
h = (h << 1) + (k_aux & 1);

k_aux >>= 1;

}
v[k] = h;

}
for(int i=0; i<mat.cols;i++)

mat.at<complex<double> >(0,i) =

m_aux.at<complex<double> >(0,v[i]);

delete[] v;

}

FFT function

Code
void

FFT::Compute_FFT()

{
complex<double> z(0.0,0.0), t(0.0,0.0);

int r = 0;

int d;

int ktwiddle = 0;

int p = 0;
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// Compute twiddle vector //

Compute_TWIDDLES(cols);

// Log2 of cols //

unsigned int cols_aux = cols;

while ( cols_aux >>= 1) // unroll for more speed...

{
r++;

}

// bitreversal //

BitReversal(FFT_fft,r);

for(int i=1; i <= r; i++){
d = 1 << i;

ktwiddle = 0;

for(int k = 0;k < d/2; k++){
for(int j = k; j < cols; j+=d){
t = (FFT_fft.at<complex<double> >(0,j + d/2)).operator

*=(twiddles[ktwiddle]);

z = FFT_fft.at<complex<double> >(0,j);

FFT_fft.at<complex<double> >(0,j) = z + t;

FFT_fft.at<complex<double> >(0,j + d/2) = z - t;

}
p = 1 << (r-i);

ktwiddle += p;

}
}

}
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2.3.4 2D FFT C++ implementation

The bit reversal function and twiddles function used in the code are the same as the

implemented in one dimension. See Section 2.3.3.

FFT2D function.

Code
void

FFT::Compute_FFT2D( )

{
/// FFT1D for all the rows ///

// Compute twiddle vector //

Compute_TWIDDLES(cols);

for(int i=0; i< rows; i++)

Compute_FFT1D_r(FFT_fft.row(i));

/// FFT1D for all the columns ///

// Compute twiddle vector //

Compute_TWIDDLES(rows);

for(int i=0; i< cols; i++)

Compute_FFT1D_c(FFT_fft.col(i));

}



2.3. Code implementation 29

1D FFT function for rows.

Code
void

FFT::Compute_FFT1D_r(Mat& fft_r )

{
complex<double> z(0.0,0.0), t(0.0,0.0);

int r = 0;

int d;

int ktwiddle = 0;

int p;

// Log2 of cols //

int cols_aux = cols;

while ( cols_aux >>= 1)

{
r++;

}

// bitreversal //

BitReversal_1xN(fft_r,r);

for(int i=1; i <= r; i++){
d = 1 << i;

ktwiddle = 0;

for(int k = 0;k < d/2; k++){
for(int j = k; j < cols; j+=d){

t = twiddles[ktwiddle]

*fft_r.at<complex<double> >(0,j + d/2);
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z = fft_r.at<complex<double> >(0,j);

fft_r.at<complex<double> >(0,j) = z + t;

fft_r.at<complex<double> >(0,j + d/2) = z - t;

}p = 1 << (r-i);

ktwiddle += p;

}
}

}

1D FFT function for columns.

Code
void

FFT::Compute_FFT1D_c(Mat& fft_c)

{
complex<double> z(0.0,0.0), t(0.0,0.0);

int r = 0;

int d;

int ktwiddle = 0;

int p;

// Log2 of rows //

int rows_aux = rows;

while ( rows_aux >>= 1)
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{
r++;

}

// bitreversal //

BitReversal_Nx1(fft_c,r);

for(int i=1; i <= r; i++){
d = 1 << i;

ktwiddle = 0;

for(int k = 0;k < d/2; k++){
for(int j = k; j < rows; j+=d){

t = twiddles[ktwiddle]

*fft_c.at<complex<double> >(j + d/2,0);

z = fft_c.at<complex<double> >(j,0);

fft_c.at<complex<double> >(j,0) = z + t;

fft_c.at<complex<double> >(j + d/2,0) = z - t;

}
p = 1 << (r-i);

ktwiddle += p;

}
}

}

2.3.5 GUI for FFT2D

A graphical User Interface (GUI ) has been implemented to improve the execution.

In this section we explain how to run this GUI to compute the 2-dimensional FFT

for an image.
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Figure 2.5: Two dimensional FFT GUI.

We can see in Figure 2.5 the diferent parts of the GUI:

- Input Image,

If you press SELECT IMAGE,

then a file dialog will appear

where you can choose the input

image to be processed.
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- Transforms,

We can compute the Matlab

FFT and our algorithm. The

button FFTSHIFT is used to

centrate the result, and then you

can see the simetry of the FFT.

- Plot,

There are four different plots.

The real part, the imaginary

part, the phase, which represent

the angle, and the default plot

logarithm of the spectrum.

- Time.

Display the time spent in each

algoritm in seconds.

They appear after the images are

plotted.

Example 2.6. In Figure 2.6 we compute the FFT of a RGB image and in Figure 2.7

we compute the FFT of a gray image, the size of the images is 512 × 512. In both

results we plot the shifted spectrum of them.

We can also see the time spent in Matlab and in our algorithm.
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Figure 2.6: Lena.png.

Figure 2.7: Mandril.png.



Chapter 3

Intensity Transformations and

Filtering

Spatial domain techniques operate directly on the pixels of an image. Given an

image of dimensions M ×N we have

I2(x, y) = T [I1(x, y)], (x, y) ∈ M ×N,

where I1 is the input image, I2 is the output image and T is the transformation on

I1.

Definition 3.1. A spatial neighborhood about a point (x, y) is a square or a rectan-

gular region centered at (x, y).

Then, the operator T is applied in each location of the image in the neighbor-

hood selected, to perform the output value of I2(x, y). See [2].

3.1 Intensity Transformations

The simplest form of the transformation T is when the size of the neighborhood is

1× 1, and is called intensity transformation of the image, because the output value

depends only on the value of the input.

35
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1. Adjust image function.

This function changes the input range of values of the image by a specified

range.

T [I(x, y)] =






low out if I(x, y) < low in

low out+ (I(x, y)− low in)high out−low out
high in−low in if I(x, y) ∈ C

high out if I(x, y) > high in

where C = [low in, highin].

Here is the implementation of such transformation.

Code
function out_image = adimage(I,range_in, range_out,gamma)

%%%%%%%%% INPUTS %%%%%%%%%%%%%%%%%%%%

disp(nargchk(1, 4, nargin));

if nargin == 1

gamma = 1;

range_in = [min(min(I)) max(max(I))];

range_out = [0 1];

elseif nargin == 3

gamma = 1;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[rows, cols, ch] = size(I);

% Check that the ranges are not empty

if isempty(range_in)

range_in = [0 1];

end

if isempty(range_out)

range_out = [0 1];

end

low_in = range_in(1);
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high_in = range_in(2);

low_out = range_out(1);

high_out = range_out(2);

%%%%% Transform %%%%%

%% All the c_i are auxiliar matrix %%

c1 = (I <= low_in);

c2 = (I >= high_in);

c3 = c1|c2;

c4 = ( low_in < I < high_in);

out = (I-low_in).*((high_out-low_out)/(high_in-low_in)) + low_out;

c5 = c4.*out;

c6 = ~c3;

out_image = c6.*out + c1.*low_out + c2.*high_out;

out_image = out_image.^gamma;

figure;

subplot(1,2,1);imshow(I);title(’Original image’);

subplot(1,2,2);imshow(out_image);title(’Adjust image’);

Example 3.2. Execution of the program with differents ranges and images.

(a) In Figure 3.1 if we get all the possible intensity values as input range and

transform it to a smaller one, then the output image has less contrast and

the gray values are very similar.

(b) In Figure 3.2 the output range is reversed, so we obtain its corresponding

negative image.

(c) In Figure 3.3 the contrast of the output image is achieved by selecting the

intermediate intensity values and arranging them to [0 , 1].
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Figure 3.1: Input range: [0 1] & output range: [.3 .7].

Figure 3.2: Input range: [0 1] & output range: [.7 .3].

Figure 3.3: Input range: [.3 .7] & output range: [0 1].
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2. Logarithmic transformation.

It is defined by

T [I(x, y)] = c · log(1 + double(I(x, y))),

where double(I(x, y)) ∈ [0, 1].

The application of this transform is basically compression of the ranges. For

example, it applies when we have to represent the spectrum of the Fourier

Transform, whose values are usually high.

Here is the implementation of such transformation.

Code
function out = logarithmic(I,c)

disp(nargchk(1, 2, nargin));

if nargin==1

c = 1;

end

out = c.*(1 + log(I));

figure;

subplot(1,2,1);imshow(I);title(’Original image’);

subplot(1,2,2);imshow(out);title(’Logarithmic image’);

Example 3.3. Suppose we want to plot the result of the Fast Fourier Trans-

form of an image. The output is a complex image, and we will represent the

absolute value of it. The problem is that there are high values that are not

represented because of the range. Then, the logarithmic transform achieves to

represent in the plot those high values.
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(a) Image moon.tif. (b) abs(FFT(I)). (c) log (1 + abs (FFT ))

Figure 3.4: Logarithmic transformation.

3. Contrast stretching transformation.

It compresses the inputs levels lower than m into a narrow range of dark levels

in the output image; and it compresses the values above m into narrow band

of light levels in the output. The function for differents inputs of m and E can

be seen in Figure 3.6.

(a) m = 127 E = 20 (b) m = 127 E = 5 (c) m = 50 E = 30

Figure 3.5: Constract stretching function

It is defined by means of the transformation:

T [I(x, y)] =
1

1 + (m/I(x, y))E
,

where E controls the slope of the function. Here is the implementation of such

transformation.
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Code
function out=contrast_stretching(I,m,E)

disp(nargchk(1, 3, nargin));

if nargin == 1

m = (max(max(I))-min(min(I)))/2;

E = 20;

end

out = 1./(1 + (m./I).^E);

figure;

subplot(1,2,1);imshow(I);title(’Original image’);

subplot(1,2,2);imshow(out);title(’Contrast&Stretching image’);

Example 3.4. In the example below, we apply the transform to the image

estatua.jpg. The values of m ∈ [0, 1] because this image takes values in this

range.

(a) m = .5 E = 20 (b) m = .5 E = 5 (c) m = .8 E = 20

Figure 3.6: Constract stretching transformation
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3.1.1 Histogram and Equalization

Histograms are used in image processing for enhancement, compression, segmenta-

tion, etc. The histogram h computes how many times an intensity value is repeated:

h(rk) = nk.

where rk is the k intensity value and nk is its corresponding absolute frequency.

When we calculate the histogram of an image it is necessary to specify how

many bins (adjacent rectangles over discrete intervals) will be used; by default, the

number of bins will be 256.

Equalization of the histogram is a transformation that generates an image

whose intensity levels are basically equal and then all intensity value range is covered.

There are many ways to compute the equalization and we will mostly consider the

following:

Define

pr(rk) =
nk

N
,

with N all the intensity values, as the probability density function (PDF). Then the

transformation is given by

sk =
k�

j=1

pr(rj),

which is called the cumulative distribution function (CDF).

Remark 3.5. In the process of histogram equalization, information data is lost. So

this transformation is useful for viewing the image better, but it is not convenient to

use the output image for image processing later.

The histogram function has been implemented for RGB, red-green-blue chan-

nels, color images, and gray-level images. Here is the code for each function and

histogram equalization.
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Histogram function of a gray-level image.

Code
function [h,x]=histdouble(I,bin)

disp(nargchk(1, 2, nargin));

if nargin == 1

bin = 256;

end

if isa(I,’double’)

A=1;

x = 0:1/255:1;

elseif isa(I,’uint8’)

A=255;

x = 0:255;

end

[rows cols] = size(I);

h = zeros(1,256);

for i=1:rows

for j=1:cols

p = floor(I(i,j).*((bin-1)/A) + 1.5);

if p>256

p=256;

end

h(p) = h(p) + 1;

end

end
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Histogram function of a RGB image.

Code
function [h x] = hist_rgb(I)

[rows cols ch] = size(I);

h = zeros(256,ch);

[h(:,1),x] = histdouble(I(:,:,1));

h(:,2) = histdouble(I(:,:,2));

h(:,3) = histdouble(I(:,:,3));

Image equalization.

Code
function [im_eq,h_eq,s,h1]=histogram_eq(I,h,n)

disp(nargchk(1, 3, nargin));

if nargin == 2

n = 256;

end

if isa(I,’double’)

A=1;

elseif isa(I,’uint8’)

A=255;

end

[rows cols] = size(I);

s = zeros(1,n);

for k=1:n

s(k) = sum(h(1:k));
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end

im_eq = (s(floor(I.*((n-1)/A)+1.5))-min(s))./(rows*cols-min(s));

h_eq = histdouble(im_eq);

h1 = zeros(1,n);

for k=1:n

h1(k) = sum(h_eq(1:k));

end

GUI of histogram equalization

In this section we explain how to run this GUI, enumerating its parts:

- Input Image.

- Histogram and equalization.

- Plot histograms.

- PDF and CDF plots.

- Equalize image.

If you press SELECT IMAGE,

then a file dialog will appear

where you can choose the input

image to be processed.
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Each button compute the

histogram and the equalized

histogram and plot them.

There are 3 different ways to

plot the histograms: with bars,

stems or with a simple plot. The

menu list of RGB-channel is only

for images of 3 channels, then

you can choose which one will be

plot.

Check the corresponding box to

plot the PDF and CDF defined

as above.

This button displays the

equalized image.

Example 3.6. Let us consider lena.png and estatua.jpg to show the image equal-

ization of images of different number of channels. In Figure 3.7 we compute it for

a gray-level image, and in Figure 3.8 we compute it for a color image.
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Figure 3.7: Histogram of a gray-level image.

Figure 3.8: Histogram of an RGB image.
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3.2 Filtering

3.2.1 Spatial Filter Domain

Definition 3.7. Given a neighborhood as defined in last section, we define linear

spatial filtering as the multiplication of each pixel in the neighborhood by a corre-

sponding coefficient and summing the results to obtain a new value at pixel (x, y).

The coefficients are arranged as a matrix called mask, filter, filter mask, kernel,

template or window. The most common are the first three. Figure 3.9 shows how

to process the mask filter accross the image.

❄

✲(0, 0) x

y

(x, y)

✲

Filter mask

Image

Figure 3.9: Filtering image

Definition 3.8. 1. Correlation is a process of passing the mask w by the image.

2. Convolution is a process of passing the mask w rotated 180
o
by the image.

Example 3.9. Consider a one dimensional signal f = 0 0 0 1 0 0 0 0 and a mask

w = 1 2 3 2 0.
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1. Correlation

First shift

1 2 3 2 0
0 0 0 1 0 0 0 0
❄

✻
Second shift

1 2 3 2 0
0 0 0 1 0 0 0 0

Fourth shift

1 2 3 2 0
0 0 0 1 0 0 0 0

✻

✻

❄

❄

Final position

1 2 3 2 0
0 0 0 1 0 0 0

✻

❄

Result 0 0 0 0 2 3 2 1 0

0

0 0 0

2. Convolution

First shift

0 2 3 2 1
0 0 0 1 0 0 0 0
❄

✻
Second shift

0 2 3 2 1
0 0 0 1 0 0 0 0

Fourth shift

0 2 3 2 1
0 0 0 1 0 0 0 0

✻

✻

❄

❄

Final position

0 2 3 2 1
0 0 0 1 0 0 0

✻

❄

Result 0 0 0 1 2 3 2 0

0

0 0 0 0

The mask is rotated 180
o 0 2 3 2 1
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3.2.2 Boundary options in the filter

We have to extend the image boundaries because when we apply the filter, we put

the filter center c in each pixel image. It can be seen in Figure 3.10.

PADDING: The boundaries are extended by the value p. In our case, the padding

is made with zeros.

REPLICATE: The size of the image is extended by replicating its values in the

borders.

REFLEXION: The size of the image is extended by symmetry followed by a mirror-

reflecting across its borders.

Filter mask

c

Image

Extended image

Figure 3.10: Image boundaries

3.2.3 Spatial filters

AVERAGE: A rectangular averaging filter of dimension r×c, where r is the number

of rows and c the number of columns.

DISK: A circular averaging filter of dimension (2r + 1) × (2r + 1), where r is the

radius.

GAUSSIAN: A Gaussian filter of size r × c and standard deviation σ ≥ 0.

LAPLACIAN: Laplacian filter of size 3× 3 and α ∈ [0, 1].

LOG: Laplacian of Gaussian (LoG) filter of size r× c and standard deviation σ ≥ 0.

PREWITT: Prewitt mask of size 3× 3 that approximates a vertical gradient.

SOBEL: Sobel mask of size 3× 3 that approximates an horitzontal gradient.
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In Figure 3.11 and 3.12 the Gaussian, Laplacian, LoG and Prewitt, Sobel

spatial filters are represented respectively.

Figure 3.11: Gaussian, Laplacian and LoG Filters.

Figure 3.12: Gradient Filters.

Here is the code of the convolution in the spatial domain of an image.

Code
function conv2D = conv2D(image,filter,method)

% Convert image to double (if the image is double, it doesn’t change)

image = im2double(image);
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[rows,cols]=size(image);

[rows_f,cols_f]=size(filter);

r = floor(rows_f/2);

c = floor(cols_f/2);

newimage = zeros(rows+2*r,cols+2*c);

newimage(r+1:end-r,c+1:end-c) = image;

if (strcmp(method,’period’))

% Fill newimage

newimage(1:r,:) =

[image(end-r+1:end,end-c+1:end)

image(end-r+1:end,:)

image(end-r+1:end,1:c)];

newimage(end-r+1:end,:) =

[image(1:r,end-c+1:end) image(1:r,:) image(1:r,1:c)];

newimage(r+1:end-r,1:c) = image(:,end-c+1:end);

newimage(r+1:end-r,end-c+1:end) = image(:,1:c);

% Convolution

for i=1:rows

for j=1:cols

conv2D(i,j) = sum(sum(newimage(i:i+2*r,j:j+2*c).*filter));

end

end

elseif (strcmp(method,’reflexion’))

% Fill newimage

newimage(1:r,:) =

[image(r:-1:1,end:-1:end-c+1)

image(r:-1:1,:)

image(r:-1:1,end:-1:end-c+1)];
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newimage(end-r+1:end,:) =

[image(end:-1:end-r+1,c:-1:1)

image(end:-1:end-r+1,:)

image(end:-1:end-r+1,end:-1:end-c+1)];

newimage(r+1:end-r,1:c) = image(:,c:-1:1);

newimage(r+1:end-r,end-c+1:end) = image(:,end:-1:end-c+1);

% Convolution

for i=1:rows

for j=1:cols

conv2D(i,j) = sum(sum(newimage(i:i+2*r,j:j+2*c).*filter));

end

end

elseif(strcmp(method,’padding’))

% Convolution

for i=1:rows

for j=1:cols

conv2D(i,j) = sum(sum(newimage(i:i+2*r,j:j+2*c).*filter));

end

end

else

’method = period,reflexion,padding’

return

end

% figure;

% subplot(1,2,1);imshow(image,[]);title(’Image’);

% subplot(1,2,2);imshow(conv2D,[]);title(’Convolution 2D’);
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3.2.4 Frequency Domain

In the frequency domain we use Theorem 1.9.

f(x, y) ∗ h(x, y) ⇐⇒ f̂(u, v) · ĥ(u, v),

where f is the image and h is the filter.

Remark 3.10. 1. If filter size is not equal to image size, then padd with zeros

to achieve the same size.

2. First we compute the convolution in the frequency domain and then we apply

the IFFT to the result.

Here is the code for the convolution in the frequency domain.

Code
function conv2D = conv2D_f(I,filter)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%

%% Convolution in the frequency domain

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[rows cols] = size(I);

[rows_f cols_f] = size(filter);

rows_pad = padding1D(rows);

cols_pad = padding1D(cols);

I_pad = zeros(rows_pad,cols_pad);

I_pad(1:rows,1:cols) = I;

filter_pad = zeros(rows_pad,cols_pad);

filter_pad(1:rows_f,1:cols_f) = filter;
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[fft_image_r fft_image_i] = FFT2_mex.FFT(I_pad);

[fft_filter_r fft_filter_i] = FFT2_mex.FFT(filter_pad);

fft_image = complex(fft_image_r,fft_image_i);

fft_filter = complex(fft_filter_r,fft_filter_i);

conv2D_f = fft_image.*fft_filter;

[conv2D_r conv2D_i] = FFT2_mex.IFFT(conv2D_f);

conv2D1 = complex(conv2D_r,conv2D_i);

conv2D = conv2D1(floor(rows_f/2):rows+floor(rows_f/2),

floor(cols_f/2):cols+floor(cols_f/2));

3.2.5 GUI Image Filtering

In this section we explain how to run this GUI enumerating its parts:

- Input Image,

- Choose parameters of the filter,

- Plot the filtered image.
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If you press SELECT IMAGE,

then a file dialog will appear

where you can choose the input

image to be processed.

Introduce all the parameters for

the filter and select it (in this

order). Then press Apply button

to compute the transformations.

Choose spatial or frequency

domain.

Example 3.11. We have added ‘salt and pepper’noise (randomly white and black

pixels) in the picture of lena.png. In Figure 3.13 and Figure 3.14 we can observe

that the image has been improved, because these filters are called low-pass filters.

But in Figure 3.15 the noise is not erased, because it is called a high-pass filter.
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Figure 3.13: Average filter.

Figure 3.14: Gaussian filter.

Figure 3.15: Laplacian of Gaussian filter.





Chapter 4

Morphological Image Processing

In this chapter we will introduce morphological operations in image processing, like

dilation, erosion, openning, closing... See [2]. In the two first sections we will deal

with binary images, and in the last section all the functions will be applied in gray

level images.

4.1 Dilation and Erosion

First, we will introduce some correspondences between set theory and its equivalent

with binary images.

Definition 4.1. Reflexion of a set A is defined as:

Â = {w | w = −a, a ∈ A} .

Traslation of a set A is defined by:

(A)z = {c | c = a + z, a ∈ A} .

In table 4.1 we represent the equivalence between set theory andMatlab syntax.

59
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Set theory Matlab

A ∩B A&B

A ∪B A|B
Ac −A

A− B A&− B

Table 4.1: Set theory & Matlab syntax

Example 4.2. Given two binary images, A and B, calculate the intersection, union,

complement and set difference.

(a) Binary image A (b) Binary image B (c) Intersection A&B

(d) Union A|B (e) Complement A (f) Set difference A& B

Figure 4.1
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4.1.1 Dilation

Definition 4.3. An structuring element is computationally represented as a matrix

of 0s and 1s and by an origin.

Definition 4.4. Dilation is an operation that ‘grows’or ‘thickens’objects in binary

images.

A⊕ B =
�
z | (B̂)z ∩ A �= ∅

�
.

Dilation is a commutative operation A⊕ B = B ⊕ A.

Example 4.5. Given a binary image and an structuring element





1 1 1

1 1 1

1 1 1





we calculate its dilation:

(a) Original image (b) Dilation

Figure 4.2: Dilation operation.

We can observe that the output image has increased the size of the rice. That

is because dilation selects all those pixels that have intersection with the given struc-

turing element.

We have implemented a function structel to calculate the most used structur-

ing elements.
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Syntax Description

structel(’diamond’,R) Diamond form of radius R

structel(’disk’,R) Disk of radius R

structel(’octagon’,R) Octagon of radius R

structel(’rectangle’,[M N ]) Rectangle of size M ×N

structel(’line’,L) Line of length L

structel(’square’,M) Square of size M ×M

4.1.2 Erosion

Definition 4.6. Erosion ‘shrinks’or ‘thins’objects in a binary image. It is defined

as:

A� B = {z | (B)z ∩ Ac �= ∅}

Example 4.7. With the same binary image and structuring element (4.5) used in

dilation we will calculate its erosion:

(a) Original image (b) Erosion

Figure 4.3: Erosion operation.

The output image has decreased the rice size, because erosion deletes all those

pixels that have not the same neighborhood as the given structuring element.

4.1.3 Implementation in Matlab

Dilation
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Code
function A2 = dilate(A,B)

[rows,cols]=size(A);

[rowsB,colsB] = size(B);

% Calcule the center coordinates of B

cx = ceil(colsB/2);

cy = ceil(rowsB/2);

% Calculate new image

new_image = zeros(rows+rowsB-1,cols+colsB-1);

if mod(colsB,2)~=0

lastx = cols+colsB-1 -cx+1;

deltax=cx-1;

else

lastx = cols+colsB-1 -cx;

deltax=cx;

end

if mod(rowsB,2)~=0

lasty = rows+rowsB-1 -cy+1;

deltay=cy-1;

else

lasty = rows+rowsB-1 -cy;

deltay= cy;

end

new_image(cy:lasty,cx:lastx) = A;

%% Calcule reflection of B

R_B = B(end:-1:1,end:-1:1);

%Calculate dilation
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A2 = zeros(rows,cols);

for i=cy:lasty

for j=cx:lastx

a = sum(sum(new_image(i-cy+1:i+deltay,j-cx+1:j+deltax).*R_B));

if a~=0

A2(i-cy+1,j-cx+1)=1;

end

end

end

Erosion

Code
function A2=erode(A,B)

[rows,cols]=size(A);

[rowsB,colsB] = size(B);

% Calcule the center coordinates of B

cx = ceil(colsB/2);

cy = ceil(rowsB/2);

% Calculate new image

new_image = zeros(rows+rowsB-1,cols+colsB-1);

if mod(colsB,2)~=0

lastx = cols+colsB-1 -cx+1;

else

lastx = cols+colsB-1 -cx;

end

if mod(rowsB,2)~=0

lasty = rows+rowsB-1 -cy+1;

else

lasty = rows+rowsB-1 -cy;

end
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new_image(cy:lasty,cx:lastx) = A;

%Calculate

sumel=sum(sum(B));

A2 = zeros(rows,cols);

for i=cy:lasty

for j=cx:lastx

a = sum(sum(new_image(i-cy+1:i+cy-1,j-cx+1:j+cx-1).*B));

if a == sumel

A2(i-cy+1,j-cx+1) = 1;

end

end

end

4.2 Opening, Closing and Hit-or-Miss

In practice, in image processing we combine dilations and erosions with different

structuring elements. We enhance the most common combinations: opening, closing

and hit-or-miss.

4.2.1 Opening

Definition 4.8. The morphological operation openning of the image A by the ele-

ment B is denoted by A ◦B. It is defined as:

A ◦B = (A� B)⊕ B.

This operation eliminates the regions that do not contain the structuring ele-

ment, smooth the countours and break weak connections between objects.
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4.2.2 Closing

Definition 4.9. The morphological operation of closing is defined as:

A •B = (A⊕ B)� B.

This operation smooths the countours, and fill the holes that are smaller than

the structuring elements.

Example 4.10. Given a fingerprint image with noise, first we apply opening to

delete noisy dots. But this operation produces holes in the fingerprint. Then, if we

apply the closing operation in this output image we obtain the desire result.

(a) Fingerprint with noise (b) Opening (c) Opening followed by Clos-

ing

Figure 4.4: Opening and Closing.

4.2.3 Hit-or-Miss

This transformation is useful for identifying configurations of pixels like isolated

pixels and endings of lines.

Definition 4.11. The Hit-or-Miss of the set A by the element B = (B1, B2) is

defined as:

A⊗ B = (A� B1) ∩ (Ac � B2).

The Hit-or-Miss consists of all pixels which are in B1 (hit), and those that

have not pixels in B2 (miss).
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4.2.4 Implementation in Matlab

We only present the implementation of Hit-or-Miss because opening and closing

operations are form using dilations and erosions.

Hit-or-Miss

Code
function [A2,C2]=HitorMiss(A,B1,B2)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%

%% Hit-or-Miss transformation

%% Description:

%% Structuring elements (B1,B2)

%% HoM:=erode(A,B1) intersection erode(Ac B2)

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% In general, supose that B has odd dimension

A=im2double(A);

%% Image A must be a binary image %

A = im2bw(A);

% Calculate A supplementary

A_c = ~A;

C1 = erode(A,B1);

C2 = erode(A_c,B2);

% Calculate the intersection between C1 & C2:

A2 = C1&C2;

We introduce bottom-hat and top-hat. These are operations that extract small

elements and details from a given image.
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Bottom-hat returns the difference between its closing by a structuring element

and the image.

Code
function A2 = bothat(A,B)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%

%% Bottom hat: closing and subtracting the image

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A1 = close(A,B);

A2 = imsubtract(A1,A);

Top-hat returns the difference between the image and its opening by some

structuring element.

Code
function A2 = bothat(A,B)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%

%% Top hat: opening and subtracting the image

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A1 = open(A,B);

A2 = imsubtract(A1,A);
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4.2.5 Lookup Tables

A lookup table is a data structure used to replace a runtime computation with a

simpler array indexing operation. In image processing the nomenclature is LUT.

The technique is to precompute the output pixel value for every possible neigh-

borhood configuration and then store the answer in a table for later use. For exam-

ple, we have 29 = 512 different 3× 3 pixels configurations in a binary image.

To make the LUT we have to assign a unique value to each configuration, we

will multiply each element of our neighborhood with the following matrix

1 8 64

2 16 128

4 32 256

Example 4.12. Let us consider the 3× 3 neighborhood

1 1 0

1 0 1

1 0 1

the value that will represent this matrix uniquely is perform as follows: 1(1)+2(1)+

4(1) + 8(1) + 16(0) + 32(0) + 64(0) + 128(1) + 256(1) = 399.

We will implement two functions: makelookuptab and applylookuptab. The first

one constructs a lookup table and the last one processes the binary images using

this lookup table.

Example 4.13. The lookup table is contructed next by calling makelut with a func-

tion handle to conwaylaws
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(a) Binary image (b) First apply (c) Second apply (d) Third apply

(e) Fourth apply (f) Fiveth apply (g) Sixth apply (h) Seventh apply

Figure 4.5

4.2.6 Implementation in Matlab

Auxiliar function matrix3x3. Here, we create all the 3 × 3 matrices of 1�s and 0�s,

there are 29 different matrices.

Code
function m=matrix3x3( )

m = zeros(pow2(9),9);

m(1,:)= zeros(1,9);

for i=2:512

m(i,:) = sum1(m(i-1,:));

end
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Auxialiar function sum1. It calculates the value for each matrix in the above function

matrix3x3.

Code
function sum = sum1(v)

sum = v;

k=0;

while v(end-k) == 1

sum(end-k)=0;

k=k+1;

end

if k==0

sum(end)=1;

else

sum(end-k)=1;

end

Make lookup table.

Code
function [lut,m]=makelookuptab(handle,n)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%

%% Look up table

%% First argument is the call of a function & n is the neighborhood (nxn)

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Check handle is a function handle

if isa(handle, ’function_handle’);

else

’First argument is not a function handle’
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return

end

if n==2

lut = zeros(pow2(4),2,2,2);

m = matrix2x2( );

for i=1:pow2(4)

lut(i,1) = handle(reshape(m(i,:),[2,2]));

lut(i,2,:,:) = reshape(m(i,:),[2,2]);

end

elseif n==3

lut = zeros(pow2(9),1);

m = matrix3x3( );

for i=1:pow2(9)

lut(i) = handle(reshape(m(i,:),[3,3]));

end

else

’Second argument must be 2 or 3’

return

end

Apply lookup table.

Code
function fnew=applylookuptab(f,lut)

[r,c]=size(lut);

aux = f;

if r == 16

m = matrix2x2();

size(m)
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for i=1:r

if lut(i)==1

fnew = mask(aux,reshape(m(i,:),[2,2]));

aux = fnew;

end

end

else

m = matrix3x3();

for i=1:r

if lut(i)

fnew = mask(aux,reshape(m(i,:),[3,3]));

aux = fnew;

end

end

end

4.3 Morphological operations in gray images

All the binary morphological operations, except Hit-or-Miss transform, have exten-

sions to gray images. In this section, we will work with dilation, erosion, opening

and closing. Finally we will introduce how to obtain the gradient of the image with

some of these operations.

4.3.1 Dilation and Erosion

Definition 4.14. The gray-scale dilation of an image by a structuring element, is

denoted by

(I ⊕ B) (x, y) = max
�
I
�
x− x

�
, y − y

�
�
+B

�
x

�
, y

�
�
|(x�

, y
�
) ∈ B

�
,

where I is the image and B is the structuring element. We assume that the value

I(x, y) = −∞ outside the image.



74 4 . Morphological Image Processing

Figure 4.6: Dilation in gray images

Implementation in Matlab.

Code
function A2 = rkl_dilate_gray(A,B)

[rows,cols]=size(A);

[rowsB,colsB] = size(B);

% Calcule the center coordinates of B

cx = ceil(colsB/2);

cy = ceil(rowsB/2);

% Calculate new image

new_image = zeros(rows+rowsB-1,cols+colsB-1);

new_image(:) = -Inf;

if mod(colsB,2)~=0

lastx = cols+colsB-1 -cx+1;

deltax=cx-1;

else

lastx = cols+colsB-1 -cx;

deltax=cx;

end
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if mod(rowsB,2)~=0

lasty = rows+rowsB-1 -cy+1;

deltay=cy-1;

else

lasty = rows+rowsB-1 -cy;

deltay= cy;

end

new_image(cy:lasty,cx:lastx) = A;

%% Calcule reflection of B

R_B = B(end:-1:1,end:-1:1);

%Calculate dilation

A2 = zeros(rows,cols);

for i=cy:lasty

for j=cx:lastx

a = new_image(i-cy+1:i+deltay,j-cx+1:j+deltax).*R_B;

A2(i-cy+1,j-cx+1)=max(max(a));

end

end

Definition 4.15. The gray-scale erosion of an image by a structuring element, is

denoted by

(I � B) (x, y) = min
�
I
�
x+ x

�
, y + y

�
�
− B

�
x

�
, y

�
�
|(x�

, y
�
) ∈ B

�
,

where I is the image and B is the structuring element. We assume that the value

I(x, y) = +∞ outside the image.
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Figure 4.7: Erosion in gray images.

Implementation in Matlab.

Code
function A2 = rkl_erosion_gray(A,B)

[rows,cols]=size(A);

[rowsB,colsB] = size(B);

% Calcule the center coordinates of B

cx = ceil(colsB/2);

cy = ceil(rowsB/2);

% Calculate new image

new_image = zeros(rows+rowsB-1,cols+colsB-1);

new_image(:,:) = +Inf;

if mod(colsB,2)~=0

lastx = cols+colsB-1 -cx+1;

else

lastx = cols+colsB-1 -cx;

end

if mod(rowsB,2)~=0

lasty = rows+rowsB-1 -cy+1;

else
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lasty = rows+rowsB-1 -cy;

end

new_image(cy:lasty,cx:lastx) = A;

A2 = zeros(rows,cols);

for i=cy:lasty

for j=cx:lastx

a = new_image(i-cy+1:i+cy-1,j-cx+1:j+cx-1).*B;

a(a==0) = +Inf;

A2(i-cy+1,j-cx+1) = min(min(a));

end

end

4.3.2 Opening and Closing

Definition 4.16. The opening of an image by a structuring element is denoted as

I ◦B = (I � B)⊕ B,

where I is the image, B the structuring element and the operations ⊕,� as defined

above.

Figure 4.8: Opening in gray images.
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Implementation in Matlab.

Code
function A2 = rkl_open_gray(A,B)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%

%% Opening in gray images

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A1 = morph.rkl_erode_gray(A,B);

A2 = morph.rkl_dilate_gray(A1,B);

Definition 4.17. The closing of an image by a structuring element is denoted as

I •B = (I ⊕ B)� B,

where I is the image, B the structuring element and the operations ⊕,� as defined

above.

Figure 4.9: Closing in gray images.
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Implementation in Matlab.

Code
function A2 = rkl_close_gray(A,B)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%

%% Closing in gray images

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A1 = morph.rkl_dilate_gray(A,B);

A2 = morph.rkl_erode_gray(A1,B);

4.3.3 Applications: bottom-hat, top-hat and morphological

gradient

Definition 4.18. The Bottom-hat transformation is defined as

I •B − I,

where B is the structuring element, and I is the image.

Figure 4.10: Bottom-hat of estatua.jpg
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Implementation in Matlab.

Code
function A2 = rkl_bothat_gray(A,B)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%

%% Bottom hat: closing and subtracting the image

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A1 = morph.rkl_close_gray(A,B);

A2 = imsubtract(A1,A);

Definition 4.19. The Top-hat transformation is defined as

I − I ◦B,

where B is the structuring element, and I is the image.

Figure 4.11: Top-hat of estatua.jpg
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Implementation in Matlab.

Code
function A2 = rkl_tophat_gray(A,B)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%

%% Top hat: openning and subtracting the image

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A1 = morph.rkl_open_gray(A,B);

A2 = imsubtract(A,A1);

Definition 4.20. The morphological gradient transformation is defined as

I ⊕ B − I � B,

where B is the structuring element, and I is the image.

Figure 4.12: Morphological gradient of estatua.jpg.
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Implementation in Matlab.

Code
function A2 = rkl_gradient_gray(A,B)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%

%% Gradient: subtracting dilation with erosion

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

C1 = morph.rkl_dilate_gray(A,B);

C2 = morph.rkl_erode_gray(A,B);

A2 = imsubtract(C1,C2);

4.3.4 GUI Morphological Operations

In this section we explain how to run the two GUI ’s of morphological operations,

one for binary images and the other for intensity images.

Morphological operations GUI for binary images.

Figure 4.13: Binary images.

- Open the image to be processed.
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- Choose the morphological operation. It will appear another window to choose the

structuring element. Then press Apply button. See Figure 4.15.

- The output image will appear in the main window.

Morphological operations GUI for intensity images.

Figure 4.14: Intensity images.

- Open the image to be processed.

- Choose the morphological operation. It will appear another window to choose the

structuring element. Then press Apply button. See Figure 4.15.

- The output image will appear in the main window.

There are two windows to choose the structuring element. The one that has

two panels is only used for Hit-or-Miss transformation.
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(a) One structuring element. (b) Two structuring elements.

Figure 4.15: Structuring element windows.



Chapter 5

Wavelets on ZN

5.1 Introduction

In this section we introduce the motivation of Wavelets analysis in front of Fourier

analysis. We will continue working with discrete signals in �2(ZN). See [4].

Definition 5.1. We say that a vector z ∈ �2(ZN) is localized in space near n0 ∈ ZN ,

if most of the components z(n) of z are 0 or al least relatively small, except for a

few values of n close to n0.

A Fourier basis element is not localized, because it has the same magnitude
1√
N

for every n ∈ ZN . See 1.1.

Now, suppose B = {v0, . . . , vN−1} is a basis for �2(ZN) such that all the basis

elements of B are localized in space. For a vector z, we can write z =
�N−1

n=0 anvn,

an ∈ R. Suppose that we wish to focus on the position of z near some particular

point n0. Terms involving basis vectors that are 0 or relatively small near n0 can

be deleted in without changing the behaviour. Then we can replace a sum over N

terms by a smaller sum.

85
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5.2 Wavelets on ZN

Notation 5.2. We introduce new notation, and we recall the notation used above.

1. w̃(n) = w(−n) = w(N − n).

2. �(w̃)(n) = ŵ(n).

3. (Rkz)(n) = z(n− k).

4. (z ∗ w̃)(k) = �z, Rkw�.

We call w̃ the conjugate reflection of w.

Lemma 5.3. Suppose z, w ∈ �2(ZN). For any k ∈ Z

z ∗ w̃(k) = �z, Rkw� ,

z ∗ w(k) = �z, Rkw̃� .

Remark 5.4. �(w̃) = w: �(w̃) = �(w(−n)) = (w(n)) = w(n).

Proof. By definition and commutativity,

1.

�z, Rkw� =
N−1�

n=0

z(n)Rkw(n) =
N−1�

n=0

z(n)w(n− k)

=
N−1�

n=0

z(n)w̃(k − n) = w̃ ∗ z(k) = z ∗ w̃(k).

2.

�z, Rkw̃� =
N−1�

n=0

z(n)Rkw̃(n) =
N−1�

n=0

z(n)w̃(n− k)

=
N−1�

n=0

z(n) �̃w(k − n) = w ∗ z(k) = z ∗ w(k).
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Lemma 5.5. Let w ∈ �2(ZN). Then {Rkw}N−1
k=0 is an orthonormal basis for �2(ZN)

if and only if |ŵ(n)| = 1 for all n ∈ ZN .

Proof. Let us introduce the Dirac Delta distribution,

δ(n) =

�
1 if n = 0

0 if n = 1, . . . , N − 1.

By a simple calculation, we obtain δ̂(n) = 1 for all n ∈ N :

δ̂(n) =
N−1�

m=0

δ(m)e−2πimn/N = 1.

{Rkw}N−1
k=0 is an orthonormal basis if and only if

�w,Rkw� =
�

0 ∀k = 1, . . . , N − 1

1 k = 0

By notation,

(w ∗ w̃)(k) = δ(k) ⇐⇒ (w ∗ w̃)̂(n) = δ̂(n) = 1 ∀n

⇐⇒ ŵ(n)(w̃)̂(n) = 1 ∀n ⇐⇒ |ŵ(n)| = 1.

Definition 5.6. Suppose N is an even integer, N = 2M for some M ∈ N. An

orthonormal basis for �2(ZN) of the form

{R2ku}M−1
k=0

�
{R2kv}M−1

k=0

for some u, v ∈ �2(ZN) is called a first-stage wavelet basis.

Our goal is to determine when a pair u, v generates a first-stage wavelet. First

we will introduce the necessary background for the theorem that will determine that

pair.
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Lemma 5.7. Suppose M ∈ N, N = 2M , z ∈ �2(ZN). Define z∗ ∈ �2(ZN) by

z∗(n) = (−1)nz(n), for all n.

Then,
�(z∗)(n) = ẑ(n+M), for all n.

Proof. By definition,

�(z∗)(n) =
N−1�

k=0

z∗(k)e−2πikn/N =
N−1�

k=0

(−1)kz(k)e−2πikn/N

=
N−1�

k=0

z(k)e−iπke−2πikn/N =����
−2πikn

N −πik=−2πik(n+M)
N

N−1�

k=0

z(k)e−2πik(n+M)/N

= ẑ(n+M).

Remark 5.8. For any z ∈ �2(ZN), with N even

(z + z∗)(n) = z(n)(1 + (−1)n) =

�
2z(n) if n is even,

0 if n is odd.

Lemma 5.9. Suppose M ∈ N, N = 2M and w ∈ �2(ZN). Then {R2kw}M−1
k=0 is an

orthonormal set with M elements if and only if

|ŵ(n)|2 + |ŵ(n+M)|2 = 2 for n = 0, . . . ,M − 1.

Proof. {R2kw}M−1
k=0 is an orthonormal basis if and only if

�w,R2kw� =
�

1 k = 0

0 k = 1, . . . ,M − 1 .

(w ∗ w̃)(n) + (w ∗ w̃)∗(n) =
�

2 n = 0

0 n = 1, . . . , N − 1 .
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(w ∗ w̃) + (w ∗ w̃)∗ = 2δ ⇐⇒

(w ∗ w̃)̂(n) + [(w ∗ w̃)∗ ]̂ (n) = 2δ̂ = 2 ∀n ⇐⇒����
Lemma 5.7, Notation 5.2

|ŵ(n)|2 + |ŵ(n+M)|2 = 2 ∀n.

Definition 5.10. Suppose M ∈ N, N = 2M and u, v ∈ �2(ZN). For n ∈ Z, define
A(n) the system matrix of u and v by

A(n) =
1√
2

�
û(n) v̂(n)

û(n+M) v̂(n+M)

�

Now, we can introduce the necessary and sufficient conditions to determine

first-stage wavelet basis pair.

Theorem 5.11. Suppose M ∈ N, N = 2M . Let u, v ∈ �2(ZN). Then,

B = {R2ku}M−1
k=0

�
{R2ku}M−1

k=0

= {u,R2u,R4u, . . . , RN−2u, v, R2v, R4v, . . . , RN−2v}

is an orthonormal basis for �2(ZN) if and only if A(n) is unitary for each n = 0, . . . ,M − 1.

Equivalently, B is a first-stage wavelet basis for �2(ZN) if and only if

1. |û(n)|2 + |û(n+M)|2 = 2 ∀n,

2. |v̂(n)|2 + |v̂(n+M)|2 = 2 ∀n,

3. û(n)v̂(n) + û(n+M)v̂(n+M) = 0 ∀n.

Proof. We know that {R2ku}M−1
k=0 is an orthonormal set if and only if first condition

is satisfied.

The same for {R2kv}M−1
k=0 with the second condition.

So, we only have to proof the last one:

�R2ku,R2kv� = 0, ∀j �= k ⇐⇒ (3) is satisfied.
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(u ∗ ṽ)(2k) = �u,R2kv� = 0 ⇐⇒

(u ∗ ṽ)(2k) = 0, ∀k = 0, . . . ,M − 1 ⇐⇒

(u ∗ ṽ)(n) + (u ∗ ṽ)∗(n) = 0 ⇐⇒

(u ∗ ṽ)̂(n) + [(u ∗ ṽ)∗(n)] = 0 ⇐⇒

û(n)v̂(n) + û(n+M)v̂(n+M) = 0 ∀n.
Example 5.12. 1. Haar first-stage wavelet basis.

u =

�
1√
2
,
1√
2
, 0, . . . , 0

�
,

v =

�
1√
2
,− 1√

2
, 0, . . . , 0

�
.

In the Figure 5.1 we show two elements of the Haar basis of length 16.

Figure 5.1: R8u and R8v

2. Shannon first-stage wavelet basis.

Suppose N divisible by 4. We define,

û(n) =

� √
2 n = 0, . . . , N4 − 1, 3N4 , . . . , N − 1

0 n = N
4 , . . . ,

3N
4 − 1 .

v̂(n) =

�
0 n = 0, . . . , N4 − 1, 3N4 , . . . , N − 1
√
2 n = N

4 , . . . ,
3N
4 − 1 .



5.2. Wavelets on ZN 91

We observe that A(n) are unitary.

A

�
N

4

�
=

1√
2

�√
2 0 · · · 0

0 · · · 0
√
2

�

3. Real Shannon first-stage wavelet basis.

Suppose N divisible by 4. We define,

û(n) =






√
2 n = 0, . . . , N4 − 1, 3N4 + 1, . . . , N − 1

i n = N
4 ,

−i n = 3N
4 ,

0 otherwise .

v̂(n) =






0 n = 0, . . . , N4 − 1, 3N4 + 1, . . . , N − 1

1 n = N
4 ,

1 n = 3N
4 ,

√
2 otherwise .

We observe that A(n) are unitary.

A

�
N

4

�
=

1√
2

�
i 1

−i 1

�

In the Figure 5.2 we show two elements of the Shannon real basis of length 64.

Figure 5.2: R32u and R32v
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4. Daub6 wavelet basis.

Ingrid Daubechies constructed families of wavelets that are very well localized

in space rather than in frequency. We assume that N is divisible by 2p, for

some positive integer p, and that N/2p > 6. Let M = N/2. Our goal is to

construct u ∈ �2(ZN) such that u has only six nonzero components and satisfies

the first equation in Theorem 5.11 and then we apply Lemma 5.13 to find v.

We begin with the trivial identity

�
cos2

�πn
N

�
+ sin2

�πn
N

��5
= 1 for all n.

Expanding this out, we have

cos10
�πn
N

�
+ 5 cos8

�πn
N

�
sin2

�πn
N

�
+ 10 cos6

�πn
N

�
sin4

�πn
N

�

+ 10 cos4
�πn
N

�
sin6

�πn
N

�
+ 5 cos2

�πn
N

�
sin8

�πn
N

�
+ sin10

�πn
N

�
= 1.(5.1)

Define

b(n) = cos10
�πn
N

�
+ 5 cos8

�πn
N

�
sin2

�πn
N

�
+ 10 cos6

�πn
N

�
sin4

�πn
N

�
.

Note that

cos

�
π(n+M)

N

�
= cos

�πn
N

+
π

2

�
= − sin

�πn
N

�

and similarly

sin

�
π(n+M)

N

�
= cos

�πn
N

�
.

Hence

b(n+M) = 10 cos4
�πn
N

�
sin6

�πn
N

�
+ 5 cos2

�πn
N

�
sin8

�πn
N

�
+ sin10

�πn
N

�
.

Thus by equation 5.1

b(n) + b(n+M) = 1 for all n.

We select u ∈ �2(ZN) so that

(5.2) |û(n)|2 = 2b(n).
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Then we have

|û(n)|2 + |û(n+M)|2 = 2 for all n = 0, . . . ,M − 1.

We could obtain equation 5.2 by setting u(n) = (
�

2b(n))̌. But here we do not

have a vector u with only six nonzero values. We write

b(n) = cos6
�πn
N

� �
cos4

�πn
N

�
+ 5 cos2

�πn
N

�
sin2

�πn
N

�
+ 10 sin4

�πn
N

��

= cos6
�πn
N

���
cos2

�πn
N

�
−

√
10 sin2

�πn
N

��2

+ (5 + 2
√
10) cos2

�πn
N

�
sin2

�πn
N

��
.

Define û ∈ �2(ZN) by

û(n) =
√
2e−2πin/N cos3

�πn
N

� �
cos2

�πn
N

�
−
√
10 sin2

�πn
N

�

+ i

�
5 + 2

√
10 cos

�πn
N

�
sin

�πn
N

��
.

By applying Euler’s formula and the double angle identities, we have

û(n) =
√
2e−2πi4/Ne3πin/N

�
eiπn/N + e−iπn/N

2

�3

�
1

2

�
1 + cos

�
2πn

N

��
−

√
10

2

�
1− cos

�
2πn

N

��

+ i

�
5 + 2

√
10

2
sin

�
2πn

N

��
.

To simplify, a = 1−
√
10, b = 1 +

√
10 and c =

�
5 + 2

√
10.

û(n) =

√
2

8
e−2πi4n/N

�
e2πin/N + 1

�3
�
a

2
+

b

4

�
e2πin/N + e−2πin/N

�
+

c

4

�
e2πin/N − e−2πin/N

��
.

At this point we can see that

û(n) =
5�

k=0

u(k)e−2πikn/N ,
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for some numbers u(0), u(1), u(2), u(3), u(4), u(5). If we calculate them, we

obtain

u = (u(0), u(1), u(2), u(3), u(4), u(5), 0, . . . , 0)

=

√
2

32
(b+ c, 2a+ 3b− 3c, 6a+ 4b+ 2c,

6a+ 4b− 2c, 2a+ 3b− 3c, b− c, 0, . . . , 0) .

Finally, with Lemma 5.13 we obtain the vector v

v = (−u(1), u(0), 0, . . . , 0,−u(5), u(4),−u(3), u(2)) .

In the Figure 5.3 we show two elements of the Daubechies6 basis of length 64.

Figure 5.3: R32u and R32v

We can compare Figure 5.2 with Figure 5.3 with same length.

Lemma 5.13. Suppose M ∈ N, N = 2M and u ∈ �2(ZN) is such that {R2ku}M−1
k=0

is an orthonormal set with M elements. Define v ∈ �2(ZN) by

v(k) = (−1)k−1u(1− k) ∀k.

Then {R2ku}M−1
k=0

�
{R2kv}M−1

k=0 is a first-stage wavelets basis for �2(ZN).
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Proof. We have to prove that the second and third conditions of Theorem 5.11 are

satisfied.

First we will define v̂(m) and v̂(m+M):

1.

v̂(m) =
N−1�

n=0

v(n)e−2πimn/N =
N−1�

n=0

(−1)n−1u(1− n)e−2πimn/N

k=1−n����
=

N−1�

n=0

(−1)−ku(k)e−2πim(1−k)/N

= e−2πim/N
N−1�

k=0

u(k)(e−iπ)−ke2πimk/N = e−2πim/N
N−1�

k=0

u(k)eiπk+2πimk/N

= e−2πim/N
N−1�

k=0

u(k)eiπk+2πimk/N = e−2πim/Nû(m+M).

2.

v̂(m+M) = e−2πi(m+M)/N û(m+ 2M) = e−2πim/Ne−2πiM/N û(m+N)

= −e−2πim/N û(m).

Now we can prove the conditions

1. |v̂(m)|2 + |v̂(m+M)|2 = |v̂(m+M)|2 + |v̂(m)|2 = 2.

2.

û(m)v̂(m) + û(m+M)v̂(m+M)

= û(m)e2πim/N û(m+M) + û(m+M)(−1)e2πim/N û(m) = 0.

Suppose that B = {R2ku}M−1
k=0

�
{R2kv}M−1

k=0 is a first-stage wavelet basis. The

change of basis of B to the euclidean basis E, is the matrix U , with columns the
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vectors v,R2v, . . . , RN−2v, u, R2u, . . . , RN−2u. B is orthonormal, then U is a unitary

matrix, so the change of basis from E to B is the matrix U−1 = U∗. Thus,

[z]B =





z ∗ ṽ(0)
...

z ∗ ṽ(N − 2)

z ∗ ũ(0)
...

z ∗ ũ(N − 2)





where [z]B is the vector z ∈ �2(ZN) in B basis.

Definition 5.14. Suppose M ∈ N, N = 2M and u ∈ �2(ZN). We define the

Downsampling operator D : �2(ZN) −→ �2(ZM)

D(z)(n) = z(2n), for n = 0, . . . ,M − 1

In other words, if z = (z(0), z(1), . . . , z(N − 1)) the downsampling operator is often

denoted ↓ 2 in diagrams. The calculation of [z]B is represented in Figure 5.4.

We have seen that we can compute the E to B change of basis quickly. Now

we are going to compute the B to E change of basis. This can be obtained by

multiplying by the matrix U , but it takes N × N multiplications, and this is slow.

In Figure 5.4 we see a fast procedure basek on the filter bank approach.

Definition 5.15. A filter bank is an array of band-pass filters that separates the

input signal into multiple components, each one carrying a simple frequency subband

of the original signal.
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z

✲

✲

∗ṽ

∗ũ

✲

✲

✲

✲

↓ 2

↓ 2

z ∗ ṽ

z ∗ ũ
D(z ∗ ũ) =

D(z ∗ ṽ) =

z ∗ ṽ(0)

z ∗ ṽ(N − 2)

z ∗ ũ(0)

z ∗ ũ(N − 2)

≈

...

...

z ∗ ṽ(0)
...

z ∗ ṽ(N − 2)
z ∗ ũ(0)

...

z ∗ ũ(N − 2)

= [z]B

Figure 5.4

Definition 5.16. Suppose M ∈ N and N = 2M . Define U : �2(ZM) −→ �2(ZN) for

z ∈ �2(ZM),

U(z)(n) =

�
z(n/2) if n is even

0 if n is odd

The operator U is called the upsampling operator. It is denoted by ↑ 2.

The upsampling operator doubles the size of a vector by inserting a 0 between

any two adjacent values.

Remark 5.17.

1.

(5.3) D ◦ U(z) = z,

2.

(5.4) U ◦D(z) =
1

2
(z + z∗).

To regain z from the output of the left filter bank in Figure 5.4 ,we follow

up with a right filter bank as in the right half of Figure 5.5 Here s, t ∈ �2(ZN) are

unknown. The output of the upper branch of Figure 5.5 is t̃ ∗ U(D(z ∗ ṽ)) and the

output of the lower branch is s̃ ∗ U(D(z ∗ ũ)).
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The lemma below gives conditions under which the sum of these outputs is

always the original input z. When this happens we say we have perfect reconstruction

in the filter bank. Note that we do not necessarily assume the conditions of Theorem

5.11.

z = z

✲

✲

✲

✲

✲

✲

✲

✲

✲
?

∗ṽ

∗ũ

↓ 2

↓ 2

↑ 2

↑ 2 ∗s̃

∗t̃
z ∗ ṽ

z ∗ ṽ

D(z ∗ ṽ)

D(z ∗ ṽ)

U(D(z ∗ ṽ))

U(D(z ∗ ṽ))

t̃ ∗ U(D(z ∗ ṽ))

t̃ ∗ U(D(z ∗ ṽ))

Figure 5.5

Lemma 5.18. Suppose M ∈ N, N = 2M and u, v, s, t ∈ �2(ZN). For n = 0, . . . , N − 1,

let A(n) be the system matrix (def.) for u and v. Then we have perfect reconstruction

in Figure 5.5, that is,

t̃ ∗ U(D(z ∗ ṽ)) + s̃ ∗ U(D(z ∗ ũ)) = z

for all z ∈ �2(ZN), if and only if

A(n) ·
�
s(n)

t(n)

�
=

�√
2

0

�

for all n = 0, . . . , N − 1. In the case that A(n) is unitary, this simplifies to

t̂(n) = v̂(n) and ŝ(n) = û(n). If A(n) is unitary for all n, then t = ṽ and s = ũ.

Proof. By properties of the upsampling and downsampling operator we have that

U(D(z ∗ ṽ)) = 1

2
((z ∗ ṽ) + (z ∗ ṽ)∗)

and similarly with v replaced by u.

Remark 5.19. z∗(n) = (−1)nz(n) ∀n ⇒ (z∗)̂(n) = ẑ(n+M) ∀n.
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Taking Fourier transform,

U(D(z ∗ ṽ))̂(n) = 1

2
(ẑ(n)v̂(n) + (z ∗ ṽ)̂(n+M))

=
1

2
(ẑ(n)v̂(n) + (ẑ(n+M)v̂(n+M)) ∀n

and similarly with v replaced by u.

Let us see that

t̃ ∗ U(D(z ∗ ṽ)) + s̃ ∗ U(D(z ∗ ũ)) = z, ∀z ∈ �2(ZN).

We will prove that

�
t̃ ∗ U(D(z ∗ ṽ)) + s̃ ∗ U(D(z ∗ ũ))

�
(̂n) = ẑ(n), ∀z ∈ �2(ZN).

�
t̃ ∗ U(D(z ∗ ṽ)) + s̃ ∗ U(D(z ∗ ũ))

�
(̂n)

= t̂(n)
1

2
[ẑ(n)v̂(n) + ẑ(n+M)v̂(n+M)] + ŝ(n)

1

2
[ẑ(n)û(n) + ẑ(n+M)û(n+M)]

= ẑ(n)

�
1

2

�
t̂(n)v̂(n) + ŝ(n)û(n)

��
+

ẑ(n+M)

2

�
t̂(n)v̂(n+M) + ŝ(n)û(n+M)

�

= ẑ(n) ∀n.

This happens if and only if,

t̂(n)v̂(n) + ŝ(n)û(n) = 2

and

t̂(n)v̂(n+M) + ŝ(n)û(n+M) = 0,

and it is equivalent to

�
û(n) v̂(n)

û(n+M) v̂(n+M)

��
ŝ(n)

t̂(n)

�
=

�
2

0

�

Notice that
√
2A(n) =

�
û(n) v̂(n)

û(n+M) v̂(n+M)

�
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In the case that A(n) is unitary, A(n) is invertible and (A(n))−1 = A∗(n), so

solving �
ŝ(n)

t̂(n)

�
= A∗(n)

�√
2

0

�

From this equality we obtain ŝ(n) = û(n) and t̂(n) = v̂(n). Then, if A(n) is unitary

for all n, s(n) = ũ and t(n) = ṽ. Notice that s̃ = u, t̃ = v.

Remark 5.20. If u, v are wavelets, then

z = z

✲

✲

✲

✲

✲

✲

✲

✲

✲

∗ṽ

∗ũ

↓ 2

↓ 2

↑ 2

↑ 2 ∗ũ

∗ṽ
z ∗ ṽ

z ∗ ṽ

D(z ∗ ṽ)

D(z ∗ ṽ)

U(D(z ∗ ṽ))

U(D(z ∗ ṽ))

ṽ ∗ U(D(z ∗ ṽ))

ũ ∗ U(D(z ∗ ũ))

Figure 5.6

If N = 4̇, we will do 2 steps, if N = 8̇, we will do 3 steps and so on.

z = z

✲

✲

✲

✲

✲

✲

✲

✲

✲

✲

✲

✲

✲

✲

✲

✲

✲ ✲

✲

✲

✲

∗ṽ1

∗ũ1

↓ 2

↓ 2

↓ 2

↓ 2∗ṽ2

∗ũ2

D(z ∗ ṽ1)

D(D(z ∗ ũ1) ∗ ṽ2)

D(D(z ∗ ũ1) ∗ ũ2)

↑ 2

↑ 2

∗v2

∗v2
↑ 2

↑ 2 ∗v1

∗u1

Figure 5.7

Definition 5.21. If N = 2p, we define a sequence of wavelet filters of stage p with

a sequence of vectors (u1, v1), . . . , (up, vp) such that

1. (ul, vl) ∈ �2(ZN/2l−1), l = 1, . . . , p.
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2.

Al(n) =

�
ûl(n) v̂l(n)

ûl(n+ N
2l ) v̂l(n+ N

2l )

�

for n = 0, . . . , N2l − 1 the matrix are unitary.

5.3 Matlab Implementation

5.3.1 Haar Wavelets

Code
function H=Haar1D(x)

%Supose rows=1 (x is a vector)

[rows,cols] = size(x);

% Check if size = pow(2), otherwise call padding function

[new_size,N] = padding(cols);

x_new = zeros(rows,new_size);

x_new(1:rows,1:cols)=x;

% Calcul Haar transform

v = x_new’;

A = CalculTransf(pow2(N-1));

v_new = A*v;

H=[v_new(1:pow2(N-1))’ v_new(pow2(N-1)+1:end)’];

%%%%%% Auxiliar function %%%%%%%%%%%

%%% Matrix transformation

function A=CalculTransf(dim)

for i=1:dim

S(i,i*2-1:i*2)=1/sqrt(2);
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end

for i=1:dim

D(i,i*2-1)=1/sqrt(2);

D(i,i*2)=-1/sqrt(2);

end

A = [S;D];

%%% Padding

function [m,j]=padding(n)

m=2;

j=1;

while n>m

m=m*2;

j=j+1;

end

(a) 2D (b) 3D

Figure 5.8: U matrix of Haar basis
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5.3.2 Shannon Wavelets

Code
function z2=Shannon(z)

[rows,cols] = size(z);

%Check if m is multiple of 4

[m]=multiple4(cols);

v = zeros(1,m-cols);

z = [z v];

U = basisShannon(m);

for i=1:m

z2(i) = sum(U(:,i)’.*z);

end

%% Auxiliar function

function U=basisShannon(m)

%% Calcule of Shannon basis in dimension m

fu = zeros(1,m);

fv = zeros(1,m);

fu(1:m/4) = sqrt(2);

fu(3*m/4 + 2:end) = sqrt(2);

fu(m/4 + 1)=j;

fu(3*m/4 + 1)=-j;

fv(m/4+2:3*m/4) = sqrt(2);

fv(3*m/4 + 1)=1;

fv(m/4 + 1)=1;

u=ifft(fu);
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v=ifft(fv);

%% Calcule matrix U

for i=1:m/2

U(:,i) = circshift(u,[1 (i-1)*2])’;

end

for i=1:m/2

U(:,i+m/2) = circshift(v,[1 (i-1)*2])’;

end

(a) 2D (b) 3D

Figure 5.9: U matrix of Shannon basis, real part

(a) 2D (b) 3D

Figure 5.10: U matrix of Shannon basis, imaginary part
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5.3.3 Daubechies Wavelets

We will compute the Daubechies 4 and Daubechies 6.

Code
function Daub = Daub4(x)

%% Define alpha & beta

a1 = (1+sqrt(3))/(4*sqrt(2));a2 = (3+sqrt(3))/(4*sqrt(2));

a3 = (3-sqrt(3))/(4*sqrt(2));a4 = (1-sqrt(3))/(4*sqrt(2));

b1 = a4;b2 = -a3;b3 = a2;b4 = -a1;

[rows,cols]=size(x);

% Check if size = pow(2), otherwise call padding function

[new_size,N] = padding(cols);

x_new = zeros(rows,new_size);

x_new(1:rows,1:cols)=x;

a = zeros(1,new_size);

a(1:4)=[a1 a2 a3 a4];

b = zeros(1,new_size);

b(1:4)=[b1 b2 b3 b4];

% Calcule of matrix

m=0;

for i=1:new_size/2

S(i,:)=circshift(a,[1 m]);

m=m+1;

end

m=0;

for i=1:new_size/2

D(i,:)=circshift(b,[1 m]);
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m=m+1;

end

A=[S;D];

Daub=A*x_new’;

%%% Padding

function [m,j]=padding(n)

m=2;

j=1;

while n>m

m=m*2;

j=j+1;

end

(a) 2D (b) 3D

Figure 5.11: U matrix Daubechies4 basis
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Daubechies6 function.

Code
function U = Daub6(rows,cols)

a=1-sqrt(10);

b=1+sqrt(10);

c=sqrt(5+2*sqrt(10));

u = zeros(1,cols);

v = zeros(1,cols);

u(1) = b+c;

u(2) = 2*a + 3*b + 3*c;

u(3) = 6*a + 4*b + 2*c;

u(4) = 6*a + 4*b - 2*c;

u(5) = 2*a + 3*b - 3*c;

u(6) = b-c;

u = u.*(sqrt(2)/32);

v(1) = -u(2);

v(2) = u(1);

v(end)=u(3);

v(end-1)=-u(4);

v(end-2)=u(5);

v(end-3)=-u(6);

%% Calcule matrix U

for i=1:cols/2

U(:,i) = circshift(u,[1 2*(i-1)]).’;

U(:,i+cols/2) = circshift(v,[1 2*(i-1)]).’;

end
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(a) 2D (b) 3D

Figure 5.12: U matrix of Daubechies6 basis



Chapter 6

Applications: Compression and

De-noising

In this chapter we will deal with wavelets basis for compression and de-noising signal.

The reason why wavelets basis are used for these applications is because they are

well localized in frequency, and moreover because Daubechies wavelets are also well

localized in space (as we will see in the examples of image compression). For a

better comprehension of one dimensional signal processing, to analyse the spectrum

of music, see [5].

For each N ∈ N one can use Daubechies’s DN wavelets for �2(Z), for which

u has N nonzero components, to construct supported wavelets for L2(R). As N

increases, Daubechies’s DN wavelets have larger support intervals. However, this is

compensated in many applications by the facts that DN tend to have more cancel-

lation and more smoothness.

The smoothness of Daubechies’s wavelets grows linearly with their support,

and linear growth is the best. For both Daubechies wavelets transforms and the

corresponding scaling function require just a few values from the signal to get a

good approximation, and that is Daubechies provide us with a powerful tool for

signal processing.

109







construct compactly supported

Both Daubechies

that is why Daubechies
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6.1 Signal Compression

Wavelet transform produces a large number of values having zero, or near zero, mag-

nitudes. The compression signal is obtained by applying a wavelet transform, and

getting only the largest values obtained. After that, we apply the inverse transform

and we will get the compression signal. Here, we will not deal with the encoding of

those pixels that are set to zero.

To compare the results with the different wavelets basis we introduce the def-

inition of the error that will measure the output signals.

Definition 6.1. Mean Square Error(MSE) is defined as

MSE =
1

N

�

i,j

(f(i, j)− g(i, j))2 ,

where N is the total number of elements, and the sum over i, j is the sum over all

the elements in the signal, f is the original signal and g is its compression.

In the examples the relative error is displayed, and it is calculated by dividing

the MSE with the norm of the signal

Error = N
MSE

norm(f)
,

where f is the given signal.

Example 6.2. We introduce two examples of 1 dimensional signal compression.

1.

z(n) =






0 0 ≤ n ≤ 127

sin
�

|n−128|1.7
128

�
128 ≤ n ≤ 255

0 256 ≤ n ≤ 383

sin
�

|n−128|2
128

�
384 ≤ n ≤ 447

0 448 ≤ n ≤ 511
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Figure 6.1

2.

z(n) =






1− n
64 0 ≤ n ≤ 63

0 64 ≤ n ≤ 255

5− n
64 256 ≤ n ≤ 319

0 320 ≤ n ≤ 447

Figure 6.2
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Figure 6.3

In this example we can see that in Figure 6.2 it seems that the Fourier trans-

form compress better the signal, but as we can see in Figure 6.3, where we

have taken more coefficients in the transformation, the Fourier compression

is still having problems in those parts where have large changes, and not like

wavelets transforms. With only the 20% of the coefficients the Daubechies6

has an error of 10−16.

Example 6.3. Here, we have the image of barbara.png. It has been compressed by

taking the 10% of the largest coefficients of each wavelet and Fourier transform. If

we compare the results by using Fourier and wavelets, we see that the outputs in Haar

and Daubechies wavelets are better than the first one, as explained in Chapter 5.
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(a) Original image. (b) Fourier 10% coeff.

(c) Haar 10% coeff. (d) Daubechies6 10% coeff.

Figure 6.4: Compression barbara.png image.
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Figure 6.5

6.1.1 Matlab implementation

This function calculates Fourier, Daubechies6 and Shannon wavelet transformation.

Code
function compressWavelets(x,K)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%

%% Compress signal x taking the higher

%% values in diferent transform

%% wavelets

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[rows,cols]=size(x);

v_max = [max(x)];

v_min = [min(x)];
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% Fast Fourier

F = fft(x);

F_err = F;

[order,v_f]=sort(abs(F),’descend’);

F(v_f(K+1:end))=0;

Fourier = ifft(F);

v_max = [v_max max(real(Fourier))];

v_min = [v_min min(real(Fourier))];

error_Fourier = norm(real(Fourier) - x)/norm(x)

% D6

U = TransfD6(rows,cols);

D = D6(x,U);

D_err = D;

[order_d,v_d] = sort(abs(D),’descend’);

D(v_d(K+1:end))=0;

Daub6=ID6(D,U);

v_max = [v_max max(real(Daub6))];

v_min = [v_min min(real(Daub6))];

error_Daub6 = norm(-(Daub6) + x)/norm(x)

% Shannon transform

Us = TransfSh(rows,cols);

S = Shannon2(x,Us);

S_err = S;

[order_s,v_s]=sort(abs(S),’descend’);

S(v_s(K+1:end))=0;

Shannon=IShannon(S,Us);

v_max = [v_max max(real(Shannon))];
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v_min = [v_min min(real(Shannon))];

error_Shannon = norm(real(Shannon) - x’)/norm(x)

%% Relative error for k=0:300

error_f=[];

error_d=[];

error_s=[];

norm_x = norm(x);

for k=100:-1:1

F_err(v_f(k:end))=0;

Fourier_err = ifft(F_err);

error_f = [error_f norm(real(Fourier_err) - x)/norm_x];

D_err(v_d(k:end))=0;

Daub6_err = ID6(D_err,U);

error_d = [error_d norm(real(Daub6_err) - x)/norm_x];

S_err(v_s(k:end))=0;

Shannon_err = IShannon(S_err,Us);

error_s = [error_s norm(real(Shannon_err) - x’)/norm_x];

end

%% Plot the results

figure;

subplot(3,2,1);plot(x);axis([0 length(x) min(v_min) max(v_max)]);

title(’Signal’);

subplot(3,2,2);plot(real(Fourier));

axis([0 length(x) min(v_min) max(v_max)]);

title([’Fourier with ’,int2str(K),’ higher coeff.’]);

subplot(3,2,3);plot(real(Daub6));

axis([0 length(x) min(v_min) max(v_max)]);
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title([’Daub6 with ’,int2str(K),’ higher coeff.’]);

subplot(3,2,4);plot(real(Shannon));

axis([0 length(x) min(v_min) max(v_max)]);

title([’Shannon with ’,int2str(K),’ higher coeff.’]);

subplot(3,2,5);plot(error_f(end:-1:1),’b’);hold on;

plot(error_d(end:-1:1),’g’);plot(error_s(end:-1:1),’r’);hold off;

title(’Red: Shannon. Green: Daub6. Blue: Fourier.’);

Compression image by Daubechies6.

Code
function [fcompres,coef]=compress_image_d6(signal,level,eps)

[r,c]=size(signal);

%Order

F_abs=abs(signal);

[order,x]=ordenar_matriz(F_abs);

%Be carefull, now order is a vector!!

Fcompres=signal;

Fcompres=reshape(Fcompres,1,[]);

Fcompres(x(eps+1:end))= 0;

Fcompres = reshape(Fcompres,[r c]);

fcompres = InvD6_rkl(Fcompres,level);

Compression image by Haar.

Code
function [fcompres,coef]=compress_image_haar(signal,level,eps)

[r,c]=size(signal);
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%Order

F_abs=abs(signal);

[order,x]=ordenar_matriz(F_abs);

%Be carefull, now order is a vector!!

Fcompres=signal;

Fcompres=reshape(Fcompres,1,[]);

Fcompres(x(eps+1:end))= 0;

Fcompres = reshape(Fcompres,[r c]);

fcompres = Inv_rkl(Fcompres,level);

Auxiliar function order matrix.

Code
function [max_v,x]=ordenar_matriz(A)

[r,c]=size(A);

B = reshape(A,1,[]);

[max_v,x] = sort(B,’descend’);

6.2 Signal De-noising

In this section we will obtain signal de-noising by observing the wavelet transfor-

mation of the signal, and thresholding it to remove the frequencies of noise. We

have applied this same reasoning to separate frequencies of a given signal that has

distinctives high frequencies and low frequencies.

Example 6.4. In both Figures 6.6 and 6.7 we have used the Daubechies6 transform

of level 4 and 5 respectively. The processed signal is a sinusodial with Gaussian

noise. If we consider the transform signal, we will see that noise is between the
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interval [−3 3]. Then, by thresholding the transformation with this interval, we will

obtain the desire signal. Notice that the more level we apply in the transform, the

best results are obtained.

Figure 6.6: Signal De-noising.

Figure 6.7: Signal De-noising.

Example 6.5. Given a signal with two different frequencies, we attempt to separate

them by thresholding the wavelet transform, obtaining the high frequencies and the

low frequencies, and finally applying the inverse transform to each one and getting

the two different signals.
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Figure 6.8: Separate frequencies barreja.wav.

Figure 6.9: Separate frequencies murcielate.wav.

In the implementation of the program, we only have selected an array of lenght

1024 in the signal, because the size of the original signals exceeds the memory of

Matlab program. Even so, the frequencies are well separated in this region of the

array.

Example 6.6. Here we deal with image de-noising. In Figure 6.10 we have the

picture of lena.png with Gaussian noise. If we look to Figure 6.10, we see that the

histogram of the image has form of a Gaussian function. Then, if we calculate the
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deviation of the original image, when we make the wavelet transform, we can delete

the noise by thresholding with the value of its deviation.

Figure 6.10: Histogram of lena.png with Gaussian noise.

In this example we have de-noised the image using two different values of

threshold. In Figure 6.11 we have used the deviation of the original image, which is

equal to 0.21. In Figure 6.12 we have used three times the deviation of the image.

We observe that in first figure the noise is not completely deleted, while in the second

figure there is not noise, but all the image has been blured.

(a) Original image. (b) Haar (c) Daubechies6

Figure 6.11: De-noising lena.png with Gaussian noise. Threshold: 0.21.
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(a) Original image. (b) Haar (c) Daubechies6

Figure 6.12: De-noise lena.png with Gaussian noise. Threshold: 3*0.21.

6.2.1 Matlab implementation

Daubechies6 de-noising signal.

Code
function denoise = denoise_d61d(signal,k,T)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%

%% Denoise signal k, T is an interval

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[r c] = size(signal);

denoise = signal.*(abs(signal)>T(2));

denoise = ID61D(denoise,k);
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Daubechies6 separating frequencies.

Code
function [high,low] = separate_d61d(signal,k,T)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%

%% Separates signal, level k, T is an interval

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[r c] = size(signal);

high1 = signal.*(abs(signal)>T(2));

low1 = signal.*(abs(signal)<T(2));

high = ID61D(high1,k);

low = ID61D(low1,k);

Image de-noising by Daubechies6.

Code
function denoise=denoise_image_d6(signal,level)

Fdenoise=signal;

dev = std2((signal));

denoise2 = Fdenoise.*(abs(Fdenoise)> 3*dev);

denoise = InvD6_rkl(denoise2,level);

Image de-noising by Haar.

Code
function denoise=denoise_image_haar(signal,level)
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Fdenoise=signal;

dev = std2(abs(signal));

denoise2 = Fdenoise.*(abs(Fdenoise)> 3*dev);

denoise = Inv_rkl(denoise2,level);
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