
DISCRETE WAVELETS ON ZN

Alberto Debernardi Pinos

Adviser: F. Javier Soria de Diego

Advanced Mathematics Master Thesis
University of Barcelona
Barcelona, June 2014

Contents

1 Introduction 1

2 The Discrete Fourier Transform (DFT) 7
2.1 Definitions and properties . 7
2.2 The Fast Fourier Transform . 11
2.3 Localized basis of vectors . 13
2.4 The Uncertainty Principle . 15

3 Wavelets on ZN 29
3.1 Construction of a first-stage wavelet 29
3.2 Examples of first-stage wavelets . 35

3.2.1 The Haar transform . 36
3.2.2 The Shannon transform . 39
3.2.3 The real Shannon transform 40
3.2.4 Daubechies’ D6 wavelet . 41

4 The iteration step: p-th stage wavelets 47
4.1 Preliminaries: Operators and auxiliary results 48
4.2 The iteration step . 52
4.3 Examples comparing first-stage and p-th stage wavelet basis 62

5 Applications and comparisons 67
5.1 Wavelet localization . 67
5.2 Data compression in 1 dimension . 70
5.3 Extremal examples . 73
5.4 Data compression in 2 dimensions . 77

6 Annex – compression and comparison code in MATLAB 83
6.1 Fourier transform . 84
6.2 Wavelet transforms . 86

6.2.1 Haar transform . 86
6.2.2 Shannon real transform . 88
6.2.3 Daubechies D6 transform . 92

6.3 Relative error computation . 96
6.4 Computation of L(N) . 98

i

Contents ii

Bibliography 101

Index 103

Acknowledgments

To begin I want to thank my advisor F. Javier Soria de Diego for all the help brought
during the production of this thesis, and for bringing me the opportunity to develop
my own (small) result, which was very gratifying (see Section 2.4). Also, for all
the hours he spent on revising the former versions of this document (which were not
few), and the support he brought me to solve some LATEX and MATLAB issues I had,
and last, but not least, for the working guidelines defined from the very beginning,
that allowed me to successfully complete this work (relatively) fast and rigorously.
I also appreciate the effort of all the professors I had during this year, who made
me step up a lot in my mathematical knowledge.

Next, I want to thank all my Master’s colleagues that made this year to be less
tough (in terms of the hard work that this course requires), and specially Brendan,
Vı́ctor Á. and Dani G., with whom I have established a good friendship during this
year. I also want to mention my closest friends Alberto and Eric, and my beloved
Ainoa, who supported me every single moment during the course, and helped me
with everything she could, as well as my family, who are taking care of me (in the
economical sense) in these hard times.

Finally, I want to give credit to all the authors cited: all of them put their bit in
the developing of this work, especially M. Frazier, whose book [7] is the cornerstone
of this document. Most of the results were extracted from this book, and I do not
claim to own any of these. Also, special mention to [3] and [4], which were crucial
for the completion of my own result, since they are closely related to it.

iii

Chapter 1

Introduction

This Master’s thesis is devoted to develop the theory of discrete (finite-dimensional)
wavelets. In this context, wavelets are very concrete basis of vectors with special
properties that make them suitable for the purpose of data compressing or digital
signal processing, among others. Thus, this will be our ultimate goal in the study
of wavelets. Since we are considering finite-dimensional vectors, the whole theory is
based in linear algebraic techniques. This theory can also be extended for vectors
in Z, and for functions in R; actually, there will be several analogies between these
different settings that will be remarked throughout the work. In fact, this theory was
firstly studied in R, being [10] and [11] its predecessors. After introducing the main
results in the discrete setting, we also give several examples of data compression.
Surprisingly, wavelets will allow us to reduce significantly the amount of information
needed to reproduce a vector (or a matrix), which is very important for data storage
and transmission, since the less information we need, the less resources we have to
use.

Chapter 2 presents all the background needed: it begins with the definition of
the space of vectors we are going to work with, `2(ZN) (Definition 2.1.1). As `2(ZN)
is a finite-dimensional C-vector space, we will be able to use several well-known
results of linear algebra.

The main concept is the Fourier basis, the orthonormal basis for CN whose
vectors Fm are of the form

(Fm)n = e2πinm/N , n = 0, . . . , N − 1.

Such a basis leads to a linear transformation through the complex inner product,
called the Discrete Fourier Transform (DFT) ẑ of a vector z. As we will see, many
results we are going to obtain throughout this work are expressed in terms of the
DFT (and specially the ones related to wavelets). In fact, this is because such a
transformation has very good properties. For instance, we have the formula for the
convolution of two vectors

ẑ ∗ w = ẑŵ (component-wise product)

shown in Lemma 2.1.8. Another remarkable property is that we do not need all the
N2 products required to compute a linear transformation, since some cancellations

1

2

occur in the expression of the DFT. There is a fast algorithm which exploits this
fact, named Fast Fourier Transform (FFT), and it is developed in Section 2.2. This
algorithm can reduce the number of complex multiplications to N logN , when N is
a power of 2, which is a very good fact from the computational point of view.

Later on, in Section 2.3, we focus our interest in data compression, introducing
the concept of localization (Definitions 2.3.1 and 2.3.3). Basis which are localized
work properly for data compression, and since the DFT has very nice properties,
we could ask ourselves if it is localized, but that is not the case. Contrarily, wavelet
basis have the localization property, and that is why they will become our main
object of study. Finally, we complete the chapter with Section 2.4, which is devoted
to the uncertainty principle, a well-known (in all of its forms) principle that gives
a lower bound for the number of nonzero elements of a vector and its DFT. More
specifically, if we denote by H(z), H(ẑ) the number of nonzero elements of z and
ẑ ∈ `2(ZN) respectively, then we have that

H(z)H(ẑ) ≥ N.

Motivated by the uncertainty principle, a new question arises. Defining L(N) as the
maximum number of zero elements that z and ẑ can have at the same time, for any
z, we ask ourselves how big can L(N) be. The development for the computation of
these numbers is the most original part of this Master’s thesis, and it concludes that
we can compute the number L(N), for every N , solving the inequalities given in
Proposition 2.4.14. This can be done through the explicit formulas for the numbers
HFN

appearing in those inequalities. These formulas were obtained by S. Delvaux
and M. Van Barel in [3] and [4], and they turned to be crucial in order to obtain
the conclusion for every number N . Nevertheless, there are simple expressions of
N for which we could already compute the number L(N), being these N = n2 or
N = n(n − 1). In fact, we realize that L(N) depends on the decomposition of N
rather than on its magnitude. Theorems 2.4.7 and 2.4.9 give a lower bound for those
numbers based on its factorization: for instance, the first one states that if N = nm,
the bound increases as |n−m| decreases. In fact, that is why the mentioned cases n2

and n(n− 1) were easy to compute, since we already had an upper bound for L(N)
given by the uncertainty principle, and for those special decompositions, the lower
and upper bounds coincide, yielding equality. For prime numbers (bigger than 2),
it follows easily from Chebotarev theorem that L(N) = [N/2], and for odd powers
of 2 (Example 2.4.18), we have that L(22n+1) = 22n+1 − 2n+1, which coincides with
the lower bound given in Theorem 2.4.7. At the end of the chapter, we show a table
containing the values of L(N), for the first 99 natural numbers.

Chapter 3 begins introducing two operations for vectors of `2(ZN): the conjugate
reflection (Definition 3.1.1) and the circular translation (Definition 3.1.3), and their
properties related to the DFT. An important result is Lemma 3.1.4, which allows
us to compute inner products of a signal z and the translations Rkw of a vector
w through the convolution z ∗ w. Thanks to the relation of the convolution of two
vectors with the DFT mentioned earlier, we are allowed to compute inner products,
and therefore, the coefficients 〈z, wj〉 of a vector z in a specific basis B = {wj}N−1j=0

3 Chapter 1. Introduction

using the FFT. In principle, this may not seem so important, but by Lemma 3.1.4,
we note that if B contains many translations of a single vector, then we will need
to compute less convolutions in order to obtain the coefficients of z in the basis B.
Actually, a (first-stage) wavelet basis is defined as an orthonormal basis generated
by the even translations of two vectors u and v (Definition 3.1.6), so that we only
need two convolutions in order to compute the expansion of a vector in such a
basis. Recall that we want to find basis of vectors which are localized in space and
frequency; wavelet basis will have this property. Although, we first approach the
problem of finding localized basis looking for basis consisting of translations of a
single vector. This approach will not be successful, since, by Lemma 3.1.5, we have
that a basis of this kind is not frequency localized (and the very first example of
this fact is the Euclidean basis). The next step of this approach, i.e., allowing the
basis to be formed by translations of two vectors instead of only one, will be the
good choice. The rest of Section 3.1 contains some auxiliary results to set up the
background for the proof of Theorem 3.1.14, the main result of the chapter. It gives
a characterization of wavelet basis in a very simple way. Summarizing, this theorem
asserts that

{R2ku}N/2−1k=0 ∪ {R2kv}N/2−1k=0

is a first-stage wavelet basis if and only if the equalities

|ûn|2 + |ûn+M |2 = 2, |v̂n|2 + |v̂n+M |2 = 2, ûnv̂n + ûn+M v̂n+M = 0

hold for every n = 0, 1, . . . , N/2 − 1. To conclude, we show on Proposition 3.1.16

how to construct a wavelet basis using only a vector u such that {R2ku}N/2−1k=0 is an
orthonormal set with N/2 elements. Note that this set can potentially be a wavelet
basis generator. In fact, we give an expression of v depending on u that makes u and
v generate a wavelet basis for `2(ZN). We give examples of four well-known wavelet
basis in Section 3.2. The first one is the Haar basis (Definition 3.2.1), which can be
checked to be a wavelet basis directly from the definition. The linear transformation
yielded by this basis can be seen as an increasing of resolution, as illustrated in
Example 3.2.3, which shows the 3rd order Haar transform of a vector (that is, the
iteration of the Haar first-stage wavelet basis as a 3rd-stage wavelet basis, developed
in Chapter 4. Next, we have the Shannon wavelet basis: one with complex vectors,
and another one with real-valued vectors. We mainly focus in the real Shannon
basis, since the signals we are interested in are real-valued (mainly audio signals
and gray-scale pictures). Shannon basis are not defined explicitly, but through the
DFTs û and v̂ and the characterization of Theorem 3.1.14. Moreover, real Shannon
basis turns out to be nicely localized, being this a good choice for the purpose of
data compression. The last basis presented in the chapter is Daubechies D6 basis,
whose generators are chosen to have only six nonzero entries, and therefore it is well
localized, yielding good compression as well. Moreover, for any even number K, we
can define Daubechies DK wavelet basis, where the generators are chosen to have
K nonzero elements. Actually, the case K = 2 coincides with the Haar basis.

Chapter 4 is devoted to create orthonormal basis for `2(ZN) that will yield even
better properties than the first-stage wavelets defined in the preceding chapter. Since

4

those basis will be obtained from a first-stage wavelet applying an iteration to one
of its generators (namely, u). This process returns the so-called p-th stage wavelet
basis. The iteration is described quite simply. Let p be a positive integer and
suppose that 2p divides N . Choose a wavelet basis (generated by even translations
of two vectors, u and v) for `2(ZN) and a signal z in the same space. Now we apply
the wavelet transform to z, obtaining N/2 coefficients that correspond to the inner
products of z with the translations of u, and another N/2 obtained in the same
way through v. Now we can regard the coefficients related to u as another vector
y, belonging to `2(ZN/2). Thus, if N/2 is divisible by 2, and we define u2, v2 as the
generators of the same wavelet basis in `2(ZN), we can apply the transform to y and
obtain N/4 coefficients related to u2, and the same quantity related to v2. As long
as 2k divides the initial length N , we can keep iterating this. Although the process
is very simple, the improvement we have with respect to first-stage wavelet basis is
huge. For instance, in Section 4.3 we show a couple of compression methods through
the 3rd stage Shannon real wavelet and 4th stage Daubechies D6 wavelet. Those
examples illustrate that higher stage wavelets bring much better compression that
the first stage one, or equivalently, keeping the same amount of information for both
stages, the loss of information is drastically reduced if we use higher stage wavelets
(whenever we keep a reasonable amount of coefficients). Section 4.1 contains the
background needed to develop the first iteration of a wavelet basis (i.e., the second
stage), along with a helpful change of basis algorithm (illustrated by the filter bank of
Figure 4.2) to implement the wavelet transforms (and their inverses). This algorithm
decomposes a signal into its coefficients in a certain basis, and then performs a
reconstruction to recover the signal expressed in the original basis, but in principle
we do not know if the reconstruction will be perfect. The most important result
of this part is Theorem 4.1.6, which provides necessary and sufficient conditions
for a basis of `2(ZN) to yield a perfect reconstruction of the input signal by the
filter bank of Figure 4.2, or equivalently, the input signal equals the output one. It
turns out that first-stage wavelet basis return a perfect reconstruction of any input
signal by this algorithm, as we note in Remark 4.1.7. In Section 4.2 we develop the
iteration of the above algorithm through p-th stage filter banks (Figure 4.4 shows the
last step of the decomposition, as the first step of the reconstruction). The vectors
u1, v1, u2, v2, . . . , up, vp mentioned above will be the ones yielding such a filter bank,
and they will be defined as a p-th stage wavelet (Definition 4.2.2), although that set
of vectors will not be a basis, since they do not even have the same lengths, but the
definition is motivated by the fact that we can get an orthonormal basis for `2(ZN)
using them, as we conclude in Theorem 4.2.18.

Chapter 5 contains several examples of data compression, in one and two di-
mensions. The purpose is to illustrate all the nice properties of wavelets that we
have seen, as for instance, the localization property. In Section 5.1 we show the
histograms of the magnitudes of the generators’ coefficients for all the basis we have
presented throughout the work, as well as the histograms of their DFTs. They are
shown in Figures 5.3, 5.4, and 5.5: the one on the left corresponds to the generator,
and the right, its DFT. An important thing to observe is that even though the co-

5 Chapter 1. Introduction

efficients of the DFTs are sparse, they are very small in magnitude: none of them
exceeds 0.1. On the other hand, Figure 5.1 contains the histogram of the Euclidean
basis. As expected, it is not frequency localized at all. In Section 5.2 there are ex-
amples of data compression in `2(ZN), although we are only considering real-valued
signals, since an application of all this theory is audio digital analysis1. In each one
of the examples, we compare the compression yielded by the four following basis of
vectors: Euclidean, Fourier, Shannon (real), and Daubechies D6, and we also show
a plot of the relative error for each one of the approximations. The compression of
a signal z is done in the following way: first we choose the basis B we want to use.
After that, we compute the coefficients of z in B, say [z]B, and we make zero those
which are not one of the k% highest, obtaining the compression [z]′B . It is worth to
mention that the real compression is done through algorithms that can transform
a vector with many zeros in a vector with less components (through an invertible
process), so that we need less space to save the information of the original vector.
Finally, the approximation of z, say w, is obtained by writing the coefficients of
the vector [z]′B in the original basis, and therefore, the relative error made in the
approximation is given by the formula

‖z − w‖
‖z‖

.

Note that once B and z are fixed, this expression is a function depending on k (for
each percentage of non-zero values we keep, there is a different approximation). It is
decreasing, and takes values in [0, 1]. Thus, the faster its decay is, the better is the
compression. For most of the signals z, wavelet basis have nicer relative error func-
tions than the Fourier basis (and obviously, Euclidean basis as well). Example 5.2.3
shows a nice compression through Daubechies D6 wavelet. In this case, the relative
error already vanishes when k = 20 (see Figure 5.8). In fact, this is because such a
basis’ generators have many components equal to zero, as stated previously. There-
fore, this basis will work properly when compressing signals with a large amount of
zeros, which is the case. But not every signal z is nicely compressed by wavelet ba-
sis: in Section 5.3 we observe that sinusoidal signals do not give the desired results,
and this is because the elements of the Fourier basis are very similar to sinusoids.
Hence, the number of vectors in the Fourier basis needed to represent such a signal
will be low. Figure 5.11 shows that even though the relative error function of the
Fourier is not so good, it is still better than wavelet basis’. To conclude the chapter,
we apply the previous techniques to the 2-dimensional case in Section 5.4.

Finally, Chapter 6 shows the MATLAB code implementing the compression
method for the Fourier, Haar, Shannon (real), and Daubechies D6 basis, as well
as the construction of the relative error function. These compression programs
work for signals in 1 and 2 dimensions. The programs relative to wavelet basis will
have an extra input variable, namely the one that will define the chosen stage for
the iteration. Moreover, the program related to the Haar transform will not have

1The pitch of a sound is represented mathematically with real-valued functions, containing its
frequencies. It is known that human hearing range goes from 20 Hz to 20 000 Hz.

6

the option of choosing the number of coefficients we will keep, since as we noted,
such transform can be seen as a change of resolution. Therefore, for this basis we
will always keep half of the coefficients, which will be the ones obtained from the
inner products with the first generator u. The last section of this chapter (6.4)
corresponds to an algorithm that computes L(N) joining the results obtained form
Propositions 2.4.11, 2.4.14, and Theorem 2.4.17.

Chapter 2

The Discrete Fourier Transform
(DFT)

2.1 Definitions and properties

In what follows we will be working with finite sequences of complex numbers, which
we can consider just to be vectors. So, our workspace will always be the following:

Definition 2.1.1. 1. We define ZN = {0, 1, . . . , N − 1} as the ring with N ele-
ments such that if a, b ∈ Z, then a ≡ b in ZN if and only if a ≡ b mod N .

2. `2(ZN) =
{
z = (z(0), z(1), . . . , z(N − 1)) : z(k) ∈ C, for all k

}
.

Note that ifm ∈ Z, we can recover its corresponding index k ∈ ZN from the following
formula:

k ≡ m mod N.

A way of interpreting the vectors z ∈ `2(ZN) is to think of them as functions
from the set ZN into the complex numbers. Here we can already find a big advantage
with respect to analysis: given a measurable set Ω and a function f : Ω → R, it is
not always true that f is square-integrable, i.e., f ∈ L2(Ω). In this context, L2(Ω)
turns into `2(ZN) and every vector of complex numbers of length N will belong to
this space, since “square-integrable” turns into “square-summable”, and a sum of a
finite quantity of numbers will always be finite. This is one less thing we have to
worry about, and moreover, we will be able to apply the whole analysis machinery
into the development of this field. Furthermore, since `2(ZN) is an N -dimensional
C-vector space, linear algebra will also be very useful. This leads us to the next
definition:

Definition 2.1.2. Let z, w ∈ `2(ZN). The complex inner product in this space is
defined as

〈z, w〉 =
N−1∑
k=0

z(k)w(k),

7

2.1. Definitions and properties 8

with the Euclidean norm

‖z‖ =

(
N−1∑
k=0

|z(k)|2
)1/2

.

We will say that z, w are orthogonal if 〈z, w〉 = 0, and denote it by z ⊥ w.

Notation: From now on, we will denote the components of a vector z ∈ `2(ZN)
with subindices, i.e., zk := z(k).

Definition 2.1.3. In `2(ZN × ZM), we define the (2-dimensional) Fourier basis
{Fn,m}n,m, where

(Fn,m)j,k =
1√
NM

e2πi
(

jn
N

+ km
M

)
, 0 ≤ n ≤ N − 1, 0 ≤ m ≤M − 1.

For the 1-dimensional case we consider M = 1.

Proposition 2.1.4. The Fourier basis is an orthonormal basis.

Proof. With the notation above, we will consider M = 1. Let 0 ≤ k, l ≤ N − 1. We
want to prove that

〈Fk, Fl〉 = δkl.

Suppose first that k = l. Then, trivially:

〈Fk, Fl〉 =
1

N

N−1∑
j=0

e2πij(k−l)/N =
1

N
·N = 1.

On the other hand, if k 6= l, the expression above turns to be a geometric sum:

〈Fk, Fl〉 =
1

N

N−1∑
j=0

(
e2πi(k−l)/N

)j
=

1

N
· 1− e2πi(k−l)

1− e2πi(k−l)/N
= 0.

Definition 2.1.5. Let A ∈ `2(ZN ×ZM). We define the Discrete Fourier Transform
(DFT) as follows:

Ân,m =
N−1∑
j=0

M−1∑
k=0

Aj,ke
−2πi
(

jn
N

+ km
M

)
. (2.1)

Note that we are ignoring the coefficient 1/
√
NM appearing in the Fourier basis

vectors. This definition is equivalent to say that

Ân,m =
√
N〈A,Fn,m〉. (2.2)

9 Chapter 2. The Discrete Fourier Transform (DFT)

Proposition 2.1.6. 1. The DFT is always invertible. Moreover, the Inverse
Discrete Fourier Transform (IDFT) is given by

Ǎn,m =
1

NM

N−1∑
j=0

M−1∑
k=0

Aj,ke
2πi
(

jn
N

+ km
M

)
. (2.3)

2. Parseval’s identity: for any z, w ∈ `2(ZN),

〈z, w〉 =
1

N
〈ẑ, ŵ〉.

3. Plancherel’s identity: for z ∈ `2(ZN),

‖z‖ =
1

N
‖ẑ‖. (2.4)

Proof. 1. Let M = 1 and z ∈ `2(ZN). Then, using equation (2.2) and the fact
that the N Fourier vectors Fm form a basis, we have that

zn =
N−1∑
k=0

〈z, Fk〉(Fk)n =
N−1∑
k=0

1√
N
ẑk

1√
N
e2πink/N =

1

N

N−1∑
k=0

ẑk e
2πink/N .

2. For the second part, we use the linearity of the scalar product and equation
(2.2):

〈z, w〉 =

〈
N−1∑
k=0

〈z, Fk〉Fk, w

〉
=

N−1∑
k=0

〈z, Fk〉〈Fk, w〉 =
N−1∑
k=0

〈z, Fk〉〈w,Fk〉

=
1

N

N−1∑
k=0

ẑkŵk =
1

N
〈ẑ, ŵ〉.

3. If we take w = z in 2., we obtain Plancherel’s identity.

In applied analysis, we will use the 1-dimensional transform for audio signals,
where the component zn is the value of the signal z at time n, and the 2-dimensional
transform will be used for images, where the component An,m will denote the gray-
scale color intensity of an image at the pixel (n,m). For simplicity, we will always
work the 1-dimensional case for theoretical purposes.

The first observation, is that for a signal z ∈ `2(ZN), the DFT requires N2

products, but there is an algorithm called Fast Fourier Transform (FFT, Section 2.2)
which computes the DFT and requires N logN products.

Before introducing the concept of convolution of two vectors, it is worth to make
an observation which relates the DFT and its inverse: fix n ∈ ZN , and let z ∈ `2(ZN).
Then, using equations (2.1) and (2.3):

ž−n =
1

N

N−1∑
k=0

zke
2πi(−nk)/N =

1

N

N−1∑
k=0

zke
−2πink/N =

1

N
ẑn,

2.1. Definitions and properties 10

and since ž has period N , we can rewrite it as

žN−n =
1

N
ẑn.

This observation implies that we can also use the FFT algorithm in order to compute
the inverse of the DFT.

Definition 2.1.7. We define the convolution of two vectors A,B ∈ `2(ZN ×ZM) as

(A ∗B)n,m =
N−1∑
j=0

M−1∑
k=0

Aj,kBn−j,m−k.

If we want to compute a convolution of two vectors z, w ∈ `2(ZN), we notice that
it also requires a high number of multiplications (concretely N2). As we are going
to see, we can use the FFT algorithm in order to compute convolutions quickly:

Lemma 2.1.8. For every n ∈ ZN :

(̂z ∗ w)n = ẑnŵn.

Proof. Using the definition of the DFT:

(̂z ∗ w)n =
N−1∑
m=0

(z ∗ w)m e
−2πinm/N =

N−1∑
m=0

N−1∑
k=0

zm−kwke
−2πin(m−k)/Ne−2πink/N

=
N−1∑
k=0

wke
−2πink/N

N−1∑
m=0

zm−ke
−2πin(m−k)/N

=
N−1∑
k=0

wke
−2πink/N

N−k−1∑
j=−k

zj e
−2πinj/N .

In the last equation we made a change of index, namely j = m − k. It would only
remain to prove that for any vector x ∈ `2(ZN), it holds that

N+k−1∑
n=k

xn =
N−1∑
n=0

xn, (2.5)

which is trivial.

Hence, every time we need to compute a transformation which is given in terms of
convolutions, we can use the DFT.

11 Chapter 2. The Discrete Fourier Transform (DFT)

2.2 The Fast Fourier Transform

In Section 2.1 we noticed that computing the DFT of a vector z ∈ `2(ZN) requires
N2 complex products, and hence, four real products, which can be lowered to three
by just adding sums. Indeed, consider two complex numbers ω1 = a+bi, ω2 = c+di.
Then,

ω1ω2 = ac− bd+ i(ad+ bc) = ac− bd+ bc− bc+ i(ad+ bc+ bd− bd)

= c(a+ b)− b(c+ d) + i(b(c+ d) + d(a− b)),
so the multiplications needed are just c(a + b), b(c + d), d(a − b). Nevertheless,
we will reduce this number drastically if we use the FFT, which will be developed
throughout this section. First of all, we will consider the simplest case when N is
even, which will illustrate the basic idea behind the FFT.

Definition 2.2.1. Let M ∈ N and N = 2M . If z ∈ `2(ZN), define

uk = z2k, for k = 0, 1, . . . ,M − 1,

vk = z2k+1, for k = 0, 1, . . . ,M − 1.

Moreover, we will denote ẑ the DFT of z in `2(ZN), and û, v̂ the DFTs of u, v
respectively, in `2(ZM).

Lemma 2.2.2. In the context of Definition 2.2.1, for m = 0, 1, . . . ,M − 1 it holds
that

ẑm = ûm + e−2πim/N v̂m.

Also, for m = M,M + 1, . . . , N − 1, let l = m−M (and hence, l = 0, 1, . . . ,M − 1).
Then:

ẑm = ẑl+M = ûl − e−2πil/N v̂l.
Proof. For any m = 0, 1, . . . , N − 1, by definition:

ẑm =
N−1∑
n=0

zne
−2πimn/N =

M−1∑
k=0

z2ke
−2πi2km/N +

M−1∑
k=0

z2k+1e
−2πi(2k+1)m/NM

=
M−1∑
k=0

uke
−2πikm/(N/2) + e−2πim/N

M−1∑
k=0

vke
−2πikm/(N/2)

=
M−1∑
k=0

uke
−2πikm/M + e−2πim/N

M−1∑
k=0

vke
−2πikm/M .

Observe that for m = 0, 1, . . . ,M − 1, the last expression yields ẑm = ûm +
e−2πim/N v̂m. On the other hand, if m = M,M + 1, . . . , N − 1, writing m = l +M :

ẑm =
M−1∑
k=0

uke
−2πik(l+M)/M + e−2πi(l+M)/N

M−1∑
k=0

vke
−2πik(l+M)/M

=
M−1∑
k=0

uke
−2πikl/M − e−2πil/N

M−1∑
k=0

vke
−2πikl/M = ûl − e−2πil/N v̂l.

2.2. The Fast Fourier Transform 12

ûm
+

ẑm = ûm + e−2πim/N v̂m

v̂m
×e−2πim/N ×(−1) +

ẑm+M = ûm − e−2πim/N v̂m

Figure 2.1: Butterfly diagram.

The main point of this procedure is to notice that for m = 0, 1, . . . ,M − 1, the
values zm, zM+m are computed through the values ûm, v̂m, as it is shown in the
diagram of Figure 2.1, which receives the name of “butterfly”. Whenever we want
to compute ẑ, we first compute û and v̂. Since each one of these vectors has length
M = N/2, computing their DFTs will require M2 complex products for each one.
Next, we need to compute the products

e−2πim/N v̂m,

with m = 0, 1, . . . ,M − 1, so it takes M additional complex multiplications. The
rest of operations are just sums and subtractions, which are computed way faster
than products. The total number of complex products needed are

2M2 +M = 2

(
N

2

)2

+
N

2
=

1

2
(N2 +N),

which is essentially N2/2 when N is large. In conclusion, Lemma 2.2.2 reduces the
computation time for ẑ to almost half. However, if N is divisible by 4, we can make
another step: in this case, M is even, and therefore, the computation of û, v̂ can be
simplified using the same method, and so on, as long as N/2k is even. This leads to
the next definition:

Definition 2.2.3. Let N ≥ 1, and z ∈ `2(ZN). Define #N as the least number of
complex multiplications required to compute ẑ.

The first observation is that if N is even, Lemma 2.2.2 applies, and we obtain

#N ≤ 2#M +M.

Furthermore, if N is a power of 2, we have the following result.

Proposition 2.2.4. Let N = 2n, for n ∈ N. Then

#N ≤
1

2
N log2N. (2.6)

13 Chapter 2. The Discrete Fourier Transform (DFT)

Proof. The proof is by induction on n. Let n = 1. In this case, z ∈ `2(Z2) has only
two components, namely z = (a, b). By definition (see (2.1)),

ẑ = (a+ b, a− b),

and we do not need any complex multiplication. Hence 0 < (2 log2 2)/2 = 1, and
the result holds. By induction, suppose that it is true for n = k−1. Then, equation
(2.6) and the induction hypothesis yield

#2k ≤ #2k−1 + 2k−1 ≤ 2 · 1

2
· 2k−1(k − 1) + 2k−1 = k2k−1 =

1

2
k2k =

1

2
N log2N.

The first upcoming question after this result is what happens if N is not even.
For N prime, we cannot apply the method of the FFT, but if N = pq, with p, q ≥ 2,
there is another way to describe this method (very similar to the first one), which
yields the inequality

#pq = p#q + q#p + pq.

The construction of this algorithm with full detail can be found in [7], Lemma 2.40.
However, we can restrict ourselves to the case of N = 2n whenever we need to do
any computation. Indeed, if a vector z has length N 6= 2k, for all k, we can just
pad z with zeros to the closest power of 2 that is higher than N , and proceed as
done before. Finally, note that we have reduced the number of computations to
compute the FFT drastically (for N = 2k): computing ẑ directly takes (N2 +N)/2
complex products, while using the FFT, just (N log2N)/2 = Nk/2. The quadratic
term disappears, yielding a large reduction of computation time. As an example,
consider N = 215 = 32 768. The ratio of both computation times will be

2N2

N log2N
=

231

15 · 215
=

216

15
≈ 4 369.

This ratio precisely tells us that we can compute in around 4 369 seconds (more
than one hour, which has 3 600 seconds) the same operations that the FFT does in
1 second.

Summarizing, the key point to construct the FFT is to take profit of Lemma 2.2.2,
which basically allow us to reduce the number of complex multiplications to half.
Moreover, we can iterate this process as long as the dimension is even at each step;
that is why computers actually fill the input vector with zeros, until the dimension
is a power of 2.

2.3 Localized basis of vectors

Although the discrete Fourier transform is very useful to work with compactly sup-
ported signals, there are some applications in signal analysis for which the DFT
fails, and this follows from the fact that the Fourier basis is not localized in space.

2.3. Localized basis of vectors 14

Definition 2.3.1. A vector v ∈ `2(ZN) is localized in space near n0 if zn is zero or
relatively small (with respect to its highest coefficient) when n is far from n0.

For example, the standard Euclidean basis {em}N−1m=0 is made of vectors which are
localized, since every em has only one nonzero component. In contrast, we have
the Fourier basis {Fm}N−1m=0, whose elements are (Fm)n = 1√

N
e2πimn/N , so that each

component of Fm has the same magnitude, namely 1/
√
N . This is completely the

opposite concept of localized vector.

Consider a basis of `2(ZN), B = {v0, . . . , vN−1}, whose vectors are localized in
space. If z ∈ `2(ZN), we write it as

z =
N−1∑
k=0

zkvk. (2.7)

Now, if we want to focus in some portion of z near a fixed n0, the localization in
space of the vectors vk will allow us to keep a reduced number of terms in (2.7). This
fact plays an important role in the data compression. For instance, we can think of
television video images. Similarly as in [7, p. 166], suppose that there is a static
background with a bird flying in the horizon, so that every frame will be very close
to the previous one (in terms of data). If we had a basis of localized vectors, in order
to transmit the information we would only need to update a few coefficients, since
those corresponding to the pixels which are far from the flying bird would be almost
unaffected by the movement. This does not happen when B is the Fourier basis,
since a single little change on any zk may affect all the coefficients ẑk significantly,
in the sense of how are they distributed; the total norm will not vary so much (by
Plancherel’s identity (2.4)). An example with numbers is the following: if we want
to reproduce a video with 60 FPS1 and a resolution of 1920 × 1080, then we need
to update the total number of

60× 1 920× 1 080 = 124 416 000

pixels every second, which is too much to do it without any optimization.

Example 2.3.2. This example shows the lack of localization of the Fourier basis:
We will consider two 3×3 matrices A and B which will differ only on one coefficient
by one unit, and check what happens with their respective DFTs. Consider the
matrices Â∗ and B̂∗ to contain the absolute values of the DFTs of A and B. Then,
without normalization:

1Frames Per Second: The amount of images shown by a video device in one second. The higher
FPS, the higher feeling of continuity we have.

15 Chapter 2. The Discrete Fourier Transform (DFT)

A =

6 7 8
9 10 9
8 7 6

 , Â∗ =

70 1 1
7 4 2
7 2 4

B =

6 7 8
9 9 9
8 7 6

 , B̂∗ =

69 0 0
6 3 3
6 3 3

As we can appreciate, the Fourier basis is not localized at all; one small change

in the original matrix produced a large change on its DFT. This was a simple low-
dimensional case, but the same happens for arbitrary M ×N matrices.

Definition 2.3.3. We say that a vector basis {zn}N−1n=0 ⊂ `2(ZN) is frequency local-
ized if the vectors ẑm are localized in space near some nm, for m = 0, . . . , N − 1.

We will see later that we are interested in finding basis of vectors which are both
localized in space and frequency localized, which yields good properties (in fact,
wavelets will provide spatial and frequency localization). However, it is not possible
to have a basis of vectors which are completely localized and frequency localized,
i.e., z and ẑ cannot be highly concentrated, roughly speaking. This is motivated by
the “uncertainty principle”.

2.4 The Uncertainty Principle

This section is devoted to study how localized can a vector x ∈ `2(ZN) and its Fourier
transform be at the same time. The results we are going to obtain are somehow
similar to the other well-known uncertainty principles, such as Heisenberg’s (which
can be found in [14, p. 74]), or the continuous version of the uncertainty principle
[8, Theorem 7.30], which gives a lower bound for the product of the measure of
the supports of a function and its Fourier transform. Also, in [8, Section 7.8], we
can find more inequalities related to the uncertainty principle, concretely, weighted
inequalities. In [12, Proposition 2.4.12], we can find another uncertainty principle
inequality in the unit disk which is not analogous to Heisenberg’s.

For any z ∈ `2(ZN), define H(z) and H(ẑ) as the number of nonzero elements of
z and ẑ respectively (this is called the hamming weight of a vector). We have the
following result:

Theorem 2.4.1.
H(z) ·H(ẑ) ≥ N. (2.8)

Before we start with the proof of this theorem, we will need an auxiliary lemma:

Lemma 2.4.2. Suppose that z ∈ `2(ZN) has H(z) nonzero elements. Then ẑ cannot
have H(z) consecutive zeros.

2.4. The Uncertainty Principle 16

Proof. Let n1, . . . , nH(z) denote the positions where z is different from zero and write
bj = znj

, where j = 1, . . . , H(z). For any m ∈ ZN , we will prove that there must be
some nonzero element of ẑ in the frequency interval {m+ 1, . . . ,m+H(z)}. Define
vj = e−2πinj/N and

yk =

H(z)∑
j=1

bjv
m+k
j , for k = 1, . . . , H(z),

and note that ẑm+k = yk. Now we prove that yk 6= 0, for some k ∈ {1, . . . , H(z)}.
Re-writing the expression of the terms yk with matrix notation, we have:

y = V b, Vk,j = vm+k
j .

The conclusion of the lemma tells us that y 6= 0 and by construction, b 6= 0. There-
fore, the lemma will be true if the system

0 = V b

has no solution b 6= 0, i.e., V is nonsingular. Multiplying each column j of the
matrix V by vmj , we obtain a re-scaled matrix V ′ which is nonsingular if and only if
so is V (since vj 6= 0 for all j). But

V ′ =

1 1 1 · · · 1
v1 v2 · · · · · · vH(z)

v21 v22 · · · · · · v2H(z)
...

...
...

...
...

v
H(z)−1
1 · · · · · · · · · v

H(z)−1
H(z)

is the H(z)×H(z) Vandermonde matrix, which is known to be nonsingular. A proof
of this fact can be found in [9, Proposition 3.19].

Proof of Theorem 2.4.1. Suppose first that H(z) divides N . Then, we take a par-
tition of {0, . . . , N − 1} into N/H(z) intervals of length H(z). By Lemma 2.4.2,
ẑ cannot vanish entirely in any interval, so there must be a nonzero element in
each one of the intervals. Hence, H(ẑ) ≥ N/H(z). If H(z) does not divide N , let
k = dN/H(z)e. We cannot spread out fewer than k elements between N places
without leaving spaces bigger than H(z). Hence, again by the lemma, H(ẑ) ≥ k,
and therefore H(ẑ)H(z) > N .

Now we may ask ourselves when is (2.8) an equality. For the trivial case where
z = e0 is the first vector of the canonical basis of `2(ZN), it holds that H(z) = 1 and
H(ẑ) = N . More generally, for any factorization N = k · l, consider the sequence

xkj =

{
1, if j = k ·m, m = 0, . . . k − 1,
0, otherwise.

We have the following result:

17 Chapter 2. The Discrete Fourier Transform (DFT)

Theorem 2.4.3. It holds that H(z)H(ẑ) = N only for the sequence z = xH(z) and
sequences reducible to it by the following operations:

1. Scalar multiplication.

2. Cyclic permutation in the time domain.

3. Cyclic permutation in the frequency domain.

Summarizing, equality H(z)H(ẑ) = N holds if and only if

ẑj−J = αx
H(z)
k−K ,

for some α 6= 0 and some integers J,K.

For the proof of this theorem, we refer to [6, Appendix A]. Finally, we also have a
lower bound for the total number of nonzero elements of z, ẑ ∈ `2(ZN):

Corollary 2.4.4. H(z) +H(ẑ) ≥ 2
√
N .

Proof. Apply the arithmetic-geometric mean inequality with H(z), H(ẑ) and com-
bine it with (2.8).

Motivated by this result, we are interested in computing the maximum number
of zero components that both a vector x ∈ `2(ZN) and its DFT can have at the
same time, depending on the dimension N .

Definition 2.4.5. For every N ≥ 1, define

`2∗(ZN) := `2(ZN)\{0},
Z(x) := |{j : xj = 0}|,
L(N) := max

x∈`2∗(ZN)
min{Z(x), Z(x̂)}.

In order for this definition to make sense, we must exclude the zero vector from
the definition of L(N). Otherwise, L(N) = N for all N .

Proposition 2.4.6. For all N ≥ 1,

L(N) ≤ N −
√
N.

Proof. First of all, note that for all x ∈ `2(ZN), it holds that Z(x) = N − N(x).
Using Corollary 2.4.4, we obtain that

N −
√
N ≥ Z(x) + Z(x̂)

2
≥ min{Z(x), Z(x̂)}.

2.4. The Uncertainty Principle 18

Theorem 2.4.7. 1. Let N ≥ 3 be nonprime and suppose that N = m · n, with
m ≥ n. Then,

L(N) ≥ max
{
K : max{m,n}|K , K ≤ N −

√
N
}

= m(n− 1). (2.9)

2. Among all the possible decompositions N = m · n, the greatest lower bound
of L(N) that can be obtained from equation (2.9) is given when |m − n| is
minimized.

Proof. 1. Suppose that N = m · n, with m,n as in the hypothesis. Consider the
sequence

xj = xnj =

{
1, if j = k · n, for k = 0, . . . ,m− 1,
0, otherwise,

and observe that Zx = N −m = m(n − 1). Now let us compute x̂. Suppose that
k ∈ ZN is such that k = m · l, i.e., m divides k. Then:

x̂k =
N−1∑
j=0

xje
−2πijk/N =

m−1∑
s=0

xs·ne
−2πisnk/(mn) =

m−1∑
s=0

e−2πisml/m =
m−1∑
s=0

1 = m.

On the other hand, if m does not divide k, then k = m · q + d, with d 6= 0, and

x̂k =
N−1∑
j=0

xje
−2πijk/N =

m−1∑
s=0

xs·ne
−2πisn(mq+d)/(nm) =

m−1∑
s=0

e−2πisnmq/(nm)e−2πisnd/(nm)

=
m−1∑
s=0

e−2πisd/m =
1− e−2πidm/m

1− e−2πid/m
=

1− 1

1− e−2πid/m
= 0.

Observe that in the last expression the denominator can never vanish, since we have
that 0 < d ≤ m− 1. Also note that

x̂ = x̂n = m · xm.

Therefore, Zx̂ = N − n = n(m − 1). Now assume without loss of generality that
m ≥ n. Then, it can be easily checked that m(n− 1) ≤ n(m− 1), so we have found
a vector x = xn ∈ `2∗(ZN) such that min{Zx, Zx̂} = m(n − 1). This implies that
L(N) ≥ m(n− 1). The only thing we are left to prove is that

m(n− 1) = max
{
K : m|K , K ≤ N −

√
N
}
.

Consider the set Am of multiples of m that do not exceed N , that is:

Am = {0,m, 2m, . . . ,m(n− 1),mn},

and define A∗m = {a ∈ Am|a ≤ mn−
√
mn}. Obviously nm does not belong to A∗m,

and on the other hand, if holds that m(n− 1) ≤ mn−
√
mn, since

m(n− 1) ≤ mn−
√
mn⇔ mn−m ≤ mn−

√
mn⇔

√
m2 ≥

√
mn,

19 Chapter 2. The Discrete Fourier Transform (DFT)

and the last expression is true because we are considering m ≥ n. We conclude:

L(N) ≥ maxA∗m = m(n− 1).

2. Suppose that N = m · n = m0 · n0, and without loss of generality, m ≥ n,
m0 ≥ n0. Also, assume that |m − n| ≤ |m0 − n0|. Under these conditions we have
that m0 ≥ m ≥ n ≥ n0. We want to prove that

m(n− 1) ≥ m0(n0 − 1).

But this happens if and only if N − m ≥ N − m0, which is obviously true, since
m0 ≥ m.

As an example to illustrate this result, we consider N = 30 = 6 ·5 = 2 ·15. Then:

Z(x5) = 30− 6 = 24, Z(x̂5) = Z(x6) = 30− 5 = 25,

Z(x2) = 30− 15 = 15, Z(x̂2) = Z(x15) = 30− 2 = 28.

We can observe that min{Z(x5), Z(x6)} = 24 and min{Z(x2), Z(x15)} = 15. Hence,
L(30) ≥ 24. Moreover, by Proposition 2.4.6, it holds that

L(30) ≤
[
30−

√
30
]

= 24,

and the conclusion is that L(30) = 24. As we are going to see, there are certain N
for which we can determine L(N) so far.

Corollary 2.4.8. 1. If N = n2 for some n, then

L(N) = N −
√
N = n2 − n = n(n− 1).

2. If N = n(n− 1) for some n, then

L(N) =
[
N −

√
N
]

= n(n− 2).

Proof. 1. By Theorem 2.4.7, we have that L(N) ≥ N −
√
N = n(n− 1). On the

other hand, Proposition 2.4.6 tells us that L(N) ≤ N −
√
N .

2. Again, by Theorem 2.4.7, L(N) ≥ n(n− 2). Moreover, we have the following
sequence of equivalences[

n(n− 1)−
√
n(n− 1)

]
= n(n− 2)

m
n(n− 2) ≤ n(n− 1)−

√
n(n− 1) < n(n− 2) + 1

m
−n ≤ −

√
n(n− 1) < −n+ 1

m
n− 1 <

√
n(n− 1) ≤ n,

and the last expression is trivially true. Hence, L(N) =
[
N−
√
N
]

= n(n−2).

2.4. The Uncertainty Principle 20

Before proceeding, we are going to improve the lower bound found in Theo-
rem 2.4.7:

Theorem 2.4.9. Let N ≥ 3, N = m · n with m ≥ n. Define the set

A = {m0 · n | 1 ≤ m0 < m, m0 < N −m0n}.

Then,
L(N) ≥ max

(
A ∪ {m(n− 1)}

)
.

Proof. We already know from Theorem 2.4.7 that L(N) ≥ m(n− 1). Thus, it only
remains to prove that L(N) ≥ maxA. Let x ∈ `2(ZN) be of the following form:

x = (a0, 0, . . . , 0︸ ︷︷ ︸
n−1

, a1, 0, . . . , 0︸ ︷︷ ︸
n−1

, a2, 0, , 0, am0−1, 0, . . . , 0), with aj ∈ C.

To clarify, x only has nonzero components at indexes that are multiple of n (that
is, xjn = aj), and obviously, we have the restriction m0 ≤ m. Let ω = e2πi/N , and
consider 1 ≤ m0 < m. Suppose that m0 < N − nm0 =: k, and write c = m0 − 1.
Then we can build the following system of equations

0

...

...

...

...
0

=

x̂0
x̂1
x̂2
...
x̂c
x̂m
x̂m+1

...
x̂m+c

...
x̂n(m−1)+c

=

1 1 · · · 1
1 ωn · · · ωn(k−1)

1 ω2n · · · ω2n(k−1)

...
...

1 ωnc · · · ωcn(k−1)

1 ωnm · · · ωnm(k−1)

1 ωn(m+1) · · · ωn(m+1)(k−1)

...
...

1 ωn(m+c) · · · ωn(m+c)(k−1)

...
...

1 ωn(m−1)+c · · · ωn(n(m−1)+c)(k−1)

x0
xn
...

xn(k−1)

 .

(2.10)
Now we are going to prove that this system of equations is compatible indeterminate.
If we do that, then we can find a vector x ∈ `2(ZN) such that

Z(x) = N − k = N −N + nm0 = nm0,

Z(x̂) ≥ nm0,

so that L(N) ≥ nm0. We observe that the matrix of the system (2.10), say Ω,
contains m identical blocks Bj (due to the exponential periodicity) of size (c+1)×k
(or equivalently, m0× (N −nm0)), each one of them consisting on the rows indexed
by the values kn + j when k ∈ {0, 1, . . .m − 1} is fixed and j = 0, 1, . . . c. Then,
the rank of the matrix Ω will be less than or equal to the rank of one Bk, reaching
equality if the block has maximum rank, so that rank Ω ≤ c + 1 = m0. Actually,

21 Chapter 2. The Discrete Fourier Transform (DFT)

this rank will be maximum, since each one of the blocks consists on the rows of a
Vandermonde matrix: for example, consider the first block B1. Write β = e2πi/m.
Then:

B1 =

1 1 · · · 1
1 ωn · · · ωn(k−1)

1 ω2n · · · ω2n(k−1)

...
...

1 ωcn · · · ωcn(k−1)

 =

1 1 · · · 1
1 β · · · β(k−1)

1 β2 · · · β2(k−1)

...
...

1 βc · · · βc(k−1)

 .

So, we conclude that rank Ω = c + 1 = m0. Thus, the system (2.10) will be
compatible indeterminate whenever the number of columns of Ω (or the number
of indeterminates, which is the same) is strictly greater than its rank, which we
supposed with the hypotheses m0 < N − nm0. However, we do not know if we can
find up to N −nm0 multiples of n in the first N natural numbers: we can find them
if and only if

N − nm0 ≤ m⇔ N −m ≤ nm0 ⇔ m(n− 1) ≤ nm0.

If this condition fails, then L(N) ≥ m(n − 1), as we already knew. Otherwise,
L(N) ≥ nm0. Since this procedure works for all m0 satisfying the condition m0 <
N − nm0, taking the maximum will lead to the desired result.

Now we shall determine L(N) for small N . Although there are values of N
for which we cannot find yet L(N), there are other methods that will allow us to
determine it. For example, constructing one vector x ∈ `2(Z5) such that Z(x) ≥ 2,
Z(x̂) ≥ 2 would prove that L(5) = 2 (moreover, either x or x̂ needs to have exactly
two zero elements). More generally, if we have an upper bound MN for L(N) and
we can find x ∈ `2(ZN) such that Z(x) = MN and Z(x̂) ≥ MN , then necessarily
L(N) = MN . Thus, we are interested in lower bounds for L(N).

The first observation we can do once we know the result yielded by Theorem 2.4.7
is that we are far from determining L(N) when N is prime. Nevertheless, we can use
Chebotarev’s theorem about roots of unity to determine L(N) (when N is prime),
along with basic linear algebra results. The statement is the following:

Theorem 2.4.10 (Chebotarev). Let Ω be a matrix with entries ajk = ωjk, 0 ≤
j, k ≤ N − 1, where ω = e2πi/N . Then, if N is prime, any minor of Ω is nonzero.

There are several proofs for this theorem. We can find a proof similar to the
original one made by Chebotarev in [13]. Dieudonné also gave an independent proof
for this theorem, and it can be found in [5].

Proposition 2.4.11. Let N ≥ 3 be a prime number. Then, L(N) = [N/2].

Proof. First we prove that L(N) ≥ [N/2]. After that, using Chebotarev’s the-
orem, it is easy to see that L(N) < [N/2] + 1. Define K = [N/2], and let

2.4. The Uncertainty Principle 22

x = (x0, x1, . . . , xK , 0, . . . , 0) ∈ `2(ZN). Consider the following system of equations:
y0
y1
...

yK−1

 =

1 1 · · · 1
1 e−2πi/N · · · e−2πiK/N

...
...

...
...

1 e2πi(K−1)/N . . . e2πiK(K−1)/N

x0
x1
...
xK

 .

Its homogeneous system is
0
0
...
0

 =

1 1 · · · 1
1 e−2πi/N · · · e−2πiK/N

...
...

...
...

1 e2πi(K−1)/N . . . e2πiK(K−1)/N

x0
x1
...
xK

 ,

and it is clearly compatible indeterminate, since the matrix of the system is a Van-
dermonde matrix. Then, it has an infinite number of solutions, and moreover, we
note that each one of the equations of the system is one component of the vector x̂.
Therefore, we have found that there is a vector x ∈ `2(ZN) with Zx = N−K = K+1
(since N is odd) and Zx̂ = K. Now suppose that there exists a vector x ∈ `2∗(ZN)
with Zx ≥ K + 1, Zx̂ ≥ K + 1. This is equivalent to say that the homogeneous
system of equations

0
0
...
0

 =

e−2πis1r1/N e−2πis1r2/N · · · e−2πis1rK/N

e−2πis2r1/N e−2πis2r2/N · · · e−2πis2rK/N

...
...

...
...

e−2πisK+1r1/N e−2πisK+1r2/N · · · e−2πisK+1rK/N

xr1
xr2
...
xrK

is compatible indeterminate, and this happens if and only if the matrix of the system
has rank strictly less than K. By Theorem 2.4.10, we have that this rank is exactly
K. This proves that L(N) < K + 1, and hence, L(N) = K.

After this, we can already claim that L(5) = 2, L(7) = 3, and L(11) = 5.
Moreover, motivated by the usage of the determinants of the Fourier matrices (i.e.,
matrices whose columns are the vectors of the Fourier basis), we can create an
algorithm which will allow us to determine L(N) exactly (with a high number of
computations, though). The algorithm consists of the following:

1. Fix N ∈ N. Suppose that we want to determine whether L(N) is greater
than or equal to a certain natural number M < N . If there exists a vector
x ∈ `2∗(ZN) such that Z(x) = M and Z(x̂) ≥M , then it will be of the form

x =
N−M∑
j=1

xjekj ,

where {ek}N−1k=0 is the Euclidean basis for `2(ZN), and xj ∈ C\{0}, for all j,
and there will exist l1, . . . , lM such that x̂lj = 0, for j = 1, . . . ,M .

23 Chapter 2. The Discrete Fourier Transform (DFT)

2. Writing the expression of x̂ in matrix form, we consider the homogeneous
system of equations with M equations and N − M unknowns given by the
rows l1, . . . , lM of the matrix which describes x̂. That is, to consider the
system

0 = x1e
−2πik1l1/N + . . .+ xN−Me

−2πikN−M l1/N

...

...
0 = x1e

−2πik1lM/N + . . .+ xN−Me
−2πikN−M lM/N .

3. Now there are two possibilities: either the system is compatible determinate,
or indeterminate. In the first case, we only have the trivial solution x = 0,
so that a vector x ∈ `2(ZN) with M zeros and such that its DFT has more
than M zeros must be the zero vector, and hence L(N) < M . In the second
case, there are infinite nontrivial solutions for the system, and we can find the
explicit expression of a vector x with Z(x) = M and Z(x̂) ≥M , which implies
that L(N) ≥M .

4. If we can find any set of indexes k1, . . . , kN−M , l1, . . . , lM such that the rank
of A is strictly lower than the number of unknowns, (i.e, rank A < N −M),
then there will be a compatible indeterminate system, whose solution will be
a vector x with Z(x) = M , Z(x̂) ≥M .

The main disadvantage of this algorithm comes when we want to check if we can
get an indeterminate system or not. Let us call A to the matrix of the system of
equations constructed in step 2. If we can find an indeterminate system, we can stop
the algorithm and give the explicit expression of the vector x. On the other hand,
if for every set of indexes k1, . . . , kN−M , l1, . . . , lM the built system turns out to be
determinate, we cannot stop the algorithm, and therefore we will need to compute
the rank of A for every possible choice of indexes. Without loss of generality, we
can always fix k1 = 0. Then, the number of ranks that we will need to compute is(

N − 1

N −M − 1

)
·
(
N

M

)
,

which has factorial order. Moreover, as N and M increase, the matrix A also gets
bigger, which makes the computation of its rank even slower. Adding the fact that
we have to compute much more ranks, this algorithm will not be any good whenever
N is not small. For example, we can apply this algorithm to prove that L(8) = 4
and L(10) = 6. For N = 8, we will consider M8 = 5, and check that every system
we can construct is determinate (this example is given in the Annex), but we cannot
go much further. The number of required computations will be, in the last case:(

7

2

)
·
(

8

5

)
= 1176.

If we compare the elapsed time during the computations for every one of those
different values of N , we are going to see the its fast growth as N increases. If we

2.4. The Uncertainty Principle 24

try to apply this algorithm for N = 11 (even though we already know the result in
this case), we will find that it takes more than 4 seconds to be completed, while for
N = 8, it does not take more than 0.1 seconds.

Although, if we define I to be the set of indexes where x̂ is nonzero and J the set
of indexes where x is nonzero, the idea of this algorithm is to find certain submatrices
of the Fourier matrix F := FN of size N ×N , such that

F (N\I, J)x|J = 0 (2.11)

and F (N\I, J) is rank-deficient (here we denoted N = {0, . . . , N − 1} and x|J is
the vector x restricted to the set of indexes J , and therefore it has size |J |). Note
that equation (2.11) describes a choice of a system of equations obtained from a
submatrix of the Fourier matrix F , and if F (N\I, J) is rank deficient, we are in the
situation of a compatible indeterminate system.

Definition 2.4.12. For a matrix A ∈ Cm×n, we say that A is rank-deficient if
rankA < n.

The papers [3] and [4] provide nice descriptions of maximal rank-deficient sub-
matrices of Fourier matrices, in terms of the size of J . We will see that those
descriptions will allow us to compute the value of L(N) much easier than before, for
any value of N .

Definition 2.4.13. ([3, Def. 2]) For a matrix A ∈ CN×N and an integer d ∈
{1, . . . , N}, we define the Hamming number HA(d) as the minimal cardinality of all
index sets I for which A(N\I, J) is rank-deficient, for a suitable J with |J | ≤ d.
Here we denote N = {0, . . . , N − 1}.

The first thing to observe is that we defined the Hamming numbers with respect
to the complement of the set I. In this way we stay close to the formulation of the
uncertainty principle. Indeed, joining Theorem 2.4.1 with Definition 2.4.13, we can
re-write the uncertainty principle as

d ·HFN
(d) ≥ N.

Moreover, (as done in [3, Remark 4]) in Definition 2.4.13 we considered the sets J
to be such that |J | ≤ d, rather than |J | = d. We took the inequality because it can
happen that the rank-deficiency of A(N\I, J) is caused by the rank-deficiency of
A(N\I, J̃) for some strict subset J̃ ⊂ J . This guarantees that HA(d) is decreasing
on d.

The key observation that will allow to compute the exact value of L(N) is the
following equality, which follows from the definitions:

N −HFN
(d) = max{Z(x̂) : x ∈ `2(ZN), H(x) ≤ d}

= max{Z(x̂) : x ∈ `2(ZN), Z(x) ≥ N − d}. (2.12)

Then, we have the following result:

25 Chapter 2. The Discrete Fourier Transform (DFT)

Proposition 2.4.14. Let N ∈ N and 1 ≤ k < N . Then, L(N) = k if and only if

N −HFN
(N − k) ≥ k, and (2.13)

N −HFN
(N − (k + 1)) ≤ k. (2.14)

Before we prove this result, we give an interpretation of equations (2.13) and
(2.14). The first one means that we can find a vector z ∈ `2(ZN) with at least k
zero components such that x̂ also has more than k zero components. On the other
hand, the second inequality tells us that we can find no vector z ∈ `2(ZN) such that
both z and ẑ have more than k zero components, or equivalently, at least k+ 1 zero
elements.

Proof. (⇒) Suppose that L(N) = k. By relation (2.12), we have that

N −HFN
(N − k) = max{Z(x̂) : x ∈ `2(ZN), Z(x) ≥ k}

≥ max{Z(x̂) : x ∈ `2(ZN), Z(x) = k} ≥ k,

where the last inequality is obtained by assumption. This proves (2.13). In order to
prove (2.14), note that since we are assuming that L(N) = k, if x ∈ `2(ZN) is such
that Z(x) = k + 1, then necessarily Z(x̂) ≤ k. Joining this fact along with relation
(2.12), it yields

N −HFN
(N − (k + 1)) = max{Z(x̂) : x ∈ `2(ZN), Z(x) ≥ k + 1} ≤ k.

(⇐) We prove this implication by contradiction. Suppose that L(N) 6= k. Then,
either (i) L(N) < k, or (ii) L(N) > k. In the case of (i), for any vector x ∈ `2(ZN)
such that Z(x) ≥ k, then, necessarily Z(x̂) < k (otherwise, it would not be true
that L(N) < k). Then, by relation (2.12):

N −HFN
(N − k) = max{Z(x̂) : x ∈ `2(ZN), Z(x) ≥ k} < k,

i.e., inequality (2.13) is false. Finally, if (ii) holds true, then there exists N > k̃ > k
such that L(N) = k̃. Observe that since HFN

(d) is decreasing on the variable d, it
follows that the expression

N −HFN
(N −M)

is decreasing on the variable M . Now, since k + 1 ≤ k̃:

N −HFN
(N − (k + 1)) ≥ N −HFN

(N − k̃)

= max{Z(x̂) : x ∈ `2(ZN), Z(x) ≥ k̃}
≥ max{Z(x̂) : x ∈ `2(ZN), Z(x) = k̃} ≥ k̃ > k,

so that inequality (2.14) is false.

After this, the only remaining thing to do is to conjecture the possible value for
L(N), say k, and check if inequalities (2.13) and (2.14) hold for k. Now we list the
main results about Hamming numbers. The proofs can be found in each respective
reference.

2.4. The Uncertainty Principle 26

Theorem 2.4.15. [4, Theorem 9] Let pm be a power of a prime number. Let d ∈
{1, 2, . . . , pm} be such that

cpk ≤ d < (c+ 1)pk

for certain c ∈ {1, . . . , p− 1}, k ∈ {0, . . . ,m− 1}. Then,

HFpm
(d) = (p− c+ 1)pm−k−1.

Theorem 2.4.16. [3, Corollary 23] For each divisor d of N , we have that HFN
(d) =

N/d, i.e., equality in the uncertainty principle is reached.

Theorem 2.4.17. [3, equation (4)] Let 1 ≤ t < N . Then,

HFN
(t) = min

{
(p− c+ 1)

N

pd
: pd divides n, p prime, c ∈ {1, . . . , p}, cd ≤ t

}
.

Now we are going to see a few examples of the computation of L(N). First of
all, let us consider the case when N = n2, with n > 1. We already know that
L(N) = n(n− 1), but we are going to prove it using Proposition 2.4.14. First of all,
let us check that (2.13) holds whenever k = n(n− 1). We have that the inequality

n2 −HFN
(N − n(n− 1)) ≥ n(n− 1)

is true if and only if HFN
(N −n(n−1)) ≥ n. But N −n(n−1) = n2−n(n−1) = n.

By Theorem 2.4.16,
HFN

(n) = n2/n = n ≥ n,

so that the first inequality holds. On the other hand, we do not need to prove
inequality (2.14). Indeed, if it was false, it is easy to see that there would be
contradiction with the uncertainty principle. So, we conclude

L(n2) = n(n− 1).

Example 2.4.18. Consider N = 22n+1, with n ∈ N. We claim that L(N) =
2n+1(2n − 1) = 22n+1 − 2n+1. Note that we are only considering odd powers of 2,
since any even power is covered by the case N = k2. First we prove the inequality
(2.13):

N −HFN
(N − (22n+1 − 2n+1)) = 22n+1 −HFN

(2n+1).

By Theorem 2.4.16, we have that HFN
(2n+1) = 2n. Therefore,

22n+1 − 2n ≥ 22n+1 − 2n+1.

Now we prove inequality (2.14). Note that N − (22n+1−2n+1 + 1) = 2n+1−1. Using
Theorem 2.4.15 to compute HFN

(2n+1−1), we observe that k = n and c = 1. Hence,

HFN
(2n+1 − 1) = (2− 1 + 1) · 22n+1−n−1 = 2 · 2n = 2n+1.

Finally, since
N − 2n+1 = 22n+1 − 2n+1 ≤ 22n+1 − 2n+1,

27 Chapter 2. The Discrete Fourier Transform (DFT)

we conclude that L(22n+1) = 22n+1 − 2n+1. Moreover, observe that if we consider
22n+1 = m1 ·m2 with m1 ≥ m2 and such that the quantity m1 −m2 is minimized,
then m1 = 2n+1 and m2 = 2n. In this case:

L(22n+1) = 22n+1 − 2n+1 = 2n+1(2n − 1) = m1(m2 − 1),

which is the lower bound of L(22n+1) given in Theorem 2.4.7.

Finally, we show the table with the values of L(N) for the 99 first natural num-
bers:

0 1 2 3 4 5 6 7 8 9
0 0 0 1 2 2 3 3 4 6
10 6 5 8 6 8 10 12 8 12 9
20 15 15 14 11 18 20 16 21 21 14
30 24 15 24 24 22 28 30 18 24 28
40 32 20 35 21 34 36 30 23 40 42
50 40 37 40 26 45 45 48 42 38 29
60 50 30 40 54 56 53 55 33 53 51
70 60 35 63 36 48 65 60 66 66 39
80 70 72 54 41 72 70 56 64 77 44
90 80 78 72 69 62 78 84 48 84 88

We observe that for the first 10 natural numbers, L(N) seems to be monotone,
but L(11) = 5 < L(10). This is because, as we have seen, L(N) does not depend on
how big N is, but on the decomposition N = n ·m. Indeed, the key point is that if
we have such decomposition, we can find a vector z with n nonzero elements such
that ẑ has m nonzero elements. For instance, since we can decompose 10 as 2 · 5,
while 11 is a prime number, we can expect a different behavior for L(10) and L(11).
Also, note that if we compute the lower bound given in Theorem 2.4.9 for all these
numbers, we find that it is close to get the ultimate result; the numbers for which
the lower bound given is not equal to L(N) are the following:

27, 39, 44, 51, 65, 68, 75, 87, 95.

Chapter 3

Wavelets on ZN

3.1 Construction of a first-stage wavelet

Before introducing the definition of a wavelet, we are going give some auxiliary
notations and their main properties. This will allow us to characterize the wavelets
in an easy way.

Definition 3.1.1. For every z ∈ `2(ZN), define its conjugate reflection z̃ ∈ `2(ZN)
by

z̃n = z−n = zN−n, for all n.

Proposition 3.1.2. For any z ∈ `2(ZN), (̂z̃)n = ẑn.

Proof. By definition:

(̂z̃)n =
N−1∑
j=0

z̃je
−2πinj/N =

N−1∑
j=0

zN−je
−2πinj/N =

N−1∑
j=0

z−je−2πin(−j)/N = ẑn,

where in the last step we use equation (2.5).

Definition 3.1.3. For any z ∈ `2(ZN), define the circular translation of z as

(Rkz)n := zn−k.

Lemma 3.1.4. Let z, w ∈ `2(ZN). Then, for every k ∈ Z:

(z ∗ w̃)k = 〈z, Rkw〉,
(z ∗ w)k = 〈z, Rkw̃〉.

Proof. By definition of scalar product:

〈z, Rkw〉 =
N−1∑
n=0

znRkwn =
N−1∑
k=0

znwn−k =
N−1∑
n=0

znw̃k−n = (w̃ ∗ z)k = (z ∗ w̃)k.

In the last step we used the commutativity of the convolution. To prove the second
equality, we only need to replace w by w̃ in the first one, and the second will follow,
since ˜̃w = w.

29

3.1. Construction of a first-stage wavelet 30

Now observe that if w ∈ `2(ZN) is such that B = {Rkw}N−1n=0 is an orthonormal
basis for `2(ZN), the coefficients of the expansion of a vector z in terms of B are the
inner products 〈z, Rkw〉. Then, the previous lemma tells us that

[z]B = z ∗ w̃.

As every convolution can be computed through the DFT (this will allow us to
compute it quickly with the FFT), then, for every orthonormal basis B generated
by translations of a vector w, the change of basis matrix from the Euclidean basis
to B can be computed rapidly.

The first example of a basis of the form {Rkw}N−1k=0 is the Euclidean basis. Now
we give a characterization of such basis in terms of the DFT of the vector w.

Lemma 3.1.5. If w ∈ `2(ZN), then {Rkw}N−1k=0 is an orthonormal basis for `2(ZN)
if and only if |ŵn| = 1 for all n ∈ ZN .

Proof. Consider the Dirac delta function

δk =

{
1, if k = 0
0, if k = 1, . . . , N − 1.

It is easy to see that {Rkw}N−1k=0 is an orthonormal basis for `2(ZN) if and only if
〈w,Rkw〉 = δk. By Lemma 3.1.4, this is equivalent to

w ∗ w̃ = δ.

Now we apply the DFT on both sides of the equation. In one hand, for any n ∈ ZN :

δ̂n =
N−1∑
k=0

δke
−2πink/N = e−2πin·0/N = 1.

On the other hand, by Lemma 2.1.8 and Proposition 3.1.2:

̂(w ∗ w̃)n = ŵn(̂w̃)n = ŵnŵn = |ŵn|2.

The condition for an orthonormal basis B to be of the form {Rkw}N−1k=0 is quite
simple, but there is a problem: Lemma 3.1.5 tells us that we cannot obtain a basis
of this form with the property that it is frequency localized. Nevertheless, we can
slightly modify the way of constructing the orthonormal basis and it will lead to key
results.

Definition 3.1.6. Let M ∈ Z and N = 2M . An orthonormal basis for `2(ZN) of
the form

B = {R2ku}M−1k=0 ∪ {R2kv}M−1k=0

for some u, v ∈ `2(ZN), is called a first-stage wavelet basis for `2(ZN).

31 Chapter 3. Wavelets on ZN

Similarly as we have just done, we are going to find characterizations of the basis
of this form in terms of the DFTs of the vectors u, v.

Definition 3.1.7. Let M ∈ N , N = 2M and z ∈ `2(ZN). Define z∗ ∈ `2(ZN) by

z∗n = (−1)nzn,

for every n.

Lemma 3.1.8. For all n,
ẑ∗n = ẑn+M .

Proof. Using the definition:

ẑ∗n =
N−1∑
k=0

z∗ke
−2πikn/N =

N−1∑
k=0

(−1)kzke
−2πikn/N =

N−1∑
k=0

zke
−iπke−2πikn/N

=
N−1∑
k=0

zke
−2πik(n+M)/N = ẑn+M .

Remark 3.1.9. Note that for any z ∈ `2(ZN), with N even,

(z + z∗)n = zn(1 + (−1)n) =

{
2zn, if n is even,
0, if n is odd.

This equality will be useful in the proof of the following lemma:

Lemma 3.1.10. Let M ∈ N , N = 2M , and w ∈ `2(ZN). Then {R2kw}M−1k=0 is an
orthonormal set (with M elements) if and only if

|ŵn|2 + |ŵn+M |2 = 2,

for n = 0, 1, . . . ,M − 1.

Proof. We have already seen (Lemma 3.1.5) that {R2kw}M−1k=0 is an orthonormal set
with M elements if and only if

(w ∗ w̃)2k = 〈w,R2kw〉 =

{
1, if k = 0,
0, if k = 1, . . . ,M − 1.

Now, as we have observed in Remark 3.1.9:

(w ∗ w̃ + (w ∗ w̃)∗)n =

{
2(w ∗ w̃)n, if n is even,
0, if n is odd.

Hence, the result will hold true if and only if

w ∗ w̃ + (w ∗ w̃)∗ = 2δ.

3.1. Construction of a first-stage wavelet 32

Using that δ̂n = 1 for all n, and applying the Fourier inversion (Proposition 2.1.6)
to both sides of the equality, we obtain that the result will be true if and only if

̂(w ∗ w̃)n + (̂w ∗ w̃)∗n = 2, for n = 0, 1, . . . , N − 1. (3.1)

By Proposition 3.1.2 and Lemma 2.1.8:

̂(w ∗ w̃)n = ŵn(̂w̃)n = ŵnŵn = |ŵn|2,

and combining this equation with Lemma 3.1.8, we obtain

(̂w ∗ w̃)∗n = ̂(w ∗ w̃)n+M = |ŵn+M |2.

Substituting the last two identities in the equation (3.1), we finally obtain

|ŵn|2 + |ŵn+M |2 = 2,

for n = 0, . . . ,M − 1, which is equivalent to the orthonormality of {R2kw}M−1k=0 .

Definition 3.1.11. Let M ∈ N, N = 2M , and u, v ∈ `2(ZN). For any n ∈ Z, define
the system matrix of u and v, A(n), by

A(n) =
1√
2

(
ûn v̂n

ûn+M v̂n+M

)
.

Definition 3.1.12. Let A ∈Mn×n(C). We say that A is unitary if and only if A is
invertible and A−1 = At, where At denotes the conjugate transpose matrix of A.

Lemma 3.1.13. Let A ∈ Mn×n(C). Then A is unitary if and only if the columns
of A form an orthonormal basis for Cn.

Finally, we are ready to state and prove the theorem which characterizes first-
stage wavelets:

Theorem 3.1.14. Let M ∈ N, N = 2M , and u, v ∈ `2(ZN). Then,

B = {R2kv}M−1k=0 ∪ {R2ku}M−1k=0

is an orthonormal basis for `2(ZN) if and only if the system matrix A(n) of u and v
is unitary for every n = 0, . . . ,M − 1. Equivalently, B is a first-stage wavelet basis
for `2(ZN) if and only if

|ûn|2 + |ûn+M |2 = 2,

|v̂n|2 + |v̂n+M |2 = 2,

ûnv̂n + ûn+M v̂n+M = 0,

for all n = 0, . . . ,M − 1.

33 Chapter 3. Wavelets on ZN

Proof. We know (Lemma 3.1.13) that a 2 × 2 matrix is unitary if and only if
its columns form an orthonormal basis for C2. By Lemma 3.1.10, we know that
{R2ku}M−1k=0 is an orthonormal set if and only if

|ûn|2 + |ûn+M |2 = 2,

for all n = 0, . . . ,M − 1, and the same happens with {R2kv}M−1k=0 . But this is
the same as saying that the two columns of A(n) have norm equal to 1 for every
n = 0, . . . ,M − 1. Next, we claim:

〈R2ku,R2jv〉 = 0, for j, k = 0, . . . ,M − 1 (3.2)

if and only if
ûnv̂n + ûn+M v̂n+M = 0, for n = 0, . . . ,M − 1. (3.3)

If we are able to prove this equivalence, then we will be done, since equation (3.3)
says that the columns of A(n) are orthonormal. First of all, observe that equation
(3.2) is equivalent to

(u ∗ ṽ)2k = 〈u,R2kv〉 = 0, for k = 0, . . .M − 1,

by Lemma 3.1.4 and the fact that equation (3.2) holds if and only if 〈u,R2kv〉 for all
k = 0, . . .M − 1 (which is easy to prove). Now, using Remark 3.1.9 with z = u ∗ ṽ,
the last equation is equivalent to

u ∗ ṽ + (u ∗ ṽ)∗ = 0.

But then,

(̂u ∗ ṽ) + (̂u ∗ ṽ)∗ = 0.

By Lemma 2.1.8 and Proposition 3.1.2, we have that

(̂u ∗ ṽ)n = ûnv̂n,

and by Lemma 3.1.8,

(̂u ∗ ṽ)∗n = ûn+M ṽn+M .

Finally, note that the left hand side of equation (3.3) is periodic with period M , so
it will vanish for all n if and only if it vanishes for n = 0, . . . ,M − 1, and therefore,
equation (3.3) is equivalent to (3.2).

Before proceeding, let us compare the hypothesis given in Lemma 3.1.5 and
Theorem 3.1.14. In the first one, we force |ŵn|2 = 1 for all n, while in the last
one, we only restrict that the average of |ûn|2 and |ûn+M |2 equals 1. For instance,
it can happen that |ûn|2 = 2 and |ûn+M |2 = 0, for some n. If this is the case, by
Theorem 3.1.14, necessarily, |v̂n|2 = 0 and |v̂n+M |2 = 2. Recall that the Fourier
basis vectors for `2(ZN) are given by

(Fn)m =
1

N
e2πinm/N , for n = 0, . . . N − 1.

3.1. Construction of a first-stage wavelet 34

By Proposition 2.1.6, we have that

v =
N−1∑
k=0

v̂kFk,

and since |v̂n|2 = 0, we conclude that v has no component in the direction Fn. We
can use this fact in the construction of a wavelet basis in the following way: choose
u to contain the low frequencies (the low-pass filter), and v to contain the high
frequencies (the high-pass filter, see 3.2.6).

Example 3.1.15. Consider N = 4, û =
(√

2, 1, 0, 1
)
, v̂ =

(
0, 1,
√

2,−1
)
. Then:

A(0) =
1√
2

(√
2 0

0
√

2

)
= Id,

A(1) =
1√
2

(
1 1
1 −1

)
.

Clearly, A(0) and A(1) are unitary matrices. Then, by Theorem 3.1.14, it holds that
A = {u,R2u, v, R2v} is an orthonormal basis for `2(Z4). Indeed, we can compute
u, v using the IDFT, and obtain:

u =
1

4

(
2 +
√

2,
√

2,−2 +
√

2,
√

2
)
,

v =
1

4

(√
2,−
√

2 + 2i,
√

2,−
√

2− 2i
)
,

and now we can check directly that A is an orthonormal basis for `2(Z4).

To conclude this section, we are going to give a result that will allow us to
construct a wavelet basis from only one potential wavelet basis generator u ∈ `2(ZN),
that is,

|ûn|2 + |ûn+N/2|2 = 2, for all n.

Later on, we will see that Daubechies’ wavelet basis are constructed using this result.

Proposition 3.1.16. Let M ∈ N, N = 2M , and u ∈ `2(ZN) such that {R2ku}M−1k=0

is an orthonormal set with M elements. Define v ∈ `2(ZN) in the following way:

vk = (−1)k−1u1−k,

for all k. Then, {R2kv}M−1k=0 ∪ {R2ku}M−1k=0 is a first-stage wavelet basis for `2(ZN).

Proof. Write k = 1− n, and compute

v̂m =
N−1∑
n=0

vne
−2πimn/N =

N−1∑
n=0

(−1)n−1u1−ne
−2πimn/N =

N−1∑
k=0

uk(−1)−ke−2πim(1−k)/N

= e−2πim/N
N−1∑
k=0

uk(e
−iπ)−ke2πimk/N = e−2πim/N

N−1∑
k=0

uke−2πi(m+M)k/N

= e−2πim/N ûm+M .

35 Chapter 3. Wavelets on ZN

Hence,

v̂m+M = e−2πi(m+M)/N ûm+2M = e−2πiM/Ne−2πim/N ûm = −e−2πim/N ûm,

and using Lemma 3.1.10, we conclude that

|v̂m|2 + |v̂m+M |2 = |ûm+M |2 + |ûm|2 = 2,

for m = 0, 1, . . . ,M − 1. Finally:

ûmv̂m + ûm+M v̂m+M = ûme
2πim/N ûm+M − ûm+Me

2πim/N ûm = 0.

Applying Theorem 3.1.14, we obtain that the vectors u, v generate a first-stage
wavelet basis.

3.2 Examples of first-stage wavelets

From now on, we will consider N = 2M , M ∈ N, unless we specify otherwise. The
purpose of the first-stage wavelets (wavelets) is to compress data. That is, for any
vector x ∈ `2(ZN), we want to keep the least possible information in such a way
that after the decompression is done, the loss of quality is minimal. For a wavelet
basis {R2ku}M−1k=0 ∪{R2kv}M−1k=0 ⊂ `2(ZN), we can construct the matrix M containing
the vectors of such a basis, obtaining a linear transformation, namely A. Applying
A to the vector x, we have

A(x)j =

{
〈R2ju, x〉, if j = 0, . . . ,M − 1,
〈R2jv, x〉, if j = M, . . . , 2M − 1.

The particularity of wavelet basis is that the vector A(x) will have a high number of
components equal to zero (or at least relatively small). This will allow us to discard
those elements without losing much quality, obtaining a vector y with a high number
of components exactly equal to zero. After we decompress y, or equivalently, after
computing the inverse transform x′ = A−1(y), x′ will not differ too much from x.
Typically, the compression method will consist of the following steps:

1. For x ∈ `2(ZN), we apply the transformation, x 7→ A(x).

2. We apply a filter F to the components of A(x). That is, we make zero all
the components which norm is below ε > 0. We note that as ε increases, the
information we lose increases as well, since we are forcing more components
to be zero. After this, we obtain a vector y = F (A(x)), with more zeros than
A(x), and we apply a compression algorithm.

3. We can recover the filtered vector through the decompression algorithm, ob-
taining x′ = A−1(y) = A−1(F (A(x))) . Then, x′ will not be equal to the
original vector x (for reasonable values of ε), but the two vectors will be close
to each other, meaning that the norm ‖x− x′‖ will be small.

3.2. Examples of first-stage wavelets 36

The fundamental observation is that since we are applying linear transformations,
if we take small values of ε, the difference between x and x′ will also be small (in
norm), and therefore we will not lose much quality in the process. We shall now see
examples of wavelets illustrating this compression.

3.2.1 The Haar transform

Definition 3.2.1. Let

u =

(
1√
2
,

1√
2
, 0, 0, . . . , 0

)
,

v =

(
1√
2
,− 1√

2
, 0, 0, . . . , 0

)
.

Then, we define the first-stage Haar basis for `2(ZN) as

H = {R2ku}M−1k=0 ∪ {R2kv}M−1k=0 .

We can check trivially that the Haar first-stage wavelet basis is an orthonormal
basis for `2(ZN). Define the Haar transform matrix as

HN =
(
hjk
)

=

{
(R2ju)k, if j = 0, . . . ,M − 1,
(R2jv)k, if j = M, . . . , N − 1.

Then, for any z ∈ `2(ZN) we have that

z =
M−1∑
k=0

(
〈z,R2ku〉R2ku+ 〈z,R2kv〉R2kv

)
.

If we write

P (z) =
M−1∑
k=0

〈z,R2ku〉R2ku, Q(z) =
M−1∑
k=0

〈z, R2kv〉R2kv,

we can notice that

P (z)2j =
M−1∑
k=0

〈z,R2ku〉(R2ku)2j =
M−1∑
k=0

〈z,R2ku〉(R2ku)2j+1 = P (z)2j+1, (3.4)

since it holds that (R2ku)2j = (R2ku)2j+1, for every 0 ≤ j, k ≤M − 1. Moreover:

P (z)2j =
1√
2
〈z, R2ju〉 =

z2j + z2j+1

2
.

This means that we obtain the vector P (z) by replacing the values of the signal z
at 2m and 2m + 1 by their average. Then, we can interpret the vector P (z) as z

37 Chapter 3. Wavelets on ZN

seen at resolution of 2. This vector will be the tendency of the signal, containing
most of its information. On the other hand, Q(z) will be the vector containing the
details which are needed to pass from a resolution of 2 to a resolution of 1, and
hence, if we want to apply a compression, we will discard Q(z), keeping at most
N/2 different coefficients which define P (z). Similarly as in (3.4), we can check that
Q(z)2j = −Q(z)2j+1, for all 0 ≤ j ≤ M − 1. This means that we will keep at most
N/2 different coefficients to reconstruct the vector Q(z). Then we define:

(P ′1(z))j =(P (z))2j, for j = 0, . . . ,M − 1,

(Q′1(z))j =(Q(z))2j, for j = 0, . . . ,M − 1, (3.5)

so that P ′1(z), Q′1(z) ∈ `2(ZM). Now suppose that 4 divides N (and hence, 2 di-
vides M). Then we can apply the Haar transform for `2(ZN/2) to the vector P ′1(z),
containing the tendency of the first iteration of the Haar transform. We obtain:

P2(z) =

M/2−1∑
k=0

〈P ′1(z), R2ku
′〉R2ku

′, Q2(z) =

M/2−1∑
k=0

〈P ′1(z), R2kv
′〉R2kv

′,

where

u′ =

(
1√
2
,

1√
2
, 0, . . . , 0︸ ︷︷ ︸

M−2

)
, v′ =

(
1√
2
,− 1√

2
, 0, . . . , 0︸ ︷︷ ︸

M−2

)
.

The vectors P2(z) and Q2(z) are now the tendency and the details of P ′1(z), respec-
tively. Also observe that the vectors P ′2(z), Q′2(z) ∈ `2(ZM/2), defined in the same
way as in (3.5), contain all the information about P2(z) and Q2(z) keeping only half
of the coefficients. The sequence of vectors that we need to fully recover the signal
z is now:

H2(z) = (P ′2(z), Q′2(z), Q′1(z)).

More generally, if 2n divides N , then we can iterate the Haar transform until we
obtain the n-th tendency of the signal, P ′n(z), in such a way that the sequence of
vectors needed to recover the original signal z will be

Hn(z) = (P ′n(z), Q′n(z), Q′n−1(z), . . . , Q′1(z)).

We will refer to Hn as the n-th order Haar transform. In this case, the vector P ′n(z)
has size N/2n, and therefore, we will have a vector of size N −N/2n containing the
details obtained in all the iterations of the transformation.

Remark 3.2.2. For the 2-dimensional Haar transform, our signal z will be a com-
plex matrix, and the 2D Haar transform is defined just by iteration. That is, first
we apply the transformation to the rows of z, obtaining a new matrix y, and then
apply the transformation to the columns of y.

Example 3.2.3. Consider the function f(x) = sin(13x)− cos(7x). We will use the
function HaarTrans.m given in the Annex to find the Haar transform of order 3 of

3.2. Examples of first-stage wavelets 38

a finite number of values of f . Let X = {0, . . . , 399}. The vector of images will
be defined by Yn = f(Xn). Figure 3.1 contains the graphics of the stages of the
3rd order Haar transform. Note that at the n-th step, the vector containing the
tendency will be the one corresponding to the first N/2n coefficients (in this case
200, 100, and 50).

0 50 100 150 200 250 300 350

−4
−2
0
2
4

Original signal

0 50 100 150 200 250 300 350

−4
−2
0
2
4

Haar transform of order 1

0 50 100 150 200 250 300 350

−4
−2
0
2
4

Haar transform of order 2

0 50 100 150 200 250 300 350

−4
−2
0
2
4

Haar transform of order 3

0 50 100 150 200 250 300 350

−4
−2
0
2
4

Inverse transform of the order 3 tendency

Figure 3.1: Different stages of the 3rd order Haar transform.

39 Chapter 3. Wavelets on ZN

3.2.2 The Shannon transform

Definition 3.2.4. Let N be divisible by 4. Define û, v̂ ∈ `2(ZN) by

ûn =

{ √
2, if n = 0, 1, . . . , N/4− 1 or n = 3N/4, 3N/4 + 1, . . . , N − 1,

0, otherwise,

v̂n =

{
0, if n = 0, 1, . . . , N/4− 1 or n = 3N/4, 3N/4 + 1, . . . , N − 1,√

2, otherwise.
(3.6)

Then, we define the Shannon wavelet basis for `2(ZN):

S = {R2ku}N/2−1k=0 ∪ {R2kv}N/2−1k=0 .

Proposition 3.2.5. S is a wavelet basis for `2(ZN).

Proof. This result follows easily from the characterization of the wavelet basis given
in Theorem 3.1.14. Indeed, let n ∈ {0, 1, . . . N/2 − 1}. It always holds that if
ûn =

√
2, then ûn+N/2 = 0, and vice-versa. The same happens with the coefficients

of v̂. Moreover, for every m ∈ ZN , either ûm or v̂m vanish. Therefore,

ûnv̂n + ûn+N/2v̂n+N/2 = 0.

We observe that the coefficients of the vector û vanish in the N/2 different
positions which are closer to N/2 (in ZN). In the same way, the components of
v̂ vanish in the N/2 indexes which are closer to 0. This leads to the following
definition:

Definition 3.2.6. Let x ∈ `2(ZN). The indexes of x̂ are called the frequency
scale. The high frequencies are the ones closer to N/2, while the low frequencies are
the ones closer to 0, with the arithmetic of ZN . Thus, if x is frequency localized
near 0 (N/2 respectively), we will say that x is a low-pass filter (high-pass filter
respectively).

In the way that û and v̂ have been defined in (3.6), it turns out that u and v will be
the low and high pass filters, respectively. Since we have obtained the wavelet basis
through the DFTs of the vectors u, v, if we want to find their explicit expression, we
need to compute the IDFTs. We can easily check that if n = 1, 2, . . . , N − 1, then

un =

√
2

N
e−inπ/N

sin(πn/2)

sin(πn/N)
, vn = (−1)nun,

and u0 = v0 = 1/
√

2.
We observe that the vectors u and v are not real-valued. This is something we

do not want to happen, since we are going to deal with real-valued signals z (as for
example, audio or video signals). If we have a basis B of real-valued vectors, then
the coefficients in the expansion of z in terms of B will also be real, because they
are the inner products of z with the basis elements. In this case, the computations
are simpler and moreover, we will save computer memory, since complex vectors are
stored as pairs of real vectors. Nevertheless, we can slightly modify the definition of
û and v̂ in order to get an orthonormal basis made of real-valued vectors.

3.2. Examples of first-stage wavelets 40

3.2.3 The real Shannon transform

Definition 3.2.7. Let û and v̂ be as in (3.6), except for the following specified
coefficients:

ûN/4 = −i, û3N/4 = i, v̂N/4 = v̂3N/4 = 1.

We define the real Shannon basis as

SR = {R2ku}N/2−1k=0 ∪ {R2kv}N/2−1k=0 .

Proposition 3.2.8. SR is a first-stage wavelet basis of real-valued vectors.

In order to prove this proposition, we need an auxiliary lemma about real-valued
vectors:

Lemma 3.2.9. Let z ∈ `2(ZN). Then z is real-valued if and only if ẑm = ẑN−m, for
all m.

Proof. Note that z is real-valued if and only if z = z, and this holds if and only if

ẑ = (̂z). But by the properties of complex conjugation:

ẑm =
N−1∑
n=0

zne
−2πimn/N =

N−1∑
n=0

zne2πimn/N = ẑ−m = ẑN−m,

and hence, we conclude that ẑ = (̂z) if and only if ẑm = ẑN−m, for all m.

Proof of Proposition 3.2.8. First we prove that u and v are real-valued vectors. Note
that ûN/4 = i = −i = û3N/4. On the other hand, v̂N/4 = v̂3N/4 = 1. For the rest of
indexes it is clear that the symmetry condition is satisfied. In order to prove that SR
is a first-stage wavelet basis we only need to prove that the system matrix A(N/4)
is unitary. We already know that A(n) is unitary for all n 6= N/4 (it follows from
the fact that S is a wavelet basis and Theorem 3.1.14). We have that

A(N/4) =
1√
2

(
i 1
−i 1

)
is clearly unitary, and hence, the result follows.

Thus, we have improved the Shannon wavelet basis into a basis consisting of
real-valued vectors, and it preserves the property that u is a low-pass filter and v
is a high-pass filter. This will be a suitable basis to work with in signal analysis.
Again, note that we defined SR in terms of the DFTs of u and v, so we need to
compute the IDFTs in order to obtain the explicit expressions of u, v. Figure 3.2
shows how u, v (or either, its translation) look like, for N = 512.

For the 2D real Shannon transform, we iterate in the same way as we did with
the 2D Haar transform (Remark 3.2.2).

We shall now see a couple of examples of the compression that can be done
through the real Shannon basis. In order to get a compression, we will discard the
lower coefficients of the Shannon transform (in absolute value) and keep the higher
ones (i.e., the most relevant). Depending on how much coefficients we drop, the
compression will improve, as the recovered signal quality will decrease.

41 Chapter 3. Wavelets on ZN

0 50 100 150 200 250 300 350 400 450 500

−0.4

−0.2

0

0.2

0.4

0.6

0 50 100 150 200 250 300 350 400 450 500

−0.4

−0.2

0

0.2

0.4

0.6

Figure 3.2: Real Shannon wavelets: with N = 512, R256u and R256v, respectively.

Example 3.2.10. Consider xj = j, for j = 0, . . . , 511, and yj = f(xj), where
f(x) = sin(x/175) − 3 cos(x/100). Figure 3.3 presents three reconstructions of the
signal, keeping 70%, 50%, and 30% of the coefficients.

We can observe that the recovered signal is very different from the original one
when keeping only 30% of the coefficients. This is because we have lost all the
information about the coefficients involving the vector v, since those were (mostly)
the lowest ones. In contrast, we can see that the recovered signal with 50% of the
coefficients is quite good compared with the original. This is because there are also
low coefficients coming from the scalar product 〈z, Rkũ〉 (Lemma 3.1.4), so there are
relatively high coefficients involving v which did not vanish when compressing, and
the reconstruction is better. Figure 3.4 shows such coefficients.

3.2.4 Daubechies’ D6 wavelet

Daubechies’ D6 wavelets were developed by Ingrid Daubechies in 1988, being these
the most recent wavelets we are going to study. They were firstly constructed in the
contexts of R and Z, (see [2], Chapters 2 and 3, respectively) but here we adapt it
to the case of ZN .

We begin assuming that N > 6 is an even natural number, and M = N/2.
We are going to construct a vector u ∈ `2(ZN) with only 6 nonzero elements, and

3.2. Examples of first-stage wavelets 42

0 100 200 300 400 500
−3

−2

−1

0

1

2

3

Original signal

0 100 200 300 400 500
−3

−2

−1

0

1

2

3

Recovered signal, keeping 70% of the coefficients

0 100 200 300 400 500
−3

−2

−1

0

1

2

3

Recovered signal, keeping 50% of the coefficients

0 100 200 300 400 500
−3

−2

−1

0

1

2

3

Recovered signal, keeping 30% of the coefficients

Figure 3.3: Plots corresponding to Example 3.2.10. The relative errors done in the
compression are < 10−3, 0.0044, and 0.2638, respectively.

eventually obtain a first-stage wavelet basis using Proposition 3.1.16, and it will
have good localization in space, rather than good frequency localization. We start
with the identity (

cos2
(πn
N

)
+ sin2

(πn
N

))5
= 1.

Expanding it, we obtain:

cos10
(πn
N

)
+ 5 cos8

(πn
N

)
sin2

(πn
N

)
+ 10 cos6

(πn
N

)
sin4

(πn
N

)
+ 10 cos4

(πn
N

)
sin6

(πn
N

)
+ 5 cos2

(πn
N

)
sin8

(πn
N

)
+ sin10

(πn
N

)
= 1. (3.7)

Now consider the identities

cos

(
π(n+M)

N

)
= cos

(πn
N

+
π

2

)
= − sin

(πn
N

)
,

sin

(
π(n+M)

N

)
= cos

(πn
N

)
. (3.8)

43 Chapter 3. Wavelets on ZN

0 50 100 150 200 250 300 350 400 450 500

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Figure 3.4: Modulus of the coefficients in the real Shannon basis of the signal from
Example 3.2.10.

If we define

bn = cos10
(πn
N

)
+ 5 cos8

(πn
N

)
sin2

(πn
N

)
+ 10 cos6

(πn
N

)
sin4

(πn
N

)
,

and then use the identities shown in (3.8), it turns out that

bn+M = 10 cos4
(πn
N

)
sin6

(πn
N

)
+ 5 cos2

(πn
N

)
sin8

(πn
N

)
+ sin10

(πn
N

)
.

Thus, by equation (3.7), we have that

bn + bn+M = 1, for all n.

Finally, we choose u ∈ `2(ZN) such that |ûn|2 = 2bn, so that

|ûn|2 + |ûn+M |2 = 2, for n = 0, 1, . . . ,M − 1.

3.2. Examples of first-stage wavelets 44

Our constructed vector u is a potential wavelet generator, though we still need to
find its expression from the conditions we have so far. We can re-write bn in the
following way:

bn = cos6
(πn
N

)[
cos4

(πn
N

)
+ 5 cos2

(πn
N

)
sin2

(πn
N

)
+ 10 sin4

(πn
N

)]
= cos6

(πn
N

)[(
cos2

(πn
N

)
−
√

10 cos2
(πn
N

))2
+
(
5 + 2

√
10
)

cos2
(πn
N

)
sin2

(πn
N

)]
.

We define û ∈ `2(ZN) as

ûn =
√

2e−5πin/N cos3
(πn
N

)[
cos2

(πn
N

)
−
√

10 sin2
(πn
N

)
+ i

√
5 + 2

√
10 cos

(πn
N

)
sin
(πn
N

)]
.

It can be easily checked that under this definition, |ûn|2 = 2bn. Using the fact that
eix = cosx+i sinx (Euler’s formula) for every x ∈ R and the double angle identities,
we can write:

ûn =
√

2e−2πi4n/Ne3πin/N

(
eπin/N + e−πin/N

2

)3[
1

2

(
1 + cos

(
2πn

N

))

−
√

10

2

(
1− cos

(
2πn

N

))
+ i

√
5 + 2

√
10

2
sin

(
2πn

N

)]
.

In order to simplify the notation, we will write

a = 1−
√

10, b = 1 +
√

10, c =

√
5 + 2

√
10,

and using Euler’s formula again, we re-arrange the terms to obtain

ûn =

√
2

8
e−2πi4n/N

(
e2πin/N +1

)3(a
2

+
b

4

(
e2πin/N +e−2πin/N

)
+
c

4

(
e2πin/N−e−2πin/N

))
.

In order to have the best localization possible, we can force u to be of the form

u = (u0, u1, . . . , u5, . . . , 0),

which implies that

ûn =
5∑

k=0

uke
−2πikn/N .

45 Chapter 3. Wavelets on ZN

0 10 20 30 40 50 60

−0.5

0

0.5

(a)

0 10 20 30 40 50 60

−0.5

0

0.5

(b)

0 50 100 150 200 250

−0.5

0

0.5

(c)

0 50 100 150 200 250

−0.5

0

0.5

(d)

0 50 100 150 200 250

−0.05

0

0.05

(e)

0 50 100 150 200 250

−0.05

0

0.05

(f)

Figure 3.5: Items (a) and (b): Daubechies’ D6 wavelets, for N = 64. Plots (c) and
(d) refer to the case N = 256, and (e), (f) show Re û, Im û for N = 256, respectively.

At this point, after some algebraic manipulations, we can already check out that

u =

√
2

32
(b+ c, 2a+ 3b+ 3c, 6a+ 4b+ 2c, 6a+ 4b− 2c, 2a+ 3b− 3c, b− c, 0, . . . , 0).

Finally, the expression of v is computed through Proposition 3.1.16:

v = (−u1, u0, 0, . . . , 0,−u5, u4,−u3, u2).

Note that v has 6 nonzero components as well.
Before going further, it is worth to comment that the terminology “D6” specifies

the number of nonzero entries in the vectors u, v. In fact, Daubechies constructed
a similar basis whose vectors have 2k nonzero entries, for all k > 1. Furthermore, if
we consider D2 wavelet basis, which is constructed in the same way as above, and
start with the identity

cos2
(2πn

N

)
+ sin2

(2πn

N

)
= 1,

we can check that the resulting basis is the Haar wavelet, with the exception that v
is multiplied by −1.

3.2. Examples of first-stage wavelets 46

We can see the good localization of the Daubechies’ D6 wavelet basis in Fig-
ure 3.5, with two different dimensions, N = 64 and N = 256. Items (a) and (b)
show R32u and R32v, respectively. The rest of pictures refer to the case N = 256:
(c) and (d) are R128u, R128v, respectively, and the last two pictures, (e) and (f),
show the real and imaginary parts of u when N = 256. We can appreciate that the
D6 wavelets have better space than frequency localization, as we stated earlier on.
However, this basis provides much more frequency localization than the Euclidean
one (which does not have frequency localization at all), just by extending the num-
ber of nonzero elements of u, v to 6, instead of 1. This is why Daubechies D6 wavelet
basis works much better than the standard basis in matter of signal processing.

Chapter 4

The iteration step: p-th stage
wavelets

So far we have constructed and characterized (Theorem 3.1.14) orthonormal bases
for `2(ZN), N even, of the form

{R2kv}N/2−1k=0 ∪ {R2ku}N/2−1k=0 ,

named first-stage wavelets. We have also concentrated the high frequencies in the
terms involving v, and the low frequencies in those involving u, in such a way that we
get some degree of frequency localization. This also provided us spatial localization,
as we can be observe in Figure 3.2. In fact, for instance, the real Shannon transform
divided the frequency scale in 2 halves. Nevertheless, if we want to apply discrete
wavelet theory to musical signals, it is more natural to consider frequencies on a
logarithmic scale, in octaves. Motivated by this observation, we can split the low
frequency half scale into two equal parts while leaving the high frequency untouched.
Then, we can subdivide the lowest frequency quarter, and so on. Doing this, the
basis decomposition will give us a more refined frequency analysis of a signal.

This kind of iteration can already be appreciated in the n-th order Haar trans-
form. Recall that in the first iteration, we split a signal z into two vectors, P ′(z)
and Q′(z) (of length N/2), corresponding to the terms coming from the translates
of u and v, respectively. We also noticed that P ′(z) is obtained by averaging each
pair of values 2k, 2k + 1, for k = 0, . . . , N/2 − 1, and hence, it can be seen as the
original signal with a scale of 2 instead of 1. Perhaps we have enough information
with a large-scale behavior of z, so we can ignore the coefficients of Q′, or maybe
even a larger scale is enough for the purpose we may be interested in, so there is no
need to keep the full detail of a signal. With this procedure, we will probably save
time and energy. To illustrate how important this kind of compression is, consider,
for example, a NASA non-manned scouting mission in Mars. A lot of pictures of
the environment are sent, meaning that we cannot expect to have full detail of each
one of the pictures1. But we can send the pictures with a larger scale that will allow

1The Earth’s orbit radius is around 150 million km, while Mars’ is around 227 million km (in

47

4.1. Preliminaries: Operators and auxiliary results 48

us to decide whether there is something of interest in that image or not. If there is,
we can add details gradually until we can identify it.

This chapter will be devoted to the study of p-th stage wavelets: definition, char-
acterization, applications and advantages with respect to the first-stage wavelets.
But before, we need to introduce various concepts and prove some results that will
be used. Since we will still be working with wavelet basis, we will only consider even
dimensions, i.e., N = 2M , for some M ∈ N.

4.1 Preliminaries: Operators and auxiliary results

Lemma 4.1.1. Let A ∈MN(C). Then, the following are equivalent:

1. A is unitary.

2. The columns of A form an orthonormal basis for CN .

3. The rows of A form an orthonormal basis for CN .

Lemma 4.1.2. Let E = {e0, e1, . . . , eN−1} be the Euclidean basis for CN , and let
U = {u0, u1, . . . , uN−1} be an orthonormal basis for CN . Define U to be the matrix
whose j-th column is the vector uj. Then:

1. U is the U-to-E change of basis matrix, and hence, U t is the E-to-U change of
basis.

2. Let T : CN → CN be a linear transformation represented by the matrix AE in
the standard basis. Then, the matrix which represents T in the basis U is

AU = U tAEU.

Now suppose that we have a wavelet basis B = {R2kv}M−1k=0 ∪ {R2ku}M−1k=0 . By
Lemma 4.1.2, the B-to-E change of basis matrix, say B, is formed by the vectors
v,R2v, . . . RM−1v, u,R2u, . . . , RM−1v, in this order. By Lemma 4.1.1, since B is
orthonormal, then B is unitary, so that the E-to-B change of basis matrix is B−1 =
Bt. However, if we want to compute [z]B by multiplying Btz directly, we need
to compute N2 multiplications. Nevertheless, we can make this process faster: the
coefficient of R2kv in the expansion of z is 〈z,R2kv〉 = (z∗ ṽ)2k, by Lemma 3.1.4, and
the same happens with the coefficients involving u. This means that we can reduce
the number of multiplications using the FFT in order to compute the convolutions
z ∗ ṽ, z ∗ ũ, as stated in Lemma 2.1.8. The expression of [z]B will be:

[z]B = ((z ∗ ṽ)0, (z ∗ ṽ)2, . . . , (z ∗ ṽ)N−2, (z ∗ ũ)0, (z ∗ ũ)2, . . . , (z ∗ ũ)N−2). (4.1)

Now we are going to define an operator which will allow us to re-write the expression
(4.1) in an easy way.

mean). The minimum distance between the Earth and Mars is around 59 million km. This means
that the information sent from the probes must travel a huge distance.

49 Chapter 4. The iteration step: p-th stage wavelets

∗ṽ ↓ 2

z [z]B

∗ũ ↓ 2

z ∗ ṽ

z ∗ ũ

D(z ∗ ṽ)

D(z ∗ ũ)

Figure 4.1: Diagram of the E-to-B change of basis of a vector z, as noted in (4.1).

Definition 4.1.3. Let N = 2M with M ∈ N. We define D : `2(ZN)→ `2(ZM) as

D(z)n = z2n, for n = 0, 1, . . . ,M − 1.

D is called the downsampling operator, and it will denoted by ↓ 2 in diagrams.

What this operator does is, actually, discarding the odd-indexed entries of a
vector z ∈ `2(Z2M). We have already used this operator without defining it, in
order to work with the n-th order Haar transform. Recall that, for instance, at
first step, we obtained two vectors, corresponding to the 1st order tendency and
details respectively, say P (z) and Q(z). We noted that those two vectors could be
determined by taking only half of their coefficients, which were the even-indexed
ones. Hence, equation (3.5) is equivalent to P ′1(z) = D(P (z)), Q′1(z) = D(Q(z)).

Definition 4.1.4. For any sequence of convolutions and other operations applied
to a vector (and its operation’s outputs) such as upsample or downsample, sum, or
concatenate, we refer to it as a filter bank.

The study of filter banks is a whole subject in engineering, called multirate
signal analysis. The filter banks we are going to use will be simple, and we will
often represent them with diagrams. In diagrams, we will have boxes and arrows.
Boxes will represent operators, and every arrow will be associated to a vector; for
a box C, the input for the corresponding operator will be the vector whose arrow
ends at C, while the output will be a vector whose arrow starts at C. The first
example of filter bank is Figure 4.1, which shows the E-to-B change of basis process
of a vector z ∈ `2(ZN).

The next question we may approach is whether the inverse transformation, the
B-to-E change of basis, can be done quickly. We can always multiply a vector z by
the matrix U , but it requires N2 products, as we noted before. Using filter banks,
we will be able to quicken this process. So, the first thing to do, is to define a kind
of inverse operator for D:

Definition 4.1.5. Let N = 2M with M ∈ N. We define U : `2(ZM)→ `2(ZN) as

U(z)n =

{
zn/2, if n is even,
0, if n is odd.

U is called the upsampling operator, and it will be denoted by ↑ 2 in diagrams.

4.1. Preliminaries: Operators and auxiliary results 50

∗ṽ ↓ 2 ↑ 2 t̃∗

z + z

∗ũ ↓ 2 ↑ 2 s̃∗

z ∗ ṽ D(z ∗ ṽ) U(D(z ∗ ṽ)) t̃ ∗ U(D(z ∗ ṽ))

z ∗ ũ D(z ∗ ũ) U(D(z ∗ ũ)) s̃ ∗ U(D(z ∗ ũ))

Figure 4.2: Reconstruction of z from the output of the left filter bank of Figure 4.1.

The operator U applied on a vector z does nothing else than doubling its size by
putting a zero between two adjacent values. The first thing to note is that

D ◦ U = Id,

but this is not true if we change the order of the operators: in fact, consider the
example z = (1, 1,−1, 1). Then:

D(z) = (1,−1), U(D(z)) = (1, 0,−1, 0) 6= z.

Therefore, it is not true that U ◦ D = Id, so that D and U are only one-sided
inverse operators. However, if we compare the operator U ◦D with Remark 3.1.9,
we observe that

U ◦D(z) =
1

2
(z + z∗). (4.2)

In this case, suppose that we want to get back z as output of a filter bank whose
left part is the same as in Figure 4.1. We can follow this filter bank with a right
part built as shown in Figure 4.2: in this diagram, s, t ∈ `2(ZN) are unknown, but
we are going to give necessary and sufficient conditions on u, v, s, t that will ensure
us the perfect reconstruction of z.

Theorem 4.1.6. Let N = 2M , with M ∈ N, and u, v, s, t ∈ `2(ZN). Let A(n) be
the system matrix for u and v, for n = 0, . . . , N − 1. Then, we can reconstruct z as
in Figure 4.2, i.e.

t̃ ∗ U(D(z ∗ ṽ)) + s̃ ∗ U(D(z ∗ ũ))) = z (4.3)

for all z ∈ `2(ZN) if and only if

A(n)

(
ŝn
t̂n

)
=

(√
2

0

)
,

for all n = 0, . . . , N − 1. Moreover, if A(n) is unitary, then t̂n = v̂n and ŝn = ûn.

Proof. By (4.2), we know that

U(D(z ∗ ṽ)) =
1

2
(z ∗ ṽ + (z ∗ ṽ)∗),

51 Chapter 4. The iteration step: p-th stage wavelets

and the same happens if we replace v by u. Now, by the linearity of the DFT,
Lemma 2.1.8, Proposition 3.1.2, and Lemma 3.1.8, we have that

[U(D(z ∗ ṽ))ˆ]n =
1

2

(
ẑnv̂n + ẑn+M v̂n+M

)
,

for every n, and similarly with v replaced by u. Hence, using again Lemma 2.1.8
and Proposition 3.1.2, we obtain:

̂[
t̃ ∗ U(D(z ∗ ṽ)) + s̃ ∗ [U(D(z ∗ ũ))

]
n

=
1

2

(
t̂n

(
ẑnv̂n + ẑn+M v̂n+M

)
+ ŝn

(
ẑnûn + ẑn+M ûn+M

))
=

1

2

(
ẑn

(
t̂nv̂n + ŝnûn

)
+ ẑn+M

(
t̂nv̂n+M + ŝnûn+M

))
. (4.4)

By Fourier inversion (Theorem 2.1.6), there will be perfect reconstruction of the
original signal z if and only if the expression in equation (4.4) agrees with ẑn, for all
n. We claim that this happens if and only if

ŝnûn + t̂nv̂n = 2, (4.5)

ŝnûn+M + t̂nv̂n+M = 0. (4.6)

Indeed, replacing (4.5) and (4.6) in equation (4.4), we easily check that this is a
sufficient condition to get perfect reconstruction. On the other hand, if we suppose
that we have perfect reconstruction of z for all z ∈ `2(ZN), fix n and choose z such
that ẑn = 1 and ẑn+M = 0. Then, equation (4.5) holds. On the other hand, choosing
a different z such that ẑn = 0 and ẑn+M = 1, we deduce that equation (4.6) holds
as well. If we now divide equations (4.5) and (4.6) by

√
2 and put them in matrix

notation, we obtain (4.3).

Finally, suppose that A(n) is unitary. Then, it is invertible and moreover,
A(n)−1 = A(n)t. Solving equation (4.3), it turns out that ŝn = ûn and t̂n = v̂n.

Remark 4.1.7. In Theorem 4.1.6 we saw that if A(n) is unitary for some n, then
sn = ûn and t̂n = v̂n. This means that if A(n) is unitary, then s, t are completely
determined by u, v: indeed, by Proposition 3.1.2 and Proposition 2.1.6, we have:

s = ũ, t = ṽ.

But we know, from Theorem 3.1.14, that A(n) is unitary for all n if and only if
{R2ku}M−1k=0 ∪ {R2kv}M−1k=0 is an orthonormal basis for `2(ZN), i.e., it is a first-stage
wavelet basis. We conclude that we always have perfect reconstruction of a signal
z for the filter bank shown in Figure 4.2 whenever u, v are first-stage wavelet basis
generators.

4.2. The iteration step 52

∗ṽ1 ↓ 2 ↑ 2 v1∗

z ∗ṽ2 ↓ 2 ↑ 2 v2∗ + z

∗ũ1 ↓ 2 + ↑ 2 u1∗

∗ũ2 ↓ 2 ↑ 2 u2∗

A

B

D(z ∗ ṽ1)

Figure 4.3: Second stage iteration of the Figure 4.2. Note that A = D(D(z∗ũ1)∗ṽ2),
B = D(D(z ∗ ũ1) ∗ ũ2) ∈ `2(ZN/4).

4.2 The iteration step

The filter bank shown in Figure 4.2 suggests a possibility for iteration in the following
way: in the left part of this filter bank (which is the same as the one shown in
Figure 4.1), we can apply the same procedure again. That is, we can pass the output
of the top and bottom branches through two more filters, and then downsample again
in each one of the new branches. In the right side, we can pass the signal from each
one of the new branches through an upsampler, and finally a new filter, say s2, t2 to
keep the previous notation. If the filters at this second stage are compatible, then
we will have perfect reconstruction, and we can iterate this procedure as long as
we are allowed to. We can apply the iteration at each one of the branches coming
from the last step, but typically we will be interested in the branch coming from the
convolution with a low-pass filter u, for the reasons stated at the beginning of this
chapter. So, now we are going to study this iteration procedure.

Consider the filter bank from Figure 4.2, and write u1 = u, v1 = v. We shall
assume that u1, v1 generate a first-stage wavelet basis, so that the system matrix
A(n) of u1 and v1 is unitary for all n. Then, Theorem 4.1.6 tells us that for perfect
reconstruction, the filters in the fight half of Figure 4.2 must be u and v. Now
suppose that we have an input signal z ∈ `2(ZN) for this diagram, and also assume
that N is divisible by 4. At the first step, we get a pair of vectors, D(z ∗ ṽ1),
D(z ∗ ũ1) ∈ `2(ZN/2). We can assume that v1 corresponds to the high-frequency
part (although it is not necessary), and then leave D(z ∗ ṽ1) untouched. Now choose
u2, v2 ∈ `2(ZN/2) whose system matrix is unitary for all n. Now we can use these
two new vectors to apply the filter shown in Figure 4.1, but this time using the
vector D(z ∗ ũ1) as input. The resultant filter bank of the whole process is shown
in Figure 4.3.

53 Chapter 4. The iteration step: p-th stage wavelets

Example 4.2.1. To illustrate this process, we can consider an easy example: the
n-th order Haar transform (3.2.1). Suppose that N > 3 is divisible by 2n, for some

n ∈ N. The Haar basis was defined as {R2ku
1}N/2−1k=0 ∪ {R2kv

1}N/2−1k=0 , where

u1 =
(

1/
√

2, 1/
√

2, 0, . . . , 0︸ ︷︷ ︸
N−2

)
, v1 =

(
1/
√

2,−1/
√

2, 0, . . . , 0︸ ︷︷ ︸
N−2

)
.

For a signal z ∈ `2(ZN), recall (3.5) that we defined the tendency and the details of
z by the Haar transform as P ′1(z) = D(z ∗ ũ1) and Q′1(z) = D(z ∗ ṽ1), respectively,
and those vectors have length N/2. Now we can consider a new wavelet basis of the

form {R2ku
2}N/4−1k=0 ∪ {R2kv

2}N/4−1k=0 , where

u2 =
(

1/
√

2, 1/
√

2, 0, . . . , 0︸ ︷︷ ︸
N/2−2

)
, v2 =

(
1/
√

2,−1/
√

2, 0, . . . , 0︸ ︷︷ ︸
N/2−2

)
.

Next, we can apply a new wavelet transform to the vectors P ′1(z), Q′1(z) (but in
the iterations of the Haar transform, if we are looking for compression, we will only
apply the transformation to P ′1(z)). We can repeat this process until the n-th step
as long as N is divisible for 2n.

Actually, p-th stage wavelets can be defined in terms of wavelet basis for different
dimensions:

Definition 4.2.2. Let N ∈ N be divisible by 2p, for p > 1. A p-th stage wavelet is
a sequence of vectors u1, v1, u2, v2, . . . , up, vp such that for every m = 1, 2, . . . , p,

{R2ku
m}N/2

m−1
k=0 ∪ {R2kv

m}N/2
m−1

k=0

is a wavelet basis, or equivalently, the matrix

Am(n) =
1√
2

(
ûmn v̂mn

ûmn+N/2m v̂mn+N/2m

)
is unitary for all n = 0, 1, . . . , N/2m − 1.

Definition 4.2.3. In the same conditions as in Definition 4.2.2, define

x1 = D(z ∗ ṽ1) ∈ `2(ZN),

y1 = D(z ∗ ũ1) ∈ `2(ZN),

and inductively, for m = 2, . . . , p:

xm = D(ym−1 ∗ v̂m) ∈ `2(ZN/2m),

ym = D(ym−1 ∗ ûm) ∈ `2(ZN/2m). (4.7)

We say that the set of vectors {x1, x2, . . . xp, yp} is the output of the p-th stage
wavelet filter bank.

4.2. The iteration step 54

The first thing to note is that by Theorem 4.1.6, we have perfect reconstruction
of a signal z ∈ `2(ZN) from the output of a p-th stage wavelet filter bank. As we
could expect, the total number of coefficients that define the output is

N

2
+
N

4
+ · · ·+ N

2p−1
+
N

2p
+
N

2p
= N. (4.8)

Next, we notice that we need no yk, for k = 1, . . . , p − 1 in order to get a perfect
reconstruction of z. Indeed, yk, xk are defined inductively in (4.7). Consider the first
reconstruction step of a p-th stage wavelet filter bank. By the perfect reconstruction
property, we have that

(U(yp)) ∗ up + (U(xp)) ∗ vp = yp−1.

We can repeat this process inductively: since we know yp−1 and xp−1 we can now
obtain yp−2, and so on. Eventually:

z = (U(y1)) ∗ u1 + (U(x1)) ∗ v1.

Definition 4.2.4. Consider a p-th stage wavelet filter bank F . The analysis phase
of F will consist of those blocks whose last operation is a convolution followed by
a downsampling. Contrarily, the reconstruction (or synthesis) phase will be formed
by the blocks whose last operation is an upsampling followed by a convolution.

Precisely, the reconstruction phase of a signal z begins when z is totally decom-
posed by the filter bank, as shown in Figure 4.4.

Notice that we have defined the filter bank procedures recursively in Defini-
tion 4.2.3. Since this way of defining a p-stage wavelet does not show our original
intent of constructing orthonormal bases for `2(ZN), working a bit, we are going to
find an equivalent definition that leads to orthonormal bases.

Lemma 4.2.5. Let N = 2M,M ∈ N, z ∈ `2(ZN) and x, y, w ∈ `2(ZN/2). Then:

(D(z)) ∗ w = D(z ∗ U(w)), (4.9)

U(x) ∗ U(y) = U(x ∗ y). (4.10)

Proof. First, we prove equation (4.9). Note that, for every m, wm = U(w)2m.
Therefore:

(D(z) ∗ w)n =

N/2−1∑
m=0

D(z)n−mwm =

N/2−1∑
m=0

z2n−2mU(w)2m

=
N−1∑
k=0

z2n−kU(w)k = (z ∗ U(w))2n = D(z ∗ U(w))n.

In the last sum, we have added the odd-indexed values, since for k odd, U(w)k = 0,
so it does not affect the result. To prove equation (4.10), recall that U(y)m = 0 if
m is odd, and U(y)m = ym/2 if m is even. Then, we have that

(U(x) ∗ U(y))n =
N−1∑
m=0

U(x)n−mU(y)m =

N/2−1∑
k=0

U(x)n−2k yk. (4.11)

55 Chapter 4. The iteration step: p-th stage wavelets

...
...

∗ṽp−1 ↓ 2 ↑ 2 vp−1∗

z ∗ṽp ↓ 2 ↑ 2 vp∗ + z

∗ũp−1 ↓ 2 + ↑ 2 up−1∗

∗ũp ↓ 2 ↑ 2 up∗

xp

yp

D(z ∗ ṽp−1) = xp−1

Figure 4.4: Ending of the analysis phase (left half) and beginning of the reconstruc-
tion phase (right half).

Now suppose that n is odd. Then n − 2k is odd as well, and hence, U(x)n−2k = 0
for all k. This yields

(U(x) ∗ U(y))n = 0 = U(x ∗ y)n.

On the other hand, suppose that n is even, i.e., n = 2t. In this case, U(x)n−2k =
U(x)2t−2k = xt−k, and using relation (4.11), we obtain:

(U(x) ∗ (y))n =

N/2−1∑
k=0

xt−kyk = (x ∗ y)t = U(x ∗ y)2t = U(x ∗ y)n.

Definition 4.2.6. Let N ∈ N be such that 2k divides N . Then, for any z ∈ `2(ZN),
we define Dk(z) as the composition of D with itself k times, applied to z. Formally,
we write D = D1, and by induction, Dk(z) =

(
D ◦Dk−1)(z), for k > 1. Also, Uk(z)

is defined in the same way.

Remark 4.2.7. Note that Dk : `2(ZN)→ `2(ZN/2k) is given by

Dk(z)n = z2kn,

while Uk : `2(ZN/2k)→ `2(ZN) has the expression

Uk(z)n =

{
wn/2k , if 2k divides n,
0, otherwise.

We are now going to generalize Lemma 4.2.5 for Dk and Uk:

4.2. The iteration step 56

Proposition 4.2.8. Suppose that N ∈ N is divisible by 2k, x, y, w ∈ `2(ZN/2l), and
z ∈ `2(ZN). Then

Dk(z) ∗ w = Dk
(
z ∗ Uk(w)

)
,

Uk(x ∗ y) = Uk(x) ∗ Uk(y).

Proof. The proof is done by induction on k. For k = 1, this result is just Lemma 4.2.5.
Suppose that the statement is true for k = l. We need to prove it for k = l+ 1. So,
for n ∈ ZN/2l+1 , we have that

(
Dl+1 ∗ w

)
n

=
(
D
(
Dl(z)

)
∗ w
)
n

=

N/2l+1−1∑
m=0

D
(
Dl(z)

)
n−mwm

=

N/2l+1−1∑
m=0

Dl(z)2n−2mU(w)2m =

N/2l−1∑
t=0

Dl(z)2n−tU(w)t

=
(
Dl(z) ∗ U(w)

)
2n

= D
(
Dl(z) ∗ U(w)

)
n
.

By induction hypothesis, replacing w with U(w), together with the last equality
yield

D
(
Dl(z) ∗ U(w)

)
= D

(
Dl(z ∗ U l+1(w))

)
= Dl+1

(
z ∗ U l+1(w)

)
.

The second equality is proved in the same way, imitating the proof of Lemma 4.2.5.

Finally, we are able to write a non-recursive definition of p-stage wavelet, equiv-
alent to Definition 4.2.2.

Definition 4.2.9. Let N ∈ N be divisible by 2p. Let u1, v1, u2, v2, . . . , up, vp be
vectors such that, for k = 1, 2, . . . , p,

uk, vk ∈ `2(ZN/2k−1).

Define f1 = v1 and g1 = u1, and for k = 2, 3, . . . , p define inductively

fk = gk−1 ∗ Uk−1(vk) ∈ `2(ZN),

gk = gk−1 ∗ Uk−1(uk) ∈ `2(ZN).

We can observe that the general form of fk, gk is

fk = u1 ∗ U(u2) ∗ U(u3) ∗ · · · ∗ Uk−1(vk),

gk = u1 ∗ U(u2) ∗ U(u3) ∗ · · · ∗ Uk−1(uk).

Hence, all the convolutions involved in Definition 4.2.9 are computed using the
filters uk, except for the last convolution of gk, which involves vk. We will use the
following three properties, which will not be proved since they easily follow from a
few algebraic manipulations:

57 Chapter 4. The iteration step: p-th stage wavelets

Proposition 4.2.10. For z, w ∈ `2(ZN),

1. (z̃ ∗ w) = z̃ ∗ w̃,

2. D̃(z) = D(z̃),

3. Ũ(z) = U(z̃).

The following expressions will be useful to express further results:

f̃k = g̃k−1k ∗ Uk−1(ṽk),

g̃k = g̃k−1 ∗ Uk−1(ũk).

We are now going to give a result that describes the output of the analysis phase of
a p-th stage (recursive) wavelet filter bank as a set of (non-recursive) convolutions.
The reconstruction phase will be described in a similar way.

Lemma 4.2.11. Let N ∈ N be divisible by 2p, z ∈ `2(ZN), and let u1, v1, . . . , up, vp

be such that
uk, vk ∈ `2(ZN/2k−1),

for k = 1, . . . , p. For the same values of k, Let xk, yk be as in Definition 4.2.3, and
fk, gk as in Definition 4.2.9. Then

xk = Dk
(
z ∗ f̃k

)
,

yk = Dk
(
z ∗ g̃k

)
.

Proof. We will prove this result by induction on k, once again. For k = 1, it is
trivial by just applying the definitions. Now suppose that the statement holds for
k = l. Then, by the definition of xl+1 and Proposition 4.2.8,

xl+1 = D
(
yl ∗ ṽl+1

)
= D

(
Dl
(
z ∗ g̃l

)
∗ ṽl+1

)
= D ◦Dl

(
z ∗ g̃l ∗ U l

(
ṽl+1

))
.

By the properties shown in Proposition 4.2.10, we conclude that

Dl+1
(
z ∗ g̃l ∗ U l

(
ṽl+1

))
= Dl+1

(
z ∗ f̃ l+1

)
.

The second equality is proved similarly as the first one, yielding

yl+1 = D
(
yl ∗ ũl+1

)
= D

(
Dl
(
z ∗ g̃l

)
∗ ũl+1

)
= D ◦Dl

(
z ∗ g̃l ∗ U l

(
ũl+1

))
= Dl+1

(
z ∗ g̃l ∗ U l

(
ũl+1

))
= Dl+1

(
z ∗ g̃l+1

)
.

At this point we already have an expression for the vectors xk, yk, used to con-
struct the output of the analysis phase of a p-th stage filter bank, and the important
remark here is that we have obtained those expressions inductively. Such output is
illustrated in the left half of Figure 4.5. The other half shows the reconstruction
phase and it is going to be described in the next statement.

The output of the reconstruction phase will be described in what follows, but it
will not be proved. The proof is a simple exercise which is done in a very similar
way as the proof of Lemma 4.2.11.

4.2. The iteration step 58

z z

∗f̃ 1 ↓ 2 ↑ 2 ∗f 1 +

∗f̃ 2 ↓ 4 ↑ 4 ∗f 2 +

∗f̃ 3 ↓ 8 ↑ 8 ∗f 3 +

...
...

...
...

∗f̃k ↓ 2k ↑ 2k ∗fk +

...
...

...
...

∗f̃p ↓ 2p ↑ 2p ∗fp +

∗g̃p ↓ 2p ↑ 2p ∗gp

x1

x2

x3

xk

xp

yp

A1

A2

A3

Ak

Ap

Bp

Figure 4.5: Diagram of a p-th stage wavelet filter bank (inductive). Note that for
l = 1, . . . , p, we have Al = f l ∗ U l(xl), and Bp = gp ∗ Up(yp), by Lemma 4.2.12.

Lemma 4.2.12. Let N ∈ N be divisible by 2p. Consider a p-th stage filter bank
sequence u1, v1, . . . , up, vp, and f 1, . . . , f p, gp to be as in Definition 4.2.9. If the
input of the k-th branch (1 ≤ k ≤ p) of the reconstruction phase is xk, then the
output of such a branch is

fk ∗ Uk(xk).

Moreover, the output of the final branch of the reconstruction phase is

gp ∗ Up(yp).

Recall (Definition 4.2.3) that the output of the analysis phase of our filter bank
is x1, x2, . . . , xp, yp. By Lemma 4.2.11, we have that if 1 ≤ k ≤ p, then

xkn = Dk
(
z ∗ f̃k

)
=
(
z ∗ f̃k

)
2kn

= 〈z,R2knf
k〉,

for all n = 0, 1, . . . , N/2k − 1. Similarly, when k = p,

ypn = Dp
(
z ∗ g̃p

)
=
(
z ∗ g̃p

)
2pn

= 〈z,R2pnf
p〉.

59 Chapter 4. The iteration step: p-th stage wavelets

Also, by equation (4.8), the total number of components of the analysis phase output
is N . We may wonder if this output is actually formed by the coefficients of z with
respect to an orthonormal basis. We will see that certainly, it is, and the proof of
this fact is the main result of this section. To begin, let us see a new definition and a
couple of lemmas that will help us throughout the developing of the main theorem.

Definition 4.2.13. Let N ∈ N be divisible by 2p, and let B be a set of the form

{R2kf
1}N/2−1k=0 ∪ {R4kf

2}N/4−1k=0 ∪ · · · ∪ {R2pkf
p}N/2

p−1
k=0 ∪ {R2pkg

p}N/2
p−1

k=0 , (4.12)

with f 1, f 2, . . . , f p, gp ∈ `2(ZN). If B forms an orthonormal basis for `2(ZN), we
refer to it as a p-th stage wavelet basis.

Thus, we now need to prove that the vectors f 1, f 2, . . . , f p, gp obtained by Defi-
nition 4.2.9 generate a p-th stage wavelet basis.

Lemma 4.2.14. Let N ∈ N be divisible by 2t. Let gt−1 ∈ `2(ZN), and suppose that
the set

{R2t−1kg
t−1}N/2

t−1−1
k=0

is an orthonormal set with N/2t−1 elements. Suppose that ut, vt ∈ `2(ZN/2t−1), and
the system matrix At(n) of ut, vt is unitary, for all n = 0, 1, . . . , N/2t − 1. If we
define

f t = gt−1 ∗ U t−1(vt), gt = gt−1 ∗ U t−1(ut), (4.13)

then the set Bt = {R2tkf
t}N/2

t−1
k=0 ∪{R2tkg

t}N/2
t−1

k=0 is an orthonormal set with N/2t−1

elements.

Example 4.2.15. Before we prove this theorem, we shall see a simple example
illustrating this fact. Consider N = 8 and the Haar wavelet, with generators

u = u1 =
(

1/
√

2, 1/
√

2, 0, 0, 0, 0, 0, 0
)
,

v = v1 =
(

1/
√

2,−1/
√

2, 0, 0, 0, 0, 0, 0
)
.

Since 8 = 23, following the notation of Lemma 4.2.14, we consider t = 2 and define
g1 = u1. Clearly, {R2kg

1}3k=0 is an orthonormal basis with 4 elements, since it is the
subspace spanned by the translations of the vector u1 (Lemma 4.2.17), which is a
generator of the Haar wavelet. We will consider u2 and v2 to be the generators of
the Haar wavelet, when N = 4. This ensures that the system matrix A2(n) of u2, v2

is unitary, for all n. Finally, a simple computation shows that

f 2 = g1 ∗ U(v2) =
1

2
(1, 1,−1,−1, 0, 0, 0, 0),

g2 = g1 ∗ U(u2) =
1

2
(1, 1, 1, 1, 0, 0, 0, 0).

Trivially, the set {R4kf
2}k=0,1 ∪{R4kg

2}k=0,1 is an orthonormal set with 4 elements,
as stated in Lemma 4.2.14.

4.2. The iteration step 60

Proof of Lemma 4.2.14. By Lemma 3.1.4 and the orthogonality of the set (4.13), we
have that (

gt−1 ∗ g̃t−1
)
2t−1k

= 〈gt−1, R2t−1kg
t−1〉 =

{
1, if k = 0,
0, otherwise.

(4.14)

Now, because At(n) is unitary for all n, we can apply Theorem 3.1.14 and obtain
that the set

{R2kv
t}N/2

t−1
k=0 ∪ {R2ku

t}N/2
t−1

k=0

is an orthonormal basis for `2(ZN/2t−1). Hence, by Lemma 3.1.4,

(vt ∗ ṽt)2k = 〈vt, R2kv
t〉 =

{
1, if k = 0,
0, otherwise,

and the same expression is true if we replace vt by ut. Moreover, (vt ∗ ũt)2k =
〈vt, R2ku

t〉 = 0, for every k. Again, by Lemma 3.1.4, along with the definition of
the fk’s, the commutativity and the associativity of the convolution, and Proposi-
tion 4.2.8, we can write the inner products in the following way:

〈f t, R2tkf
t〉 =

((
f t ∗ f̃ t

)
2tk

= gt−1 ∗ U t−1(vt) ∗ g̃t−1 ∗ U t−1(ṽt)
)
2tk

=
((
gt−1 ∗ g̃t−1

)
∗
(
U t−1(vt ∗ ṽt)

))
2tk

=
N−1∑
m=0

(
gt−1 ∗ g̃t−1

)
2tk−m

(
U t−1(vt ∗ ṽt)

)
m
.

We observe that U t−1(vt ∗ ṽt)m = (vt ∗ ṽt)j whenever m = 2t−1j, and 0 otherwise.
Thus,

〈f t, R2tkf
t〉 =

N/2t−1−1∑
m=0

(
gt−1 ∗ g̃t−1

)
2tk−2t−1m

(vt ∗ ṽt)m.

And by equation (4.14), we have(
gt−1 ∗ g̃t−1

)
2tk−2t−1m

=
(
gt−1 ∗ g̃t−1

)
2t−1(2k−m)

=

{
1, if m = 2k,
0, if m 6= 2k,m ∈ ZN/2t−1 .

Hence,

〈f t, R2tkf
t〉 = (vt ∗ ṽt)2k =

{
1, if k = 0,
0, if k = 1, 2, . . . , N/2t − 1.

Therefore, the set {R2tkf
t}N/2

t−1
k=0 is orthonormal. By the same procedure, but taking

gt in place of f t, we obtain that the set {R2tkf
t}N/2

t−1
k=0 is also orthonormal. Moreover,

in the process we obtain the equality

〈f t, R2tkg
t〉 = (vt ∗ ũt)2k = 0,

for all k. This equality, along with the fact that 〈f t, R2tkf
t〉 = 0 for all k, we obtain

(after a few easy manipulations):

〈R2tkf
t, R2tjg

t〉 = 0, for all k, j.

Hence, the set Bt defined in the statement is orthonormal.

61 Chapter 4. The iteration step: p-th stage wavelets

Actually, the splitting method shown in Lemma 4.2.14 is deeper in the sense that
we get decompositions of an orthonormal basis in the direct sum of two orthonormal
subspaces, each with the same amount of elements.

Definition 4.2.16. Let X be an inner product space, and let U, V be subspaces of
X. Suppose that U ⊥ V . Define the direct sum of U and V as

U ⊕ V = {u+ v : u ∈ U, v ∈ V }.

In particular, if X = U ⊕V , every element x ∈ X can be written as x = u+ v, with
u ∈ U and v ∈ V .

Lemma 4.2.17. With the same assumptions as in Lemma 4.2.14, if we define the
spaces

V−t+1 = span {R2t−1kg
t−1}N/2

t−1−1
k=0 ,

W−t = span {R2tkf
t}N/2

t−1
k=0 ,

V−t = span {R2tkg
t}N/2

t−1
k=0 ,

then V−t+1 = V−t ⊕W−t.

Proof. By Lemma 4.2.14, every basis element of V−t is orthogonal to every basis
element of W−t. By linearity, it follows that every element of V−t is orthogonal to
every element of W−t. This proves the orthonormality of those spaces. Next, we
need to prove that they actually are subspaces. Note that, for k = 0, 1, . . . , N/2t−1,

(R2tkg
t)n = gtn−2tk = gt−1 ∗ (U t−1(ut))n−2tk

=
N−1∑
m=0

gt−1n−2tk−m(U t−1(ut))m.

Since (U t−1(ut))m = utm/2t−1 if 2t−1|m, and 0 otherwise, the sum over m gets reduced

by only keeping the indexes of the form 2t−1j:

(R2tkg
t)n =

N/2t−1−1∑
j=0

gt−1n−2tk−2t−1ju
t
j =

N/2t−1−1∑
j=0

utj(R2t−1(j+2k)g
t−1)n.

This is true for all n. Hence, R2tkg
t =

∑N/2t−1−1
j=0 utj(R2t−1(j+2k)g

t−1). By the same

procedure, we obtain that R2tkf
t =

∑N/2t−1−1
j=0 utj(R2t−1(j+2k)g

t−1). Thus, the vectors
R2tkg

t and R2tkf
t belong to V−t+1, since they are linear combinations of translates

of gt−1 by integer multiples of 2t−1. Therefore, all the basis elements from V−t,W−t
belong to V−t+1, and so are the elements of their spans. Since V−t and W−t have
dimension N/2t, then V−t ⊕ U−t has dimension N/2t−1, which is the same as the
dimension of V−t+1. We conclude V−t ⊕ U−t = V−t+1.

4.3. Examples comparing first-stage and p-th stage wavelet basis 62

We first observe that the notation of the spaces is given by negative indexes.
This way we get the spaces increasing with the index (i.e., V−t ⊂ V−t+1). Moreover,
as we could observe in Example 4.2.15, the spaces obtained by splitting V−t+1 into
two pieces are actually subspaces. We shall now see that Lemma 4.2.17 is the main
step to prove that the output of a p-th stage wavelet filter bank yields the coefficients
of z with respect to a p-th stage wavelet basis.

Theorem 4.2.18. In the context of Definition 4.2.9, we have that (4.12) is a p-th
stage wavelet basis.

Proof. Since f 1 = v1 and g1 = u1, by Theorem 3.1.14 and the hypotheses, we have
that

{R2kf
1}N/2−1k=0 ∪ {R2kg

1}N/2−1k=0

is orthonormal. By induction, using Lemma 4.2.14, we obtain that the set of vec-

tors {R2lkf
l}N/2

l−1
k=0 is orthonormal for each l = 1, 2, . . . , p, and {R2pkg

p}N/2
p−1

k=0 is
orthonormal as well. Thus, to prove the orthonormality of (4.12), we only need
to check the orthogonality of elements in different sets. Consider some R2lkf

l and
R2mjf

m, and assume, without loss of generality, that m < l. Then, by Lemma 4.2.17,
we have that

R2lkf
l ∈ W−l ⊂ V−l+1 ⊂ · · · ⊂ V−m,

and R2mjf
m ∈ W−m. Again, by Lemma 4.2.17, V−m ⊥ W−m, so the vectors R2lkf

l

and R2mjf
m are orthogonal. Similarly, for every m ≤ p, R2pkg

p belongs to the space
V−p ⊂ V−m, and hence, it is orthogonal to any vector R2lkf

l ∈ W−l.

Summarizing, if we join all the results from this section, we will be able to
implement any p-th stage wavelet transform (when possible), iterating a first-stage
wavelet basis: if such a basis is generated by two vectors u = u1, v = v1, we consider
the same wavelet basis for `2(ZN/2), if it is possible. This basis will be generated by
two vectors u2, v2, of length N/2. As long as 2k divides N , we can find the vectors
uk, vk. With this process we obtain the vectors u1, v1, u2, v2, . . . , up, vp appearing in
Definition 4.2.9 and hence, construct a new orthonormal basis for `2(ZN), opening
the possibility to obtain even better properties than a first-stage wavelet. In the next
section we shall compare a couple of different stages of the Shannon real wavelet
and Daubechies D6 wavelet.

4.3 Examples comparing first-stage and p-th stage

wavelet basis

As we mentioned earlier on, p-th stage wavelet basis provide better analysis and
compression than the original first-stage wavelets. We will see this fact in terms of
the coefficients. Concretely, the iteration step will yield less relevant coefficients,
which is a good thing if we think about compression.

63 Chapter 4. The iteration step: p-th stage wavelets

0 100 200 300 400 500

0

0.2

0.4

0.6

0.8

1
Original signal

0 100 200 300 400 500

0

0.2

0.4

0.6

0.8

1
Approximation by 5% of the coefficients. Relative error: 0.48042

Figure 4.6: Signal from Example 4.3.1 and its first-stage approximation in
Daubechies D6 basis.

Example 4.3.1. The first example will be using the signal from Example 5.2.3. We
are going to keep the 5% of the coefficients every time (see Section 5.2), and observe
the huge improvement whenever we use the p-th stage wavelet. Figure 4.6 shows the
signal and its approximation by the first-stage Daubechies D6 wavelet. We observe
that the relative error is very high, and hence, the approximation is very poor. In
fact, if we take a look at the coefficients of the first-stage Daubechies D6 basis, shown
in Figure 4.7, we find many of them which are significantly big. Moreover, as we
iterate this wavelet basis, the most significative coefficients are just a few. We have
compressed the signal keeping only 5% of the coefficients, i.e., around 25 coefficients.
Therefore, we could already predict the bad compression using the first-stage basis
just by looking at the correspondent coefficients (Figure 4.7, (a)). Indeed, as there
are many high coefficients, keeping only the highest 25 will lead to an important loss
of information. Finally, we have the approximation by the 4-th stage Daubechies
D6 basis in Figure 4.8. In this case, the relative error is lower than 0.06, yielding a
good compression: the improvement is evident.

Example 4.3.2. Consider, for N = 512, the signal xn = sin(x/175)− 3 cos(x/100),
used as an example of the compression yielded by the Shannon real basis (Exam-
ple 3.2.10). We noticed that keeping 30% of the coefficients caused the loss of those
related to the generator v. Although, when considering higher stages of this basis,
the number of relevant coefficients decreases, in the same way as in the previous
example. As we can see in Figure 4.9, the percentage of relevant coefficients does
not exceed 25%. Indeed, in this case, the relative error is very small, around 0.003.
But moreover, this compression is even better than that one made by the Fourier
basis. In Example 5.2.1, we discuss the characteristics of its Fourier compression.

4.3. Examples comparing first-stage and p-th stage wavelet basis 64

0 100 200 300 400 500

−0.5

0

0.5

1

1.5

2

2.5

3

(a)

0 100 200 300 400 500

−0.5

0

0.5

1

1.5

2

2.5

3

(b)

0 100 200 300 400 500

−0.5

0

0.5

1

1.5

2

2.5

3

(c)

0 100 200 300 400 500

−0.5

0

0.5

1

1.5

2

2.5

3

(d)

Figure 4.7: Coefficients in the p-th stage Daubechies D6 basis of the signal from
Example 4.6, for p = 1, . . . , 4, respectively.

0 100 200 300 400 500

0

0.2

0.4

0.6

0.8

1

Original signal

0 100 200 300 400 500

0

0.2

0.4

0.6

0.8

1

Approximation by 5% of the coefficients. Relative error: 0.05857

Figure 4.8: Signal from Example 4.3.1 and its 4-th stage approximation in
Daubechies D6 basis.

65 Chapter 4. The iteration step: p-th stage wavelets

0 100 200 300 400 500
−3

−2

−1

0

1

2

3

Compressed signal, keeping 30% of the highest coefficients

0 100 200 300 400 500

−8

−6

−4

−2

0

2

4

6

8

10

Coefficients in 3rd stage of the Shannon real basis

Figure 4.9: Compression of the signal from Example 4.3.2 and the coefficients of its
expansion in the 3rd iteration of the Shannon basis.

Chapter 5

Applications and comparisons

This whole chapter will be devoted to analyze the different compressions yielded by
the wavelet basis we have presented. As we may expect, there is no wavelet that
works well for absolutely all the signals. In fact, the relative error function will show
better efficiency for a certain wavelet basis B if the signal can be constructed by a
linear combination of few vectors of B. In fact, the Fourier transform does quite
well at compressing sinusoidal signals.

5.1 Wavelet localization

First of all, we are going to focus in the wavelet basis we have presented and study
their characteristics. Because all our wavelets are different, they may also have
different properties (and actually, they will). We are also going to consider the DFT
not as a wavelet, but just as a linear transformation, which can also be used for our
purpose of compressing data. The main points we are going to compare between
different linear transformations are space and frequency localization. After doing
that, suppose we want to compress a signal z. The comparison we are going to do
will allow us to choose the best linear transformation to be applied to z in such a way
that the compression rate is high and the quality is good enough. To do this, the
ideal procedure is to draw the histograms containing the magnitudes (or complex
modulus) of the vectors u, v, û, v̂ (in the case of a wavelet basis), for different basis,
and compare them. The first example is, of course, the Euclidean basis, which can
be done at the same time as the DFT, since a simple computation yields that

ˆ̂zn = z−n,

for all n. We are only interested in the magnitudes of the basis vectors, so changing
their order will not make any difference. We can already expect those two histograms
to be “degenerated”, if we take Lemma 3.1.5 into account. Indeed, Figure 5.1 shows
that both histograms are as expected, when N = 256.

Let us do one step further: instead of considering perfectly localized vectors (with
only one nonzero component), we allow our basis to have two nonzero components.

67

5.1. Wavelet localization 68

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300
Histogram of an Euclidean basis vector e

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300
Histogram of ê

Figure 5.1: Both histograms show that having the best spatial localization possible
makes a vector be non-frequency localized at all.

A wavelet basis with this property is the Haar basis (or also, Daubechies’ D2). Recall
that in the Haar basis,

u =(1/
√

2, 1/
√

2, 0, . . . , 0),

v =(1/
√

2,−1/
√

2, 0, . . . , 0).

The decomposition of û in real and imaginary part is shown in Figure 5.2 (with
normalization). We can already see an improvement by just adding one nonzero
component to the basis generators. Specifically, putting an extra nonzero component
has caused the vectors û, v̂ to have non-constant and small magnitudes (all of them
components are lower than 1/10 in modulus, as we can appreciate in the histogram
of Figure 5.3), and moreover, there are relatively small1 coefficients near a certain
point n0, in this case the center of the x axis. Note that we need not show the
histogram of v, since the magnitudes of its coefficients will be the same as the ones
shown in Figure 5.3.

The next basis to deal with is the Shannon real wavelet. Recall that the gener-
ators u and v were defined in terms of û and v̂ (Definition 3.2.7). As we observed
in Figure 3.2, this basis is nicely localized in space (most of its components are
small), and several components of its DFT vanish, by definition. Figure 5.4 shows
the histograms for v and v̂, which illustrates how nice this basis is.

Finally, we consider the vector u to be a generator of the Daubechies D6 wavelet
basis. By definition, we took u to have only 6 nonzero entries, so the spatial lo-
calization property was covered. This can be viewed as an extension of the Haar

1That is, significantly small with respect to the highest coefficient.

69 Chapter 5. Applications and comparisons

0 50 100 150 200 250

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Real part of û

0 50 100 150 200 250

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Imaginary part of û

Figure 5.2: Decomposition of u in real and imaginary parts, for u the first generator
of the Haar basis.

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300
Histogram of u

0 0.02 0.04 0.06 0.08 0.1
0

10

20

30

40

50

60

70

80
Histogram of û

Figure 5.3: Histogram of the Haar basis generators.

5.2. Data compression in 1 dimension 70

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300
Histogram of v

0 0.02 0.04 0.06 0.08 0.1
0

20

40

60

80

100

120

140
Histogram of DFT(v)

Figure 5.4: Histogram of the Shannon real basis generators.

wavelet in the sense that we allow the basis generators to have some more nonzero
components. The histogram of u and û appears in Figure 5.5.

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300
Histogram of u

0 0.02 0.04 0.06 0.08 0.1
0

10

20

30

40

50

60

70

80

90

100
Histogram of DFT(û)

Figure 5.5: Histogram of the Daubechies D6 wavelet generator u.

5.2 Data compression in 1 dimension

In this section we will consider several signals, and compress them with the different
linear transformations presented in Section 5.1. The compression will be done as
follows: for a vector z ∈ `2(ZN), and a basis B = {vj}N−1j=0 of `2(ZN), the expansion

71 Chapter 5. Applications and comparisons

of z in terms of B will be

[z]B =
N−1∑
j=0

〈z, vj〉vj.

Next, we choose 0 < K < N , which will be the number of coefficients to be used to
approximate z. More precisely, we sort the coefficients 〈z, vj〉 in order of magnitude,
and we keep the K highest, while the rest are set to zero. This ensures that we are
keeping the most relevant coefficients to obtain a reconstruction of z: indeed, since
wavelet basis are orthonormal, the norm is preserved by those transformations (and
by their inverses, of course). Hence, if we approximate the vector z by w, we want
the norm ‖z − w‖ to be small. Dropping small coefficients of [z]B will make the
approximation be accurate (in norm). Although, instead of taking the K highest
coefficients, where K < N , we will be working with the k% largest coefficients, with
0 ≤ k ≤ 100.

We will also be interested in the energy ratio of each one of the basis we work
with. To be precise, we define the relative error made in approximating z by w as
the ratio ‖z − w‖/‖z‖. Thus, we can consider the relative error as function of k
(the percentage of coefficients we keep). Note that the only element depending of k
in the relative error is the vector w. Having such functions plotted will show which
wavelet is the best (for each case), and as we are going to see, there is no wavelet
better than the others, in the sense that the characteristics of the signal to analyze
will determine the most suitable wavelet to use (in matter of compression).

Example 5.2.1. Consider the signal x from Example 4.3.2. This signal has a jump
at n = 512 (recall that for n > 512 we consider the signal extended periodically),
which makes the Fourier basis not to yield a good compression whenever we keep
a certain number of coefficients. This is because such a basis comes from smooth
functions, so there may be trouble if our signal contains big jumps: the analogy with
the continuous case is the jump of a function which makes it not to be continuous,
and hence, not smooth. Figure 5.6 shows the approximation of x by 30% of the
coefficients, and we observe an interesting phenomenon around this jump: the signal
has not been reconstructed properly. In the continuous case, this is known as Gibbs
phenomenon, (see [1, Section 4.8]) and it essentially asserts that we cannot have
convergence of the Fourier transform of a function f around the points where f has
a jump. Therefore, we have found a new advantage of wavelet basis with respect to
the Fourier basis: they behave better at the points where a signal has a jump (of
course, in order to have a good reconstruction we need to keep a reasonable amount
of coefficients).

Example 5.2.2. Let N = 511, and consider the signal

zn =

sin

(
|n−128|1.7

128

)
, if 128 ≤ n ≤ 255,

sin

(
|n−128|2

128

)
, if 384 ≤ n ≤ 447,

0, otherwise.

5.2. Data compression in 1 dimension 72

0 100 200 300 400 500
−3

−2

−1

0

1

2

3

Recovered signal, keeping 30% of the highest coefficients

0 100 200 300 400 500
−3

−2

−1

0

1

2

3

Shifting of the approximation

Figure 5.6: Compression of the signal from Example 4.3.2 by the Fourier basis, and
its shifting, which allows us to observe the Gibbs phenomenon clearly.

We are going to compress this signal keeping only 10% of the coefficients. Figure 5.7
contains the compressed signal through the different basis; for the wavelet basis, we
choose the 3rd stage.

We can observe how badly the Fourier basis works to compress this signal, but we
could already expect that. In this case, the compression yielded is comparable to the
Euclidean when keeping a low number of coefficients, as illustrated in the energy
ratio plot of Figure 5.7. Moreover, when keeping more coefficients the Euclidean
basis turns to be better. Since the Fourier basis consists of sinusoidals, if we want
to compress a signal with constant pieces (like in this case) with a very low amount
of coefficients, the cancellation will not be enough and the constant pieces will be
very distorted, as we can observe. On the other hand, wavelet basis show a good
compression. Indeed, taking a look at the energy ratio plot we can observe that if
we keep 20% of the highest coefficients instead of 10%, the reconstruction will be
nearly perfect using the Daubechies D6 3rd stage wavelet. Shannon real basis (on
the same stage) does not yield such a good result, but nevertheless, it is much better
than the one obtained through the Fourier basis.

Example 5.2.3. Let N = 512 and consider the signal

zn =

1− n/64, if 0 ≤ n ≤ 63,
5− n/64, if 256 ≤ n ≤ 319,
0, otherwise.

In Example 4.3.1 we already saw that Daubechies D6 4th stage wavelet worked
properly to compress z, but now we are going keep 7% of the coefficients, instead
of the 5% from Example 4.3.1. Figure 5.8 shows the compression, and there we can

73 Chapter 5. Applications and comparisons

0 100 200 300 400 500

−1

−0.5

0

0.5

1

Original signal. Compression: 10% of the coefficients

0 100 200 300 400 500

−1

−0.5

0

0.5

1

Euclidean compression, relative error: 0.69525

0 100 200 300 400 500

−1

−0.5

0

0.5

1

Fourier compression, relative error: 0.65702

0 100 200 300 400 500

−1

−0.5

0

0.5

1

Real Shannon compression, relative error: 0.22344

0 100 200 300 400 500

−1

−0.5

0

0.5

1

Daubechies D6 compression, relative error: 0.23611

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Euclidean
Fourier
Shannon
Daubechies D6

Figure 5.7: Compression from the signal shown in Example 5.2.2.

observe the nice approximation that Daubechies D6 basis yields (we chose the 4th
stage for both of our wavelets), but the Shannon real basis does not work that well,
even though it is still better than the Fourier basis. This is because z has so many
zeros, concretely, the 75% of its length, and we saw in Figure 3.2 that the generators
of the Shannon real basis had many small coefficients that were different from zero.
Finally, we observe in the energy ratio plot that Daubechies D6 wavelet does not
need many coefficients in order to provide a perfect reconstruction of our signal.

5.3 Extremal examples

Here we will present some signals which are closely related with vectors of the
different basis we have seen throughout the document. The contrast will be very
clear when looking at the relative error curves yielded by each example.

5.3. Extremal examples 74

0 100 200 300 400 500

0

0.5

1
Original signal. Compression: 7% of the coefficients

0 100 200 300 400 500

0

0.5

1
Euclidean compression, relative error: 0.61211

0 100 200 300 400 500

0

0.5

1
Fourier compression, relative error: 0.18054

0 100 200 300 400 500

0

0.5

1
Real Shannon compression, relative error: 0.11839

0 100 200 300 400 500

0

0.5

1
Daubechies D6 compression, relative error: 0.0091434

0 20 40 60 80 100
0

0.5

1

Euclidean
Fourier
Shannon
Daubechies D6

Figure 5.8: Compression of the signal from Example 5.2.3.

Example 5.3.1. Consider the signal zn = cos(40n), n = 0, . . . 599. Figure 5.9
shows the signal and its spectrum: the complex modulus of the coefficients of z in
the Fourier basis. More generally, if a signal w is the sum of different sinusoids
with various frequencies (relatively spaced between them), those will determine the
number of “spikes” in the spectrum of the signal. Figure 5.10 shows this fact when
wn = sin(400n) + cos(300n) − cos(20n), for n = 0 . . . 599: in this case there are 3
“spikes”.

Example 5.3.2. Consider the signal w defined in Example 5.3.1. Figure 5.11 shows
the compression of the signal, with 15% of the coefficients, using the 3rd stage
Shannon and Daubechies D6 basis. We observe in the relative error curves that the
Fourier basis yields a high quality compression with a very low amount of coefficients.
Moreover, Daubechies D6 approximation for w turns out to be very bad. This is
because the signal is not localized at all (it is composed by 3 sinusoidals, two of
them with high frequency). As Daubechies D6 basis generators were localized in
space, keeping a low amount of coefficients will yield us “holes” in the signal, i.e.,

75 Chapter 5. Applications and comparisons

0 100 200 300 400 500

−0.5

0

0.5

1

0 100 200 300 400 500

50

100

150

200

250

Figure 5.9: Signals zn = sin(40n) and ẑ, respectively.

0 100 200 300 400 500

−2

−1

0

1

2

0 100 200 300 400 500

50

100

150

200

250

Figure 5.10: Signals w and ŵ from Example 5.3.1, respectively.

indexes for which the approximation is exactly zero. Indeed, recall that each vector
of such basis had only 6 nonzero entries, which makes impossible to cover the whole
approximation (the 512 components) with nonzeros whenever we use a low amount
of generators. We conclude that Daubechies D6 wavelet is bad when the signal is not
localized in space. For the completeness of the example, in Figure 5.12 we show the
coefficients of the 3rd stage wavelets used in the example: we can see the sparsity
of the coefficients that causes the bad compression by wavelet basis.

Example 5.3.3. Before comparing further, let us take a look back to the Haar
transform (Subsection 3.2.1). Since this transformation is, in some sense, an increase
of resolution, can it work properly for a piecewise constant signal? The answer is
affirmative, and to check it we just need to note that if the signal z is good enough,
then z ∗ ṽ is the zero vector. Recall (Section 3.2.1) that the coefficients of the
first-stage Haar transform of a signal z are the following:

5.3. Extremal examples 76

0 100 200 300 400 500

−2

−1

0

1

2

Original signal. Compression: 15% of the coefficients

0 100 200 300 400 500

−2

−1

0

1

2

Euclidean compression, relative error: 0.6909

0 100 200 300 400 500

−2

−1

0

1

2

Fourier compression, relative error: 0.095909

0 100 200 300 400 500

−2

−1

0

1

2

Real Shannon compression, relative error: 0.49194

0 100 200 300 400 500

−2

−1

0

1

2

Daubechies D6 compression, relative error: 0.62943

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Euclidean
Fourier
Shannon
Daubechies D6

Figure 5.11: Pictures of the signal wn = sin(400n) + cos(300n) − cos(20n) and its
different compression methods (taking 3rd stage wavelets).

P ′1(z)j =

N/2−1∑
k=0

〈z,R2ku〉(R2ku)2j =
z2j + z2j+1

2
,

Q′1(z)j =

N/2−1∑
k=0

〈z,R2kv〉(R2kv)2j =
z2j − z2j+1

2
.

Now, if the vector z is piecewise constant, let Ik, k ∈ N be the sets of indexes
corresponding to each constant piece of z. For example, if

z = (0, 1, 1, 2, 2, 1, 1, 0),

then I1 = {0, 7}, I2 = {1, 2}, I3 = {3, 4}, I4 = {5, 6}. Note that if, for every k, |Ik|
divides 2, then, up to a translation of z, we have that

P ′1(z)j =
z2j + z2j+1

2
= z2j, Q′1(z)j = 0,

77 Chapter 5. Applications and comparisons

and the exact reconstruction of z is given by at most N/2 coefficients. Moreover, if,
for every k, |Ik| divides 4, then we can carry this argument one step further, applying
it to the vector P ′1(z), since its corresponding I ′k will have cardinality divisible by 2.
More generally, if we define, for a vector z,

n = max{n : |Ik| divides 2n, for all k},

then the Haar transform provides a full reconstruction of z with at most N/2n

coefficients.

0 100 200 300 400 500

−3

−2

−1

0

1

2

3

4
Coefficients in the 3rd stage Daubechies D6 basis

0 100 200 300 400 500

−3

−2

−1

0

1

2

3

4
Coefficients in the 3rd stage Shannon real basis

Figure 5.12: Coefficients of the signal wn = sin(400n) + cos(300n)− cos(20n) in the
3rd stage wavelet basis.

5.4 Data compression in 2 dimensions

As we have already stated when we introduced the wavelet basis in Section 3.2, the
2-dimensional wavelet transforms are defined just as an iteration: for an N ×M
complex matrix y (or equivalently, a signal in `2(ZN×ZM)), we apply the transform
T to all the rows of y, obtaining a new matrix z. Then, we apply again the transform
T to the columns of z, yielding the desired matrix, say T (y).

This 2-dimensional application of wavelet basis is mainly used for image process-
ing. The images we are going to treat will be gray-scaled, that is, every component
of our signals will contain the gray-scale intensity: an integer between 0 (black) and
255 (white), often also represented by a real number between 0 and 1 (the re-scaling
of the integer scale). An important fact that we need to consider is that, even
though we lose certain information whenever we perform a compression, this loss
can sometimes lead to an indiscernible error (for the human eye) in the resulting
image.

5.4. Data compression in 2 dimensions 78

Example 5.4.1. We are going to compress a signal using the Haar transform.
Recall that, for the 1-dimensional Haar transform, the obtained vector of coeffi-
cients corresponded to the “tendency” (the main information of the signal), and
the “details’, each one of them consisting on half of the total number of coeffi-
cients. For the 2-dimensional case, we will have 3 kinds of different details: indeed,
if z ∈ `2(ZN × ZM), the transform is defined as the iteration of one-dimensional
transforms, first by rows, and then by columns. Thus, if we transform the rows of z,
we obtain a matrix P ∈ `2(ZN ×ZM). Then, we apply the transform to the columns
of P , obtaining a new matrix, say Q. Note that the matrix Q will be subdivided in
4 different blocks,

Q =

(
A H
V D

)
.

Those blocks correspond to the following: A contains the tendency of the signal, or
equivalently, the approximation. Blocks H and V contain the horizontal and vertical
details, respectively, and D the diagonal details. Thus, for the 2-dimensional case,
the compression done by the Haar basis is keeping 25% of the coefficients at each
stage (since the block A belongs to `2(ZN/2 × ZM/2). In Figure 5.13 we can see a
first-stage approximation, which seems quite good. Also, we show the coefficients for
the first-stage transform in Figure 5.14. Finally, the coefficients for the second-stage
transform are contained in Figure 5.15. Note that with respect to the first-stage
approximation, we only modified the tendency.

Original signal First−stage Haar approximation

Figure 5.13: First-stage approximation by Haar basis (Example 5.4.1).

Example 5.4.2. Now we are going to compress the picture of Example 5.4.1 with
the rest of basis we have. In principle, we would expect better compression from the
other wavelet basis, since the Haar transform is the simplest basis we have treated,
and as we have already seen, we are keeping 50% of the coefficients at each stage,
but this is still a high number. Moreover, for high stages, the compression will not

79 Chapter 5. Applications and comparisons

Tendency Horizontal details

Vertical details Diagonal details

Figure 5.14: First-stage coefficients in the Haar basis (Example 5.4.1).

be so good. Figure 5.16 shows how badly Haar basis works at high stages. If we
compare it with the compression given by the Shannon and Daubechies wavelets,
the improvement is evident, taking the 4-th stage for those wavelet basis as well.
Figure 5.17 shows the compression done by the other basis, taking the 4-th stage
for Shannon and Daubechies D6 wavelets. As we can see, Fourier compression adds
some noise to the image. Wavelets yield a very good compression considering that
we are only keeping 5% of the coefficients. The results are obviously much better
than those obtained by the 4-th stage Haar wavelet (Figure 5.16): more compression,
and less error.

5.4. Data compression in 2 dimensions 80

Figure 5.15: Second-stage coefficients in the Haar basis. (Example 5.4.1)

Figure 5.16: Approximation by fourth-stage Haar basis of the picture shown in
Figure 5.13 (keeping 6.25% of the coefficients).

81 Chapter 5. Applications and comparisons

Original picture. Compression keeping 5% of the coefficients Fourier compression

Shannon real compression Daubechies D6 compression

Figure 5.17: Approximation by different basis of the picture shown in Figure 5.13
(wavelets: 4-th stage).

Original picture. Compression keeping 20% of the coefficients Fourier compression

Shannon real compression Daubechies D6 compression

Figure 5.18: Compression corresponding to Example 5.4.3 (wavelets: 4-th stage).

5.4. Data compression in 2 dimensions 82

Example 5.4.3. In this example we consider a picture with very small details,
and compress it keeping a higher number of coefficients than before, namely 20%.
Figure 5.18 shows such compression. As we have been observing, wavelet basis
work better (in this case, the relative error in the approximation by Shannon and
Daubechies D6 wavelets is lower than 0.005, and 0.002, respectively). Once again,
the approximation made by Fourier basis shows the picture with some noise.

So, we conclude that whenever we want to compress pictures, the Fourier basis
turns to be very bad for the compression: in the last example (5.4.3), it was bad
even though we were keeping 20% of the coefficients, much more than we have been
keeping throughout the other examples. Contrarily, wavelet basis are very good for
this purpose: the approximations do not need a high percentage of coefficients to
be accurate (see Example 5.4.2), and whenever it increases a bit, the error in the
approximation decays very fast.

Chapter 6

Annex – compression and
comparison code in MATLAB

In this chapter several programs (or just scripts) which have been used in what
precedes will be shown. All these programs are written in MATLAB code. We need
to remark that concerning vectors, MATLAB indexing begins at 1, while in this
document we have always taken the indexes to begin at 0.

The routines shown here are the ones mostly used to construct the examples
of Chapter 5. There will be 4 different transformations: Fourier, Haar, Shannon
(real), and Daubechies D6. The first input variable for all these transformations
will be a signal y. The rest of inputs will change depending on which program we
are using, (being the Haar transform the most exceptional case). For wavelet trans-
forms, the second variable order corresponds to the stage of the wavelet that we
want to use. For instance, if we only want to compress a signal using a first-stage
wavelet basis, we will choose order=1. The rest of input variables is varying depend-
ing on the transform we are choosing. Except for the Haar transform routine, the
last and penultimate input variables will correspond to the truncation coefficient,
and the truncation method, respectively. That is, if we want to keep an absolute
number of coefficients, we will choose ’amount’ as the truncation method. Contrar-
ily, if we want to keep relative number of them (i.e., a percentage), we will write
’percentage’. Obviously, in the first case, the truncation coefficient will be be-
tween 1 and the length of the input signal, and in the second case, between 0 and
100. In all the examples we have discussed, the truncation method was chosen as
’percentage’.

On the other hand, all the functions return a vector containing the following
variables concatenated: the compressed signal, T, and the coefficients of the signal in
the chosen basis. For instance, the Fourier transform routine returns the coefficients
through the variable FTcoef, the Shannon program does the same through STcoef,
etc.

We also remark that the user should be conscious of what are the conditions for
those programs to be able to run (described in each section of Chapter 3) , as for
example, a signal of even length for wavelet transforms. For bad input data, the

83

6.1. Fourier transform 84

programs will not work.

6.1 Fourier transform

As there is no such thing as a p-th stage Fourier basis (since it is not a wavelet
basis), in this routine we omit the input variable ’order’.

function [output] = FourierTrans(y,truncation,k)

a=size(y); c=length(size(a));

if(min(a)==1 || c~=2)

a=length(y);

type=’1d’;

else

type=’2d’;

end

switch type

case ’1d’

FT=fft(y);

FTcoef=FT;

[~,I]=sort(abs(FT),’descend’);

if(strcmp(truncation,’percentage’)==1)

if(k<0 || k>100)

display(’Wrong percentage’);

end

perc=round(k*a/100);

aux=zeros(1,a);

m=1;

while m<=perc

aux(I(m))=FT(I(m));

m=m+1;

end

FT=aux;

end

if(strcmp(truncation,’amount’)==1)

if(k<1 || k>a)

display(’Wrong amount’);

end

aux=zeros(1,a);

m=1;

while m<=perc

aux(I(m))=FT(I(m));

85 Chapter 6. Annex – compression and comparison code in MATLAB

m=m+1;

end

FT=aux;

end

case ’2d’

FT=fft2(y);

FTcoef=FT;

aux=reshape(FT,1,a(1)*a(2));

aux2=zeros(1,a(1)*a(2));

[~,I]=sort(abs(aux),’descend’);

if(strcmp(truncation,’percentage’)==1)

if(k<0 || k>100)

display(’Wrong percentage’);

return;

end

perc=round(k*a(1)*a(2)/100);

m=1;

while m<=perc

aux2(I(m))=aux(I(m));

m=m+1;

end

FT=reshape(aux2,a(1),a(2));

end

if(strcmp(truncation,’amount’)==1)

if(k<1 || k>a)

display(’Wrong amount’);

return;

end

m=1;

while m<=k

aux2(I(m))=aux(I(m));

m=m+1;

end

FT=reshape(aux2,a(1),a(2));

end

T=ifft2(FT);

output=[T;FTcoef];

end

6.2. Wavelet transforms 86

6.2 Wavelet transforms

6.2.1 Haar transform

As we can note, this function does not allow us to specify how many coefficients
we will keep during the compression. Instead, it will always keep half of them
for each stage: as we said earlier in this work (Section 3.2.1), the Haar transform
can be seen as change of resolution, where the coefficients relative to u contain
the important information about the signal, and the ones relative to v, the details
to pass from a resolution of 2 to a resolution of 1. Therefore, since we are only
keeping the coefficients obtained by the inner products with the translations of u,
the compression will be of the 50% in each stage, so that, if the signal has length N
and we choose the p-th iteration of this basis, the number of needed coefficients to
obtain the compressed signal will be N/2p.

function [output] = HaarTrans(y,order)

a=size(y); c=length(size(a));

if(min(a)==1 || c~=2)

a=length(y);

if(rem(a,2^order)~=0)

display(’Invalid dimensions of the signal’);

return;

end

type=’1d’;

else

if(rem(a(1),2^order)~=0 || rem(a(1),2^order)~=0)

display(’Invalid dimensions of the signal’);

return;

end

type=’2d’;

end

switch type

case ’1d’

n=1; HT=y;

while n<=order

HT(1:a/2^(n-1))=transform(HT(1:a/2^(n-1)));

n=n+1;

end

HTcoef=HT;

T=HT(1:a/2^order);

l=1;

while l<=order

87 Chapter 6. Annex – compression and comparison code in MATLAB

T(1:a/2^(order-l))=inverse(T);

l=l+1;

end

output=[T;HTcoef];

case ’2d’

n=1; HT=y;

while n<=order

m=1;

while m<=a(1)/2^(n-1)

HT(m,1:a(2)/2^(n-1))=transform(HT(m,1:a(2)/2^(n-1)));

m=m+1;

end

m=1;

while m<=a(2)/2^(n-1)

HT(1:a(1)/2^(n-1),m)=...

(transform((HT(1:a(1)/2^(n-1),m))’))’;

m=m+1;

end

n=n+1;

end

HTcoef=HT;

n=1; T=HT(1:a(1)/2^order,1:a(2)/2^order);

while n<=order

m=1;

while m<=a(2)/2^(order-n+1)

T(1:a(1)/2^(order-n),m)=...

(inverse((T(1:a(1)/2^(order-n+1),m))’))’;

m=m+1;

end

m=1;

while m<=a(1)/2^(order-n)

T(m,1:a(2)/2^(order-n))=...

inverse(T(m,1:a(2)/2^(order-n+1)));

m=m+1;

end

n=n+1;

end

output=[T;HTcoef];

end

function [HT] = transform(y)

b=length(y);

6.2. Wavelet transforms 88

HT=zeros(1,b);

u=zeros(1,b); v=zeros(1,b);

u(1)=1/sqrt(2); u(b)=u(1); v(b)=u(1); v(1)=-u(1);

i=1;

yu=ifft(fft(y).*conj(fft(u)));

yv=ifft(fft(y).*conj(fft(v)));

while i<=b/2

HT(i)=yu(2*i);

HT(i+b/2)=yv(2*i);

i=i+1;

end

end

function [RecSig] = inverse(y)

b=length(y);

aux=zeros(1,2*b);

u=zeros(1,2*b); u(1)=1/sqrt(2); u(2*b)=u(1);

j=1;

aux(2*b)=y(b);

while j<=b-1

aux(2*j)=y(j);

j=j+1;

end

RecSig=ifft(fft(u).*fft(aux));

end

end

6.2.2 Shannon real transform

function [output] = ShannonTrans(y,order,truncation,k)

a=size(y); c=length(size(a));

if(min(a)==1 || c~=2)

a=length(y);

if(rem(a,2^(order+1))~=0)

display(’Wrong dimensions’);

return;

end

type=’1d’;

else

if(rem(a(1),2^(order+1))~=0 || rem(a(1),2^(order+1))~=0)

display(’Wrong dimensions’);

return;

end

type=’2d’;

89 Chapter 6. Annex – compression and comparison code in MATLAB

end

switch type

case ’1d’

ST=y; n=1;

while n<=order

ST(1:a/2^(n-1))=transform(ST(1:a/2^(n-1)));

n=n+1;

end

STcoef=ST;

[~,I]=sort(abs(ST),’descend’);

if(strcmp(truncation,’percentage’)==1)

if(k<0 || k>100)

display(’Wrong percentage’);

end

perc=round(k*a/100);

aux=zeros(1,a);

m=1;

while m<=perc

aux(I(m))=ST(I(m));

m=m+1;

end

ST=aux;

end

if(strcmp(truncation,’amount’)==1)

if(k<1 || k>a)

display(’Wrong amount’);

end

aux=zeros(1,a);

m=1;

while m<=k

aux(I(m))=ST(I(m));

m=m+1;

end

ST=aux;

end

T=ST; n=1;

while n<=order

T(1:a/2^(order-n))=inverse(T(1:a/2^(order-n)));

n=n+1;

end

output=[T;STcoef];

6.2. Wavelet transforms 90

case ’2d’

ST=y; n=1;

while n<=order

m=1;

while m<=a(1)/2^(n-1)

ST(m,1:a(2)/2^(n-1))=transform(ST(m,1:a(2)/2^(n-1)));

m=m+1;

end

m=1;

while m<=a(2)/2^(n-1)

ST(1:a(1)/2^(n-1),m)=...

(transform((ST(1:a(1)/2^(n-1),m))’))’;

m=m+1;

end

n=n+1;

end

STcoef=ST;

aux=reshape(ST,1,a(1)*a(2));

aux2=zeros(1,a(1)*a(2));

[~,I]=sort(abs(aux),’descend’);

if(strcmp(truncation,’percentage’)==1)

if(k<0 || k>100)

display(’Wrong percentage’);

return;

end

perc=round(k*a(1)*a(2)/100);

m=1;

while m<=perc

aux2(I(m))=aux(I(m));

m=m+1;

end

ST=reshape(aux2,a(1),a(2));

end

if(strcmp(truncation,’amount’)==1)

if(k<1 || k>a)

display(’Wrong amount’);

return;

end

m=1;

while m<=k

aux2(I(m))=aux(I(m));

91 Chapter 6. Annex – compression and comparison code in MATLAB

m=m+1;

end

ST=reshape(aux2,a(1),a(2));

end

n=1;

T=ST;

while n<=order

m=1;

while m<=a(2)/2^(order-n)

T(1:a(1)/2^(order-n),m)=...

(inverse((T(1:a(1)/2^(order-n),m))’))’;

m=m+1;

end

m=1;

while m<=a(1)/2^(order-n)

T(m,1:a(2)/2^(order-n))=inverse(T(m,1:a(2)/2^(order-n)));

m=m+1;

end

n=n+1;

end

output=[T;STcoef];

end

function [ST]= transform(y)

b=length(y);

hatu=zeros(1,b); hatv=zeros(1,b);

j=1;

while j<=b/4

hatu(j)=sqrt(2);

hatv(b/4+1+j)=sqrt(2);

hatv(b/2+j)=sqrt(2);

hatu(b-j+1)=sqrt(2);

j=j+1;

end

hatu(b/4+1)=1i; hatu(3*b/4+1)=-1i;

hatv(b/4+1)=1; hatv(3*b/4+1)=1;

z1=circshift(ifft(fft(y).*conj(hatu)),[1,1]);

z2=circshift(ifft(fft(y).*conj(hatv)),[1,1]);

ST(b/2)=z1(b); ST(b)=z2(b); j=1;

while j<=b/2-1

ST(j)=z1(2*j);

ST(b/2+j)=z2(2*j);

j=j+1;

end

6.2. Wavelet transforms 92

end

function [signal] =inverse(ST)

b=length(ST);

hatu=zeros(1,b); hatv=zeros(1,b);

j=1;

while j<=b/4

hatu(j)=sqrt(2);

hatv(b/4+1+j)=sqrt(2);

hatv(b/2+j)=sqrt(2);

hatu(b-j+1)=sqrt(2);

j=j+1;

end

hatu(b/4+1)=1i; hatu(3*b/4+1)=-1i;

hatv(b/4+1)=1; hatv(3*b/4+1)=1;

r=zeros(1,b); s=zeros(1,b);

r(b)=ST(b/2); s(b)=ST(b); j=1;

while j<=b/2-1

r(2*j)=ST(j);

s(2*j)=ST(b/2+j);

j=j+1;

end

q=circshift(ifft(hatu.*fft(r)),[-1,-1]);

w=circshift(ifft(hatv.*fft(s)),[-1,-1]);

signal=real(q+w);

end

end

6.2.3 Daubechies D6 transform

function [output] = D6Trans(y,order,truncation,k)

a=size(y); c=length(size(a));

if(min(a)==1 || c~=2)

a=length(y);

if(rem(a,2^order)~=0 || a/2^order<8)

display(’Invalid dimensions of the signal’);

return;

end

type=’1d’;

else

if(rem(a(1),2^order)~=0 || a(1)/2^order<8 ||...

rem(a(1),2^order)~=0 ||a(2)/2^order<8)

display(’Invalid dimensions of the signal’);

93 Chapter 6. Annex – compression and comparison code in MATLAB

return;

end

type=’2d’;

end

A=1-sqrt(10); B=1+sqrt(10); C=sqrt(5+2*sqrt(10));

switch type

case ’1d’

DT=y; n=1;

while n<=order

DT(1:a/2^(n-1))=transform(DT(1:a/2^(n-1)));

n=n+1;

end

DTcoef=DT;

[~,I]=sort(abs(DT),’descend’);

if(strcmp(truncation,’percentage’)==1)

if(k<0 || k>100)

display(’Wrong percentage’);

return;

end

perc=round(k*a/100);

aux=zeros(1,a);

m=1;

while m<=perc

aux(I(m))=DT(I(m));

m=m+1;

end

DT=aux;

end

if(strcmp(truncation,’amount’)==1)

if(k<1 || k>a)

display(’Wrong amount’);

return;

end

aux=zeros(1,a);

m=1;

while m<=k

aux(I(m))=DT(I(m));

m=m+1;

end

DT=aux;

6.2. Wavelet transforms 94

end

n=1;

T=DT;

while n<=order

T(1:a/2^(order-n))=inverse(T(1:a/2^(order-n)));

n=n+1;

end

output=[T;DTcoef];

case ’2d’

DT=y; n=1;

while n<=order

m=1;

while m<=a(1)/2^(n-1)

DT(m,1:a(2)/2^(n-1))=transform(DT(m,1:a(2)/2^(n-1)));

m=m+1;

end

m=1;

while m<=a(2)/2^(n-1)

DT(1:a(1)/2^(n-1),m)=...

(transform((DT(1:a(1)/2^(n-1),m))’))’;

m=m+1;

end

n=n+1;

end

DTcoef=DT;

aux=reshape(DT,1,a(1)*a(2));

aux2=zeros(1,a(1)*a(2));

[~,I]=sort(abs(aux),’descend’);

if(strcmp(truncation,’percentage’)==1)

if(k<0 || k>100)

display(’Wrong percentage’);

return;

end

perc=round(k*a(1)*a(2)/100);

m=1;

while m<=perc

aux2(I(m))=aux(I(m));

m=m+1;

end

DT=reshape(aux2,a(1),a(2));

end

95 Chapter 6. Annex – compression and comparison code in MATLAB

if(strcmp(truncation,’amount’)==1)

if(k<1 || k>a)

display(’Wrong amount’);

return;

end

m=1;

while m<=k

aux2(I(m))=aux(I(m));

m=m+1;

end

DT=reshape(aux2,a(1),a(2));

end

n=1;

T=DT;

while n<=order

m=1;

while m<=a(2)/2^(order-n)

T(1:a(1)/2^(order-n),m)=...

(inverse((T(1:a(1)/2^(order-n),m))’))’;

m=m+1;

end

m=1;

while m<=a(1)/2^(order-n)

T(m,1:a(2)/2^(order-n))=inverse(T(m,1:a(2)/2^(order-n)));

m=m+1;

end

n=n+1;

end

output=[T;DTcoef];

end

function [DT]= transform(y)

b=length(y);

u=zeros(1,b); v=zeros(1,b);

u(b)=B+C; u(1)=2*A+3*B+3*C; u(2)=6*A+4*B+2*C;

u(3)=6*A+4*B-2*C; u(4)=2*A+3*B-3*C; u(5)=B-C;

u=sqrt(2)/32*u; v(1)=u(b); v(b)=-u(1); v(b-1)=u(2);

v(b-2)=-u(3); v(b-3)=u(4); v(b-4)=-u(5);

z1=circshift(ifft(fft(y).*conj(fft(u))),[1,1]);

z2=circshift(ifft(fft(y).*conj(fft(v))),[1,1]);

DT(b/2)=z1(b); DT(b)=z2(b);

j=1;

while j<=b/2-1

DT(j)=z1(2*j);

6.3. Relative error computation 96

DT(b/2+j)=z2(2*j);

j=j+1;

end

end

function [signal] =inverse(DT)

b=length(DT);

u=zeros(1,b); v=zeros(1,b);

u(b)=B+C; u(1)=2*A+3*B+3*C; u(2)=6*A+4*B+2*C; u(3)=6*A+4*B-2*C;

u(4)=2*A+3*B-3*C; u(5)=B-C; u=sqrt(2)/32*u;

v(1)=u(b); v(b)=-u(1); v(b-1)=u(2); v(b-2)=-u(3); v(b-3)=u(4);

v(b-4)=-u(5);

r=zeros(1,b); s=zeros(1,b);

j=1;

r(b)=DT(b/2); s(b)=DT(b);

while j<=b/2-1

r(2*j)=DT(j);

s(2*j)=DT(b/2+j);

j=j+1;

end

q=circshift(ifft(fft(u).*fft(r)),[-1,-1]);

w=circshift(ifft(fft(v).*fft(s)),[-1,-1]);

signal=q+w;

end

end

6.3 Relative error computation

This code will compute the relative error done when compressing a one-dimensional
signal z by w, as a function of the percentage of values which we keep for w. This
means that the Y axis will contain the value ‖z − w‖/‖z‖, while the X axis will
be the percentages, from 0 to 100. The input for this function will be a signal y,
followed by a percentage coefficient, percentage. The last two input parameters
are the stages for the Shannon real basis, and Daubechies D6, respectively. It will
compute and draw the four different compressions (Euclidean, Fourier, real Shannon,
and Daubechies D6) of z (through the different routines presented previously in this
section, except Haar transform), as well as the plot of the original signal. Moreover,
it will also construct the relative error curves for all the compression methods we
are considering, so we can decide with ease which transform is better for the input
signal just by looking at those curves. This code generates most of the plots shown
in Section 5.2.

function [] = Error(y,percentage,ShanStage,D6Stage)

if(percentage<0 || percentage >100)

97 Chapter 6. Annex – compression and comparison code in MATLAB

display(’Error, wrong percentage’);

return;

end

a=length(y); ynorm=norm(y);

[Y,I]=sort(abs(y),’descend’);

k=1; aux=zeros(1,a);

while k<=round(percentage*a/100)

aux(I(k))=y(I(k));

k=k+1;

end

compId=aux;

SFT=FourierTrans(y,’percentage’,percentage); compFT=SFT(1,:);

FTcoef=1/sqrt(a)*SFT(2,:); [~,IFT]=sort(abs(FTcoef),’descend’);

SST=ShannonTrans(y,ShanStage,’percentage’,percentage);

compST=SST(1,:); STcoef=SST(2,:);

[~,IST]=sort(abs(STcoef),’descend’);

SDT=D6Trans(y,D6Stage,’percentage’,percentage); compDT=SDT(1,:);

DTcoef=SDT(2,:); [~,IDT]=sort(abs(DTcoef),’descend’);

yId=zeros(1,a); yFT=zeros(1,a); yST=zeros(1,a); yDT=zeros(1,a);

yId(1)=norm(y)^2; yFT(1)=norm(y)^2; yST(1)=norm(y)^2;

yDT(1)=norm(y)^2;

j=2; x=linspace(0,100,a);

while j<=a

N=round(x(j)*a/100); n=round(x(j-1)*a/100)+1;

if N>=n

yId(j)=yId(j-1)-sum(y(I(n:N)).^2);

yFT(j)=yFT(j-1)-sum(abs(FTcoef(IFT(n:N))).^2);

yST(j)=yST(j-1)-sum(abs(STcoef(IST(n:N))).^2);

yDT(j)=yDT(j-1)-sum(abs(DTcoef(IDT(n:N))).^2);

else

yId(j)=yId(j-1); yFT(j)=yFT(j-1);

yST(j)=yST(j-1); yDT(j)=yDT(j-1);

end

j=j+1;

end

X=[0:a-1];

m=min([min(y), min(compId), min(compFT), min(compST),...

min(compDT)]);

M=max([max(y), max(compId), max(compFT), max(compST),...

max(compDT)]);

subplot(3,2,1); plot(X,y), title([’Original signal.’...

’ Compression: ’,num2str(percentage),...

’\% of the coefficients’]);

axis([0 a-1 m M]);

6.4. Computation of L(N) 98

subplot(3,2,2); plot(X,compId), title([’Euclidean’...

’ compression, relative error: ’,...

num2str(norm(y-compId)/ynorm)]);

axis([0 a-1 m M]);

subplot(3,2,3); plot(X,compFT), title([’Fourier compression,’...

’ relative error: ’,num2str(norm(y-compFT)/ynorm)]);

axis([0 a-1 m M]);

subplot(3,2,4); plot(X,compST), title([’Real Shannon’...

’ compression, relative error: ’,...

num2str(norm(y-compST)/ynorm)]);

axis([0 a-1 m M]);

subplot(3,2,5); plot(X,compDT), title([’Daubechies D6’...

’ compression, relative error: ’,...

num2str(norm(y-compDT)/ynorm)]);

axis([0 a-1 m M]);

subplot(3,2,6); plot(x,sqrt(yId)/ynorm,’:’,x,sqrt(yFT)/ynorm,...

’-.’,x,sqrt(yST)/ynorm,’--’,x,sqrt(yDT)/ynorm,’-’);

axis([0 100 0 1]);

legend(’Euclidean’,’Fourier’,’Shannon’,’Daubechies D6’);

end

6.4 Computation of L(N)

The code presented in this section is devoted to compute the exact value of L(N)
for any N . It is based in the results from Propositions 2.4.11 and 2.4.14, and
Theorem 2.4.17.

function [LN] = L(N)

if N==2

LN=0;

return;

elseif isprime(N)==1

LN=floor(N/2);

return;

end

j=2; index=1;

divisors=zeros(floor(sqrt(N)),1);

while j<=floor(N/2)

if(rem(N,j)==0)

divisors(index)=j;

index=index+1;

end

j=j+1;

end

99 Chapter 6. Annex – compression and comparison code in MATLAB

a=index-1;

j=floor(N-sqrt(N));

flag=0;

while(flag==0)

if(N-hamming(N-j)>=j && N-hamming(N-j-1)<=j)

LN=j; flag=1;

end

j=j-1;

end

function[M]=hamming(d)

l=1; M=N;

while l<=a

T=divisors(l);

c=0; m=2;

while m<=N/T

if(rem(N/T,m)==0)

p=m; break;

end

m=m+1;

end

k=1;

while k<p

if(k*T<=d && (k+1)*T>d)

c=k; break;

end

k=k+1;

end

if(c~=0 && (p+1-c)*N/(p*T)<M)

M=(p+1-c)*N/(p*T);

end

l=l+1;

end

end

end

Bibliography

[1] G. Bachman, L. Narici, and E. Beckenstein, Fourier and Wavelet Analysis,
Universitext, Springer-Verlag, New York, 2000.

[2] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference
Series in Applied Mathematics, SIAM, 1992.

[3] S. Delvaux and M. Van Barel, Rank-deficient submatrices of Kronecker products
of Fourier matrices, Linear Algebra Appl. 426 (2007), 349–367.

[4] S. Delvaux and M. Van Barel, Rank-deficient submatrices of Fourier matrices,
Linear Algebra Appl. 429 (2008), 1587–1605.

[5] J. Dieudonné, Une Propriété des Racines de l’Unité, Rev. Un. Mat. Argentina
25 (1970/71), 1–3.

[6] D. L. Donoho and P. B. Stark, Uncertainty principles and signal recovery,
SIAM J. Appl. Math. 49 (1989), 906–931.

[7] M. W. Frazier, An Introduction to Wavelets Through Linear Algebra, Under-
graduate Texts in Mathematics, Springer-Verlag, New York, 1999.

[8] M. W. Frazier and R. Torres, The sampling theorem, φ-transform, and Shannon
wavelets for R, Z, T and ZN . Wavelets: mathematics and applications, Stud.
Adv. Math., CRC, 1994, 221–245.

[9] P. A. Fuhrmann, A Polynomial Approach to Linear Algebra, Universitext,
Springer, New York, 2012.

[10] E. Hernández and G. Weiss, A First Course on Wavelets, with a foreword by
Yves Meyer. Studies in Advanced Mathematics, CRC Press, Boca Raton, FL,
1996.

[11] Y. Meyer, Wavelets and Operators, translated from the 1990 French original by
D. H. Salinger. Cambridge Studies in Advanced Mathematics, 37. Cambridge
University Press, Cambridge, 1992.

[12] M. A. Pinsky, Introduction to Fourier Analysis and Wavelets, Brooks/Cole
Series in Advanced Mathematics, Brooks/Cole, 2002.

101

Bibliography 102

[13] P. Stevenhagen and H. W. Lenstra Jr., Chebotarëv and his density theorem,
Math. Intelligencer 18 (1996), 26–37.

[14] L. A. Takhtajan, Quantum Mechanics for Mathematicians, Graduate Studies
in Mathematics, American Mathematical Society, Rhode Island, 2008.

Index

2-dimensional wavelet transform, 77

#N , 12

analysis phase, 54

butterfly (computation), 12

circular translation of a vector, 29
conjugate reflection of a vector, 29
convolution, 10

δ, 30
Dk, 55
Daubechies D6 transform, 45
DFT, 8
diagram, 49
Dirac delta, 30
direct sum of subspaces, 61
downsampling operator, 49

energy ratio, 71
Euler’s formula, 44

FFT, 11
filter bank, 49
Fourier basis, 8
Fourier inversion, 8
Fourier matrix, 22
FPS, 14
frequency localized vector, 15
frequency scale, 39

Gibbs phenomenon, 71
gray color scale, 77

H(z), 15
Haar transform, 36
Hamming number, 24
hamming weight, 15

high-pass filter, 39

IDFT, 9
inner product, 7

`2∗(ZN), 17
`2(ZN), 7
L(N), 17
localized in space vector, 14
low-pass filter, 39

multirate signal analysis, 49

n-th order Haar transform, 37
norm, 7

p-th stage wavelet, 53
Parseval’s identity, 9
Plancherel’s identity, 9

rank-deficient matrix, 24
real Shannon transform, 40
reconstruction phase, 54
relative error, 71

Shannon transform, 39
sound (mathematics), 5
system matrix of two vectors, 32

Uk, 55
uncertainty principle, 15
unitary matrix, 32

wavelet, first stage, 30

Z(x), 17
ZN , 7

103

	Introduction
	The Discrete Fourier Transform (DFT)
	Definitions and properties
	The Fast Fourier Transform
	Localized basis of vectors
	The Uncertainty Principle

	Wavelets on ZN
	Construction of a first-stage wavelet
	Examples of first-stage wavelets
	The Haar transform
	The Shannon transform
	The real Shannon transform
	Daubechies' D6 wavelet

	The iteration step: p-th stage wavelets
	Preliminaries: Operators and auxiliary results
	The iteration step
	Examples comparing first-stage and p-th stage wavelet basis

	Applications and comparisons
	Wavelet localization
	Data compression in 1 dimension
	Extremal examples
	Data compression in 2 dimensions

	Annex – compression and comparison code in MATLAB
	Fourier transform
	Wavelet transforms
	Haar transform
	Shannon real transform
	Daubechies D6 transform

	Relative error computation
	Computation of L(N)

	Bibliography
	Index

