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Introduction

The objective of this work is to introduce some results and applications of Interpolation
Theory (as a reference we use the books [4] and [3]) .

The interpolation theory was aimed in the two classical theorems: The Riesz-Thorin
Interpolation Theorem that motivates the complex interpolation and was proved by Riesz
in 1927 but only for the lower-triangle case, and the general case by Thorin in 1938; and
the Marcinkiewicz Interpolation Theorem that motivates the real interpolation and was
proved by Marcinkiewicz in 1939.

In the first chapter, we will introduce some tools in complex, functional and harmonic
analysis that will be useful in the following chapters to state and prove theorems.

In the second chapter, we will give the statements and proofs of the two classical theo-
rems and see several applications of the Marcinkiewicz theorem for the Fourier Transform
for LP spaces and LP(w) with p € [1,2] and w(#) = || "(~P) being a weight on R".

In the third chapter, we will introduce the real interpolation methods, in particular,
we will study the K— and J— functionals and the interpolation spaces generated by this
functionals, giving the definitions and some properties of those methods and those spaces.
Also we will see that the spaces generated by the K —functionals are the same than the
spaces generated by the J—functional. Finally, we will see the Reiteration Theorem which
tells us that interpolate two interpolation spaces is the same that interpolate the original
spaces.

In the fourth chapter, we will introduce the complex interpolation methods, in particu-
lar, we will study the C?— and Cy— functionals and the interpolation spaces generated by
these functionals, giving the definitions and some properties of those methods and spaces.
Also we will see that in this case, the spaces generated by the C?—functionals are not
the same than the spaces generated by the Cyp—functional, but there are some inclusions
between them. Finally, we will see the Reiteration Theorem which tells us that interpolate
two interpolation spaces is the same that interpolate the original spaces.

In the fifth chapter, we will see some applications of those methods in some functional
spaces. For example, we will interpolate L? spaces and see that we obtain the Lorentz
spaces, also we will interpolate the Hardy spaces.

In the last chapter, we will apply those methods to the boundedness of operators
between some Banach spaces. For example, we will use them in the case of the Fourier
Multipliers and the Hilbert Transform.






Chapter 1

Basic Notions and Preliminary
Results

In this chapter we will introduce a few results of Complex Analysis, Functional Analysis
and Harmonic Analysis which will be useful in the next chapters.

1.1 Complex Analysis

In this section we introduce some tools in order to prove the Riesz-Thorin Interpolation
Theorem 2.1.1, in particular, we will need the Hadamard Three Line Theorem and the
Phragmén-Lindelof Principle. Also, we will define what is a conformal mapping, the
Poisson kernel and give an expression for the Poisson kernel in the strip {z € C: 0 < Rz <
1}.

The aim of the Phragmén-Lindel6f Principle is to generalize on the horizontal strip of
the complex plane, the maximum modulus principle, which does not apply to unbounded
regions.

Theorem 1.1.1 (Phragmén-Lindel6f Principle). Let f be a holomorphic function on the
horizontal strip

{z : —g < S(z) < ;T}
If
’f(2)| < ecoshCS‘\‘:(z)
for some constant 0 < C' < 1 and |f(2)| < 1 on the edges of the strip. Then, |f(z)] <1 in

the interior of the strip.

Proof. This proof reduces to the maximum modulus principle. Fix D such that C < D < 1
and fix € > 0. The function
FE(Z) _ f(z)/escosth

is bounded by 1 on the edges of the strip, and in the interior goes to 0 uniformly in y as
x — t00. Then, on a rectangle

RTez{z:—

| N

< S(z2) <

o | 3

7_TE<$<TE}
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the function F; is bounded by 1 on the edges.

Then, the maximum modulus principle implies that F; is bounded by 1 in the whole
rectangle. That is, for each 2 fixed in the strip,

|f(20)] < exp(e cosh DR(2p)).

We can let ¢ — 07, giving | f(20)] < 1. [ |

Now, we can prove the Hadamard Three Line Theorem which says that if we have an
holomorphic function inside a strip of the form {z; + iz2 : @ < 21 < b} in the complex
plane, and this function is continuous on the whole strip then the logarithm of M (z;) =
sup,, | f(z1 +iz2)| is a convex function in the interval [a, b].

Theorem 1.1.2 (Hadamard Three Line Theorem). Let f(z) be a bounded function of
z = z1 + iz9 defined on the strip {z1 + iz : a < z1 < b} holomorphic in the interior and
continuous on the whole strip. If we define

M(z1) = sup |f(z1 + iz2)]
y

then log(M(z1)) is a convex function in [a,b]. That is, if z1 = ta + (1 — t)b with t € [0, 1]
then
M(z1) < M(a)'M(b)*

Proof. We can assume that the interval [a, b] is [0, 1], this assumption only change some
constants in the proof and reduces the notation. Then, by hypothesis we have that

£ (yi)| < M(0) and |f(1 + yi)| < M(1).

Let € be positive and A be a real number. Define

F.(2) := exp(e2® + \2) f(2).

Where z = z1 + 291 € C with z; € [0, 1]. Notice that we have
F.(z) := exp(e(2? — 22) + Az1) exp(i(e(22122) 4+ A22)) f(2).

Since z1, f(z) and exp(i(e(22122) + Az2)) are bounded we have that

F.(z) >0 as 2z — +o0.
We also have that

|FL(iz)] = |e7 25|22 | f(iz2)] < |£(200)] < M(0),

and that

|[Fe(1 + iz2)| = |exp(e(1 — 23) + )| exp(i(e222 + Ay))|| f(220)]
< Jexp(e(l = 25) + M|IF (L + 220))|
<A (L + 290)| < eTAM(D).

Now using Theorem 1.1.1 with R(z) = e(2? — 23) + A\z1, we obtain

|F.(2)| < max(M(0), e M(1)).
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Hence,
|FL(z1 + 200)] < exp(—e(2? — 22)) max(M(0)e™ 1A, e HAI=20) A (1)),
This holds for any z. Now, taking ¢ — 0 we obtain that
|F(2)] < max(M(0)e**, 2121 01 (1)).
The right hand side is as small as possible when M (0)e=?1* = 2121 M1 (1). So, we get
|F (21 + 220)] < M(0)'™ " M(1)™. (1.1)
Taking 21 = ta+ (1 —t)b =1 —t with t € [0,1] we can write (1.1) as
|F (21 + 220)| < M(0)! M (1)

as we want. [ |

1.1.1 Poisson Kernel in the Strip

In this section we will give some notions that will be useful in the Section 4.3 and in the
Section 5.2. We will begin by defining conformal maps.

Definition 1.1.3. Let Q be a domain in C and f € Hol(C). We say that f is a conformal
mapping if f/(z) # 0 for all z € Q.

Recall that if z = x + iy then
oy = Sy (o _of
f (Z) - aZ(Z) - 9 al, Zay (Z)

Now we are going to give some expressions of the Poisson kernel in the unit disk and
in the strip S. First we will see an expression for the unit disk, this will be used in the
Section 5.2.

Definition 1.1.4. Let D be the unit disk in the complex plane, and let 0 < r < 1. We
define a Poisson kernel in D as

2 2
o) = 1

Then, we define the Poisson integral of a function f in the unit disk as

1 2m ) )
o ), f(e9)Pu(z,e™)d.

Now, we are going to see two expressions of the Poisson kernel in the strip S.

Definition 1.1.5. Let s + it € S. We define a Poisson kernel in S as

e ™D sin s
7s + (cosms — e~ m(T—1))2"

Po(s +it,7) = —
sin
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Definition 1.1.6. Let s + it € S. We define a Poisson kernel in S as

e~ (™) gin s

Pi(s+it,7) = .
1 ') sin? s + (cos s + e~ (T—1))2

Those expressions will we used in the Section 4.3, and some properties of those expres-
sions will be seen in the mentioned section. Also, it can be proved that the Poisson kernel
in the unit disk and those expressions are equivalent under some conformal mapping from
D to S (see [10, Chapter 14, Theorem 14.8]).

1.2 Functional Analysis

In this section we will introduce the most useful topics in functional analysis, in particular,
we will see how integrate functions with values in Banach spaces. Also, we will see the
Completeness Theorem in Banach spaces.

1.2.1 Completeness

When we study if a normed space is complete it will be useful to work with series instead of
sequences. The following theorem tells us that in normed spaces the convergence of Cauchy
sequences is equivalent to proving that all absolutely convergent series are convergent.

Theorem 1.2.1 (Completeness). Let E be a normed space. Then the following are equiv-
alent:

1. E is a Banach space

2. all absolutely convergent series are convergent.

Proof. | (2) = (1) | Let (z,,)n © E be a Cauchy sequence such that

Ife=1=3Ing: |zm —xn| <1if m,n = ng,

Ife =27%=3ng: |2 — x| <27 % if m,n = nyg.

Take

Yo =2 _
" = lyxl <27,
Yk = ‘rnk - mnk_l

Then, >}, yi is absolutely convergent, so >, vy, is convergent. By definition it is equivalent

to say that
N
k=1 N

is convergent in E. Therefore, (z,), has a partial which is convergent. But, as we can do
it for all the partials of (x,), we have that (x,), is convergent.
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(1) = (2) | Let 2]9021 xj be an absolutely convergent series, and assume that m > n.

Define
n
j=1

Then,

m

P

m
[Sm = Sull = < Dl =0, asm,n 1.

So, (Sp)n is a Cauchy sequence which implies that (S,,), is convergent to S = Z;OZI xj.

Consequently, > | z; is a convergent series. |

7=1

1.2.2 'Weak Topologies

In this section we will introduce what the weak topologies for a normed space X and its
dual X’. Also, we will see the Banach-Alaoglu Theorem which deals with weak compact-
ness of the unit ball in X”.

We will begin by defining the dual space of a normed space and a seminorm, since the
weak topology is defined in terms of the dual space and seminorms.

Definition 1.2.2. Let X be a normed space in the field F, we define its dual space, X',
as the set of w satisfying that
w: X —>F

such that w is linear and continuous. We define the norm in X’ as

lwlxr = sup w(z)].
| x=1

Usually we will denote w(z) as {w,x) which means the action of w over z.

Definition 1.2.3. Let V be a vector space in the field F, then a function o : V' — F is
called a seminorm if satisfies

1. o(x) =0forallz eV,
2. o(x+y) <o(x)+o(y) forall z,y e V,

3. o(Az) = |A|o(z) for all x € V and for all A e F.

Notice that can happens that o(x) = 0 and  # 0. Now we are going to define the
weak and the weak™® topologies.

Definition 1.2.4. Let X be a normed space and X' its dual, we call the weak topology
in X to the topology induced by the family of seminorms of the form

ow(z) = [(w, )]

where £ € X and w e X'.
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Definition 1.2.5. Let X be a normed space and X' its dual, let (z,), € X and z € X.
We say that x,, converges in the weak topology (or converges weakly) if

w(z,) > w(z) Ywe X'
We denote this convergence as z, — .

Remark 1.2.6.

(i) In the literature the weak convergence can be found as x,, — x.

(ii) A subset B of X is called weakly closed if B is closed with the weak topology. The
same happens with the notions of weakly compact, weakly open and weak closure.

Definition 1.2.7. Let X be a normed space, ¢ € X’ and let (¢,,), < X’ be a sequence
in X’. Then, we say that ¢, converges to ¢ in the weak* topology if

lim ¢, () = p(x) Vze X.
ntoo

We will write this as
w*

Pn — @
Also we need to define what is a reflexive Banach space.

Definition 1.2.8. Let X be a Banach space and X’ its dual. We say that X is reflexive
if X is isomorphic and isometric to the dual of X', this is the bidual of X. This means
that there exists an isomorphism ¢ from X to (X’)’ = X” such that for all z € X we have
that

|zl x = flo(@)|x-

Finally, we are going to prove the Banach-Alaoglu Theorem, but in order to do this
we need the Tychonov Theorem.

Theorem 1.2.9 (Tychonov’s Theorem). Let {X, : Uy} be a family of compact spaces.
Then [ [, Xo endowed with the product topology is compact.

The proof can be found in [5, Chapter 1, section 8].

Theorem 1.2.10 (Banach-Alaoglu Theorem). Let X be a normed space and X' its dual.
Then, the unit ball of X' is weak® compact.

Proof. Let X be a normed space and X' its dual and let B* = {T' ¢ X' : |T| < 1}. If
T € B*, then T'(z) € [—|z|, |z|] for all z € X. Consider the cartesian product

P = [ [l=lzl, J«[]-

reX

A point in P is a function f : X — R such that f(z) € [—|z|, |z|], and P is the collection
of all such functions. The set B* is a subset of P and inherits the product topology of P.
On the other hand, since B* < X’ we have that B* also inherits the weak® topology of
X'. Then we have to prove the following things:
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(i) These two topologies coincide on B*.

(ii) B* is closed in its relative product topology.

Let us prove (i), every weak* open neighborhood of a point Ty € X’ contains an open
set of the form

O={TeX :|T(z;)—To(zj)| < for some § > 0,and for finite z;,j =1,--- ,n}.

Likewise, every neighborhood of Ty € P open in the product topology of P contains an
open set of the form

V={feP:|f(z;) —To(xj)| <6 for some § > 0,and for finite x;,j = 1,--- ,n}.

These open sets form a base for the corresponding topologies. Since B* = P n X', we
have that

OnB*=VYn B*

These intersections form a base for the corresponding relative topologies inherited by B*.
Therefore, the weak™ topology and the product topology coincide in B*.

In order to prove (ii), let fy be in the closure of B* in the relative product topology.
Fix z,y € X and «, 8 € R and consider the three points

ay =x, xTy=1Y, T3=ar+[[y.
For € > 0, the sets
Ve ={feP:|f(x;) — folz;)| <eforj=1,2,3}
are open neighborhoods of fy. Since they intersect B*, there exists T' € B* such that

[folx) =T(x)] <&, |foly) =Tyl <e

and since T is lineal,
|folaz + By) — T (z) — BT (y)| <e.

Using this three inequalities we have that

|[folaz + By) — afo(x) = Bfo(y)] < (1 + |a| + |B])e.

So, we have that fy is linear and as it holds for any ¢ > 0, we have that f, € B*.
Since the intervals [—|z|, ||z|]] are compact in the euclidean topology, by the Tychonov’s
Theorem 1.2.9 we have that P is compact in the product topology. But since by (ii) B*
is closed in P with this topology, we have that B* is compact with the product topology.
Now by (i) the product topology and the weak* topology coincide in B*, therefore B* is
compact with the weak™ topology. |

Corollary 1.2.11. If X is a reflexive Banach space, then if we apply the Banach-Alaoglu
Theorem 1.2.10 we will have that the unit ball of X is weak compact.
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1.2.3 Bochner Integral

In this section we give a vision on vector calculus. In fact, we will define the Bochner
integral and give a generalization of the Riemann-Stieltjes integral for functions with
values in Banach spaces.

Since the J-method 3.1.2 is defined in terms of the Bochner integral, we need to see
how to integrate a function that takes values in a Banach space. We are going to follow
the book [12, Chapter V, Section 5].

The aim of the Bochner integral is to extend the Lebesgue integral to functions that
take values in a Banach space. The way to define this integral is the usual, we start
integrating a simple function, and later we take the limit of integrals of simple functions.

So, let us start defining the integral for simple functions.

Definition 1.2.12. Let z(s) be a simple function defined on a measure space (S, F, )
with values in a Banach space X. That is,

{wi;ﬁo, se B, e F
x(s) =

0, SES\UiBZ'

where B; n B; = (J for all i # j € {1,--- ,n} and u(B;) < o for all i € {1,--- ,n}. Then,
we define the integral as

| stoIntas) == . (B
S i=1

The following definition will be useful to prove that this integral is well defined.

Definition 1.2.13. Let z(s) be a function defined on a measure space (S,F,u) with
values in a Banach space X. x(s) is said to be a strongly F -measurable if there exists a
sequence of simple functions convergent to x(s) p-a.e. (i.e. except in sets of measure 0)
on S.

Definition 1.2.14. A function z(s) defined on a measure space (S, F, i) with values in
a Banach space X is said to be Bochner integrable, if there exists a sequence of simple
functions {z,(s)} which is s-convergent (convergent in S) to z(s) p—a.e. in such a way
that

lim L 12(5) — ()| u(ds) = 0. (1.2)

ntoo

For any set B € F, the Bochner integral of z(s) over B is defined as

| atomtds) = 5 - tim [ xals)a(ohulds (1.3)
B nto Jg

where yp(s) is the characteristic function of the set B. i.e.
1. xg(s)=1if s€ B;
2. xp(s) =0if se S\B.

Lemma 1.2.15. The Bochner integral is well-defined.
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Proof. We have to see that (1.3) exists and that this value does not depend on {z,(s)}.
First note that (1.2) makes sense because z(s) is strongly F-measurable. From the

inequality

X

j £n(s) — 24(s)a(ds)
B

| st~ | ausutas)

X

< JB |xn(s) — xk(s)| xp(ds)

< L |zn(s) — z(s)|xp(ds)
+ L |2(s) — zi(s)|x n(ds),

and this tends to 0. Since X is a Banach space we have that

- hmf Cp(s)xn(s)u(ds)

n1oo

exists. Now, we will see the independence of {z,(s)}. Let {z,} and {y,} be two sequences
such that

but satisfying that

— hmf Cp(s)xn(s)u(ds) = a
ntoo
S —1lim | Cp(s)yn(s)u(ds) = b.
nto Jg

Then, taking (z,) such that
xn(s), ifnis odd
zn(s) = e
yn(s), if nis even,
we have that (z,) converges to z(s), and
S —lim | Cg(s)zn(s)u(ds)
nto Jg

has to be convergent. Therefore a = b and this implies that this integral does not depend
on the sequence. |

The following proposition will be useful in the proof of Proposition 3.1.20.

Proposition 1.2.16. Let T be a bounded linear operator on a Banach space X into a
Banach space Y. If x(s) takes values in X and is a Bochner integrable function, then
Tx(s) takes values in'Y and, also, is Bochner integrable. Moreover,

JB Tx(s)u(ds) = T < JB x(s)u(ds)) .
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Proof. Let a sequence of simple functions {y,(s)} satisfying

lyn($)lx < lz(s)[x (1 +n7")

and
S —limy,(s) = z(s) p—ae.
n1oo

Then, by linearity and continuity of 7', we have that

[ Tuntomtas) = ([ momias).

Also, by the continuity of T,

1Tyn(s)|x < [ TIx-y lya(s)lx < IT|xoyla(s)lx (1 +n71).
And
S — liTm Tyn(s) =Tx(s) p— ae.
n1oo

Hence Tz (s) is Bochner integrable and

LTﬂgmﬁyzs—mn T%@mugzs—anQL%@mwg)

ntoo JB ntoo

—T<L$@M%O.

As happens when we integrate functions with values in R or in C, we can extend
the Bochner integral in the way that instead of integrate with respect to u(ds) we in-
tegrate with respect to other function which takes values in a Banach space, defining
the vector-valued Stieltjes Integral. This generalization will be useful when we prove the
Theorem 4.1.10.

1.2.4 Fréchet Spaces and the Big Theorems

In this section we will define the Fréchet Spaces and we will see some of the most important
theorems in the functional analysis.

In the following lemma we will define what is a Fréchet norm.

Lemma 1.2.17. Given an increasing sequence of seminorms as in Definition 1.2.3,

pi(x) < p2(x) < -+ < pal@) < pota(2),

such that px(x) = 0 for all k implies x = 0, then

n

P ()
1= 2 e )

k=1

is a Fréchet norm, that is



1.2. FUNCTIONAL ANALYSIS 13

() |z +yl <l +lyl,

(0) || =z =[],
(c) ||zl =0=x =0.

Proof. Since py, are seminorms we have that py(—z) = pg(z) for all k, then (b) is satisfied.
Also, we have that pi(z) = 0, then the only way that |z = 0 is that pg(z) = 0 for all k
but, by hypothesis, this implies that = = 0. Therefore, (c) holds. In order to prove (a) we

will use that .

p(t) = i1

is an increasing function with respect to ¢, and that p; are seminorms, then we have that

pr(z +9) < Pr() + pr(y) < pr(T) n Pr(y)
L+pe(z+y)  L+pe() +oe(y)  1+prle) 1+ pr(y)

This implies (a). [

Now we are going to define the Fréchet spaces.

Definition 1.2.18. A Fréchet space is a topological vector space endowed with a Fréchet
norm so that it is complete.

The first theorem that we will see is the Baire’s Theorem, this theorem deals with
the union of open and dense sets, and will be useful for the proof of the Open Mapping
Theorem.

Theorem 1.2.19 (Baire’s Theorem). If (Gy)n is a sequence of open and dense sets in a
complete metric space, E, then | J,, Gn is also dense.

Proof. Let G be an open set, we want to prove that G n (n,G,) # &. Since Gy is
dense we have that there exists a ball B(z1,r1) with r; < 1 and 1 € G n G such that
Cl(B(z1,71)) € GNnG1. Then, since G is dense we have that there exists a ball B(Xa,79)
with 79 < 1/2 and x9 € B(x1,71) n Go such that Cl(B(zg,12)) < B(x1,r1) n Ga. Now,
iterating this we obtain that for all n

ClUB(zpn,m)) < B(xpn—1,rn-1) N Gy, withr, <1/n.

Now, if p, ¢ = n then the distance between x,, and x, is less than or equal to 2/n. Therefore
the sequence (xp), c E is a Cauchy sequence, so there exists = lim), z,,.

On the other hand, by construction we have that z; € Cl(B(x,,ry,)) for all k > n
this implies that x € Cl(B(xp, 7)) < Gy, for all n. Hence, x € n,,G,,. But, in particular,
x € Cl(B(xp, 1)) so z € G (Nn,Gr). [

Corollary 1.2.20. If (F,,)n is a countable collection of closed sets in a complete metric
space such that the interior of F, is the empty set, F;, = & for all n, then ,, Fr = .

The next theorem is the Open Mapping Theorem and is, maybe, one of the most useful
theorems in functional analysis.
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Theorem 1.2.21 (Open Mapping Theorem). Let E and F be two Fréchet spaces. If
T : E — F is a linear continuous operator so that T(E) = F then T is open, i.e. for all
G open set in E T(QG) is open in F.

If T is also injective, then T~ is also continuous.

The proof of this theorem can be found in [9, Theorem 2.11 and Corollary 2.12].

Theorem 1.2.22 (Closed Graph Theorem). Let E and F be two Fréchet spaces. Then a
linear map T : E — F is continuous if and only if Graph(T') = {(x,Tz) : © € E} is closed
in E x F.

Proof. Assume that T' is continuous, and take a sequence (z,,Tx,) convergent to (x,y)
we want to see that y = Tx, but since T is continuous we have that if x,, — x then
Tz, — Tx. Therefore y = Tx because (x,,Tx,) — (z,y) implies that z,, — x and that
Tz, —vy.

In order to see the other implication, since Graph(7') is closed then it is a Fréchet
space. Let us consider the mappings

m : Graph(T') — E,
m : Graph(7T') — F.

Since 7 is linear, continuous and exhaustive we have that by the Open Mapping Theo-
rem 1.2.21 7r1_1 is continuous. So

Ta = (my 0 my V) (@)

is continuous. u

1.3 Harmonic Analysis

In this section we will study the results in harmonic analysis that will be of interest for
our work.

1.3.1 The Weak-L? Spaces

In this section we will define the weak-LP spaces, but in order to define these spaces first
we need to introduce the distribution function and the non-increasing rearrangement of
f, this topic will be important for give the statement and the proof of the Marcinkiewicz
Interpolation Theorem and the next chapters.

So, let us define the distribution function of f.

Definition 1.3.1. Let (X, ) be a measure space, and let f € M(X), where M(X) is the
space of measurable functions.

Fix ¢t > 0 and consider the level set

fi={ze X :|f(x)] >t}

Then, we define the distribution function of f as

Ar(t) = p(fe)-
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Now, we are going to see some properties of the distribution function.
Remarks 1.3.2. (i) Ay € [0,00].

(i) If s <tand x € f;, then |f(x)| >t > s, in other words, f; < f;. Hence, Af(s) = A¢(?).
Therefore, Ay is a decreasing function.

(iii) Let a € C, E € 0(X), and take f = axg € M(X). Then, A\;(t) = pn(E)x[0, o)) (t)-
(iv) Let fi1, fo € M(X). Then, Af, 45, (t1 +t2) < Ap (t1) + Ag,(t2). In fact, this follows

because
{xe X :|fi(x)+ falx)| > t1 + to} < {x: |fi(x)| > t1} U {z: |fo(x)] > ta}.

(v) If 0 < |f1| < |fa|, then Af (t) < Ay, (t). So, the distribution function is a increasing
function as a function of f.

The next remark is important in order to the proof of Proposition 1.3.7.

Remark 1.3.3. Let (X, p) be a measure space, and let f € M(X). Then, A¢ is right-
continuous.

Proof. Recall
fr=A{ze X :[f(z)] > t},

and fix £y > 0. The sets f; are increasing as ¢t decrease, and

fto = U ft = U ft0+%-
n=1

t>to

Hence, we can apply the Monotone Convergence Theorem, (MCT),
lim <t0 + :L) —tlim e (fry1)
e}
MeT H (U ft0+711> = /‘(fto) = )‘f(to)'
n=1
|

The following proposition gives us a characterization of the LP norm of f in the space
(X, ).
Proposition 1.3.4. For any 0 < p < o0, the following equality holds

o0
| rpdn=p [ ixsae
X 0

Proof. Assume that u is smooth enough in order to be able to apply Fubini.

o0 Q0
J tPIN (H)dt = J tp—lf dpdt
0 0 {z:|f(z)|>t}

- |f()] 1 1
Fugmf f tpldtdﬂzf L@ g, - f ()P,
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The following definition that we need is the non-increasing rearrangement of f (or
decreasing rearrangement of f).

Definition 1.3.5. We define the non-increasing rearrangement of f as
f*(t) =inf{s > 0: A¢(s) < t}.

The non-increasing rearrangement of f is also known as the right-inverse of the distri-
bution function of f.

Now let us see some properties of f*(t).
Remarks 1.3.6. (i) If Ay is a bijection then f* = /\]71.

(ii) If t; > to, then f*(t2) = f*(t1), since A\f(s) < ta < t1, where s is the infimum of
{s>0: Ap(s) < to}

(iii) Let a € C, F € 0(X), and take f = axg € M(X). Then, f*(t) = |a|xo,uE) (t)-
(iv) Let fi, fo € M(X). Then, (f1 + f2)*(t1 + t2) < fi(t1) + f5 (t2).

We can characterize the LP(X) norm of f using the non-increasing rearrangement of

f.
Proposition 1.3.7. Let 0 < p < o0 and f € M(X). Then,

I1f2 = fX P = L .

Before we prove this result we introduce what means that two functions are equimea-
surable.
Definition 1.3.8. We say that f; and fo are equimeasurable if
Af = A
Remark 1.3.9. By Proposition 1.3.4 that f; and fy are equimeasurable implies that
|1l = lf2llp VO <p < o0,

Proof of Proposition 1.3.7: We have to see that
A f= A f*-
Because, if this happens then by Proposition 1.3.4 we obtain

JX [fPP = pf PN (t)dt = pfooo P N e (t)dt = Joo(f*(t))pdt.

0
So, let us see that Ay = Ap«.

As f is measurable we can take a sequence of a nonnegative simple functions (fy),
such that f, 1 |f|.- Then, if we are able to prove that for each n

)\fn (t) = )‘f;f (t)v
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using the monotone convergence theorem we will have that

Af(t) =lim Ay, (t) = lim)\ﬁf(t) = )\f*(t).

Then, we verify that Ar, (t) = Az (t) for each n.

Fix n, then

Fal@) = ) ajxp, (@).
j=1

Where E; are disjoint measurable sets in X. Call

Now, we can observe that f*(t) =0 if t > m,, f*(t) = a, if m;, >t > m,_1, and so on.

Then,
f::(t) = Z an[mj,hmj)(t)'

=1
Note that, the coefficients of f,, and f¥ are the same a;. So, if |f,(x)| < s implies that

fE(t) < s. And, as by definition of m;, the measure of Ej is the measure of m; —m;_;.
we have that Ay, (t) = Apx(t). [

Definition 1.3.10. Let 7, : B — M (X) be a sequence of lineal operators. We define the
maximal operator

T f(x) = sup | T f ().

neN

Remark 1.3.11. T* is sublinear, this means that T* satisfies

(i) T*(f + g)(z) < T*f(x) + T*g(x) (sub-additive),

(ii) T*(af)(x) = |o|T* f(x) (homogeneous).

The following definition is the main estimates in the Marcinkiewicz Interpolation The-
orem.

Definition 1.3.12. Given 1 < p < o0, we define the weak-type (p,00) space as follows
1
L% = {f € MR")  [flpr = supthf”(¢) < oo}

LP® is also called weak-LP space.

Remarks 1.3.13. (i) LP® is a linear space and || - |« is a quasi-norm, i.e.

(@) [Ifllpoo =0 and |[flpeo =0« f=0,
(b) [afllpeo = |l f
() If +glpoo < Cp]

P,00

fllp.co + 19]p,00) with Cp > 1.




18 CHAPTER 1. BASIC NOTIONS AND PRELIMINARY RESULTS

Moreover, (LP*, | - |x) is a quasi-Banach space.
(ii) If p > 1, then LP® is a Banach space.

(ili) LP & LP™ this inclusion is the Chebyshev’s inequality.

Let us see an example of function that belongs in L”* but not in LP.

Example 1.3.14. Let f,(z) = |z|'™® with a > 0. Then, it is clear that f, ¢ LP.
Now, compute the distribution function of f,.

Ao(t) =[{z eR" 2|7 > t}] = ‘{x eR": |z] > t7a}| = Cpta.
Then, putting this in | fa|p,c0-

_n n n
|fallpoo =supt-t7or <0 — =lea=—.
t>0 ap P

Therefore, |#|~"? belongs in L»® but not in LP.

Now we will define what is a weak type (p,p) operator and see a simpler example of a
weak type (1, 1) operator.

Definition 1.3.15. Let 1 < p < c0. We say that T is a weak type (p,p) operator, if
T:LP - [P,

If
T:LP — LP.

We say that T is a strong type (p,p) operator.

Now let us give a simpler example of a weak type (1, 1) operator.

Definition 1.3.16. Let f € L (R"). We define the Hardy operator as

loc
SH) =5 fo F(s)ds.

Before proving that is a weak-type (1, 1) we need the Minkowski’s integral inequalities.

Theorem 1.3.17 (Minkowski’s integral inequalities). Let F': X x Y - R", 1 < p < 0.

Then, 1 |
(L (L F@’y)dx)pdy) < fX (L F (xjy)pdy> ’ dr.

Proof. If p = 1 the theorem holds by Fubini.

If p = o0, in this case we have to change the integrals by the essential supremum and
since
sup sup «; j; = sup sup o j,
Joi (]

if we can take o j = F'(7,y), sup; = sup,cx and sup; = sup,y, then we have the equality.
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If 1 < p < o0, then via Hélder’s inequality we have that

§fg
1 = s, 79
geLP/ P
Now, if we define
=J F(z,y)dz
X
then
o= sup || f(y)g(y)dy‘= s |[ [ F<x,y>dxg<y>dy\.
lgl,r<11JY lgl,y <1y JX

Applying Fubini we have

Holder
Ifly < sup f f Fla,y)lg)ldydz 2 sup f lgly <f Fa:ypdy> dz.

lgllr<tJX lgll,r <1

And now, since we are taking |g[,y <1 we can take out the supremum and we are done.

/ p — p .
o< s I (L Fla.y) dy) i | ( [ Fw dy) da

Once we have proved the Minkowski’s integral inequality, we are able to prove the
Hardy’s inequality that says that the Hardy operator is a strong type (p,p) operator if
p > 1 and a weak type operator if p = 1.

Theorem 1.3.18 (Hardy’s inequalities). If 1 < p < o then
S:LP — LP.

Moreover,
S: L' - b,

Proof. If p = oo, then

t
SF(t) f F(s)lds < L £lods = ]

If 1 < p < oo, then

ff =jtftrdr—thr
s = ([][] st ’ dt)’l’

Thus,
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Applying the Minkowski’s integral inequality, we get

1 0 - 1 0 d 1
ssot< [ ([“rena) o= [ ([" 7o) o
Ldr i)
1Al [ 5 =2y, = 11,
0 re I

So, we have proved that S is a strong type (p,p) operator if 1 < p < o0.

Now, let us see it is a weak type (1,1) operator. For this purpose we first check that
exists f € L' such that Sf ¢ L'.

Let f = Xx(0,1), then

1t 1, 0<t<l1
Sf(t) = tJo X(0,1)(8)ds = {1 1
) =

So, Sf(t) ¢ L.

Now take f € L' and we want to see that Sf belongs in L®. So, we have to compute

the)\sf.
{ 1
§>0: —
S

Therefore, ||Sf|1,00 < |f]1. Then S is a weak type (1,1) operator. [ |

Asp(t) =

LS f(r)dr’ > t}’ < HftHI = suth;H1 =|fl-

1.3.2 Lebesgue Differentiation Theorem

In this section we will prove the Lebesgue differentiation theorem that is an analogous
version of the Fundamental Calculus Theorem, and it will be useful when we want to
prove that the Fourier multipliers, Mo, are the functions of L™ (R").

In order to prove the Lebesgue differentiation theorem we need to define the Hardy-
Littlewood maximal function.

Definition 1.3.19. Let f € L (R"), we define the Hardy-Littlewood maximal function
of f as

1
Mf(x) :=sup ———
( ) r>0 ‘B(.CE,TN B(z,r)

|/ (y)ldy

where B(z,r) is the ball of radius r and center x.

Remark 1.3.20. The Hardy-Littlewood maximal function of f satisfies the following
properties:

(a) Let f e L (R™), then M f(x) > 0 and there exists € R" such that M f(x) = 0 if

loc

and only if f =0 a.e. z.

(b) f,g € Li, (R"), then M(f + g)(z) < Mf(z) + Mg(z) and M(ag)(z) = |a|Mg(x) for
all @ e R™.
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(c) If f € L®(R") then for all z € R" we have that M f(z) < |f|e. So, we have that
IMflo < | f]o and that

Ml _
pesoten) 17l

| M =

(d) If f e L'(R™)\{0} then M f ¢ L'(R™).

The following theorem shows that the Hardy-Littlewood maximal function, is a con-
tinuous operator from L!(R™) to L}*(R™), the proof of this theorem can be found in [3,
Chapter 3, pg 119].

Theorem 1.3.21 (Hardy-Littlewood Theorem). Let M be the Hardy-Littlewood mazximal
function, then

M : LY(R™) — LM (R").
Theorem 1.3.22 (Lebesgue Differentiation Theorem). If f € LL (R™) then

)dy = .e. R™
NO‘B:H’JM (y)dy = f(z) ae xe

where B(x,r) is the ball of radius r and center x.

Proof. Let Q; be cubes in R™ such that @); are disjoint and R™ = ; Q@;. Then, it suffices
to prove the result for fxq, € L'(R™). Observe that if g € C(R') n L*(R") then, by the
Fundamental Calculus Theorem, we have that

1
lim ———— g(y)dy = g(x) VxeR"™ 14
B 1B ] Sy PO =9I -

Assume that f € L'(R™), we only need to prove that for a given j € N the set

1
IBHTMJM V= Jw) > .7}

has measure 0. Take ¢ > 0 and g € C(R') n LY(R") such that |g — f|1 < . Define
h=f—gandput f=h+g, by (1.4) we can rewrite A; as
1
> = 3.
j }

1
wmmﬂL@ﬂ“”@‘h“)

But, by the inclusion {a + b > t} < {a > t/2} U {b > t/2} we have that

e 3]

Now, using the Hardy-Littlewood Theorem 1.3.21 and the Chebyshev theorem we have

that
reR": Mh(z) > — Y + |{z e R" : h(2)] > —
. - : -

where K is the constant such that |Mh|; o < K|h[;. Moreover, since 2j(K + 1) is fixed
and independent of € we have that

|A;| <2je(K+1)—>0, ase—0.

Aj = {:1: € R" : limsup

r—0

Aj = {x e R™ : limsup

r—0

|45 <

1
{xER" : Mh(z) > 2]}‘ +

4] < < K2je + 2je = 2je(K + 1),
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1.3.3 Fourier Transform

In this section we will introduce the Fourier Transform and some of its properties for
functions of L!'(R") and L?(R™).

Let us begin by defining the Fourier Transform for functions in L!(R").

Definition 1.3.23. For all f € L'(R") we define its Fourier Transform as

f©) = | fla)e™eda

Rn
with ¢ € R

Proposition 1.3.24. The Fourier transform is a continuous map from L'(R™) to L®(R").
Proof. Let f e L'(R"), then we have that

sup ()1 < sup [ 1f@lle”=Slde = sup | 17 = sup b = 11

£eRn £eRM geR™ JR

Theorem 1.3.25 (Hat Theorem). If f,g € L'(R"), then
f©g(€)de = | f(2)g(w)dx
R" R"

Proof. The proof of this theorem follows by applying Fubini’s Theorem to the definition
of % . In fact, by definition of f we have that

F(©)g(€)de = ( f(x)e—“'fdm) 9(€)de.
Rn Rn Rn

Now, since f,g € L' we can apply Fubini and we obtain that

Jn < o f(x)e‘”'gdw) 9(&§)d¢ = o f(x) U ) g(g)e—“fdg) do= | F(2)g(x)dz

Now, we will define the convolution of two functions.

Definition 1.3.26. Let f,¢g € L' and Q = R”, then we define the convolution of f and g
as

(F+9)@) = [ o= ) Iy = (),
where §(z) = g(—2) and 7,9(y) = g(y — 2).
Remark 1.3.27. If f,g € L'(R"), then
(7)) = f(€)e™™¢, where 7, f(y) = f(y — 7).
(€Y FYINE) = T2 f (€)-
(Fg
I

9)(&) = F(£)g(6).
fA>0and h(x) =

(a)
(b)
(c)
(d)

f(z/X) then k(&) = A" f(XE).
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1.3.4 Schwarz Class

In this section we will introduce the class of Schwarz functions and we will see some
properties of this class, in particular, we will apply the Fourier Transform to this class and
use some of these results to prove some properties of .# in L!.

Let P be a polynomial of n variables of the form

P(g) = 3 Coli™ 5.

Let D, = i~1eID ie.
(2"
Da = <> .
ol i0x;
Then, P(D) =3, CoDy and P(—D) = 3 Co(—1)°ID,,. This definition of P(D) will be
the main definition in the chapter of PDE’s. Now we are going to define the space S.

Definition 1.3.28. A function f € C*(R™) belongs in the space S, (= S) if for all N € N
we have that
Px(f) = sup (1+ [2[*)"|Daf(x)] < co.

zeR™
jal<N

Remark 1.3.29.

(a) If f € S and @ is any polynomial then

|Daf(z)] £ |Q(z)|7! VzeR™

(b) (S,{Pn}n) is a Fréchet space.

Theorem 1.3.30.

(a) If P is a polynomial and g € S then the following mappings are linear and continuous

S-S
f—Pf
f—af
[ = Daf.

(b) If f € S then (P(D)fy = Pf and (Pfy= P(—D)f.
(¢) The mapping F : S — S is linear and continuous.
Proof. We will begin by prove (a). First Pf e C®, and for all N € N by Leibniz Formula

we have that
sup (1 + |z*)N|Do(Pf)(2)] < CPyipm(f) < 0
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where M = deg(P). To see that gf € S we have to use the same argument. Now since S
is a Fréchet space the continuity follows from the Closed Graph Theorem 1.2.22. In fact

fo—finS= f,(x) > f(x)Vz,

and
9fn = hin S = g(z)fn(x) - h(z)Vz.
That f — D, f is continuous follows since S is Fréchet and f € C'®.

Now we are going to prove (b), but we can reduce to prove for P(z) = z; by symmetry
and iteration. First we will see that S < L'. Let g € S then

[ttt = [ @@l e < Pelo) [ s

(1 + |=[?) re (1+]2f?)

But this type of integrals are finite if and only if 2N > n. So taking N big enough we
have that

fn lg(2)|dz < .

So, since S < L' we have that

(PDIFE) = | PD)f@)e ™ de = = f A yemivt gy,

Now using Fubini and taking z = (x2,--- ,x,), we obtain that
1 d : 1 d ) -
J —f(x)e_m'gd:v = J —f(x)e_mlfldazl e Tt dz,
1 Jrn d."L‘l 7 Jrn—1 R dl‘l

Now integrating by parts

1 df o\ e\ s f f U e\ e
/ifRn—l (fR = (x)e dzy | e dx = s R&dm (x)e dry ) e dz

—gt f (e tde = 6, f(e)

1 Jgpn dzy

= P91 (&)

Therefore, we have that (P(D)fY = Pf. Now we will see that (Pf) = P(—D)f. Let
t=(t1, - ,t,) and t/ = (t1 +,--- ,tp). Then

e~ _ 1

1€ =Jnx1f(m) 1ET]

e "ty

But,

In the other hand, since z f(x) € L'(R") and

e~ irie _ 1

’iEl‘l
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is bounded, we can apply the Dominated Convergence Theorem, and we arrive at the fact
that there exists

df
dxq
and L d
;%f( )= _(Pf)
Then L d
Pf=—of(t) = P(=D)f.

It remains to see (c), let f € S and define

gx) = (=D f(x) e S

then §(&) = Df(€). Therefore, P(€)§ = (P(D)g)(€) € L®, then f € S. The linearity of .#
follows from definition and the continuity follows from the Closed Graph Theorem 1.2.22
using that if f; — f in S then f; — f in L' and therefore f;(¢) — f(&) for all &. |

Remark 1.3.31. The function ¢(z) = exp(—|z[2/2) € S and ¢ = ¢.

Now, we are going to see two Inversion Theorems, the first version deals with functions
in S and the second deals with functions in L'.

Theorem 1.3.32 (Inversion Theorem).

(a) If g€ S then
@) = [ s(eesae.

(b) The Fourier Transform % is an injective and continuous mapping from S to S, it has
period 4 and its inverse

18 continuous.

Proof. We will begin by proving (a), let ¢(z) = exp(—|z|?/2) and g € S, then by the Hat
Theorem 1.3.25

fn g <§) d(t)dt = f ATMG(A)o(t)dt = f 9 <§> dt.

Using again the Dominated Convergence Theorem, the Remark 1.3.31 and letting
A — o we obtain that

90) = 9(0) | 6= 060) | )iz = [ g(a)da.

So, we have (a) proved for x = 0. Now consider x # 0, then

(@) = (r29)0) = | (maiu)dy = | aw)e=vdy.
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Now we are going to see (b), but by (a) by know that .# is one-to-one, also we proved
the continuity in last Theorem, so if we see that .#2g = §(= g(—x)) then we will have
that .#4g = g and that .# ! = .%3 which is continuous. But we have that

g(—2) = (729)(0) =j (rag)(y)dy = j Gy Vdy = Fg(a).

n n

Corollary 1.3.33. If f,g € S then we have

(a) frgeS

(b) (F*9)(€) = F(€)a(€).

Proof. We will begin by proving (a), since f, g € S we have that f,g €S, this implies that
fa=(f*g)yeS. Therefore, f * ge S. The proof of (b) is the same that for L'(R"). B

The following theorem deals with functions in L!(R™).

Theorem 1.3.34 (Inversion Theorem). If f and f are in L'(R™), then
f(z) = . F(6)e€de  ace. x.

Proof. Let

and g € S. Then

o fo(z)g(z)dx = f ) ( - f‘(t)emdt> §(x)dz.

Using Fubini and the Hat Theorem 1.3.25 we arrive at

fn ( . f(t)emdt) §(a)dz = J ) ( f ng(@dmem> oy

- | swiwa= | rwawa

Rn

Since # : S — S we can write § as g. Then
| th=patie =0 ves.

Then, by density fo(t) = f(t) a.e.t. |

Theorem 1.3.35 (Plancherel’s Theorem). If f € L'(R™) n L2(R™), then | f]a = | f]--
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Proof. Let f e L'(R™) n L?(R"™), then we have that
118 = | 1r@)Pdz = (7 D(O)
Rn

where f(z) = f(—z) and f is the conjugate of f. Since f,f € L'(R"), by the Re-
mark 1.3.27, we have that g = f = f is continuous and is in L'(R™). Moreover

A

(&) = FOF©) = F©F© = If O
3.

34 and obtain that

Now, we can apply the inversion Theorem 1.

g(z) = jRn |]§(§)|2€m'£d§ a.e. T.

In particular, for x = 0, we have that

1715 = 90) = | 1Ft€)Pde = 115

Then, we have that | f|la = ||f]- |
Proposition 1.3.36. The space L'(R") n L?(R") is dense in L*(R").
Proof. Let f € L?>(R") and let fr(z) = f(z)xp o,)(T), we are going to see that fr €

LY(R™) A L2(R™). Since | fr]2 < ||f]|2 we have that fr € L?(R"), also since f € L?(R") we
have that f € LL_(R") so fr € L'(R"). Therefore fr € L*(R™) n L*(R™). Notice that

%m |fr(z) — f(z)] =0 aexeR™

Even more, since | fr(z)— f(x)| < |f(x)| we can dominate | fr(z) — f(x)|? by | f(z)|?>. Then

we can apply the Dominated Convergence Theorem to

fim [ 1fr(e) = f@)Pde = [ Jim |fr(@) - f0) P = 0.

7100 Jrn
With this we can conclude that L'(R™) n L?(R"™) is dense in L?(R"). [

Remark 1.3.37. Let f € L?(R") since, by Proposition 1.3.36 L'(R") n L?(R") is dense
in L?(R™), we have that if (f;); = L' n L? so that f = L? — lim f;, then by Plancherel’s
Theorem 1.3.35, we have that

1f; = fila = I = filz = 3L% — lim f;.
Hence, we can define the Fourier Transform in L?(R") as
F()(€) = L* —lim f;,
such that f; — f in L?(R™).
Remark 1.3.38. (a) The Fourier Transform in L?(R") is well defined.

(b) If f € LY(R™) n L?(R"), then .7 (f) = f.
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(c) If f e LAR™) and f, = fxp,(0) € L' (R") n L*(R™), then

fr— [ in L’ = Ff= L? — lim fT =L?— lim f(x)e_ixfdm.
rtoo rto Jp, (0)

For n > 1 it still unknown if

Zf(§) = lim f(x)e ™ dz  ae. x.
R0 JBR(0)

As a consequence of Plancherel’s Theorem 1.3.35 and Remark 1.3.37 we have the
following theorem.

Theorem 1.3.39 (Parseval’s Theorem). If f € L?(R") then | F(f)|2 = | f]2-

Proof. By Remark 1.3.37 the Fourier transform extends in a uniquely way in L?(R™).
Moreover we have that, if g; € L'(R™) n L?(R") satisfying that L? — limjyeo gi(z) = f(2),
then, by Plancherel’s Theorem 1.3.35, we have that

IF()2 = [lim g2 = lim |g;ll2 = || f ]2
iToo iToo

1.4 Distribution Theory

In this section we are going to define what is a distribution and a tempered distribution,
also we will see that if f € L{ (R™) then we can construct a distribution that acts by
integration.

Let €2 be an open set in R™ and for each compact set K < Q (K € K(2)), consider the
subspace

Dk = {f € C*(Q) : supp(f) = K}
with the topology induced by C*(€2). Recall that

(COO(Q)v {PKj,j}j)
is a Fréchet space (see Section 1.2.4), where K; c K;H c---cQ,|JK; =Qand

Pr; j(f) = sup [D®f(z)].

la|<j
xeKj

Since Dy is closed in C* (), we have that Dy is also a Fréchet space.

Observe that in this subspace the topology is also given by the following family of
seminorms:

Ifln == sup [Df(x)].
lo|<N
e

Now we are going to define the test functions space.
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Definition 1.4.1. The test space is D(Q) = yex(q) Dk, that is the set of all C*(€2)
functions with compact support in 2.

In general, D(2) is not a Fréchet space.

Definition 1.4.2. Let ¢, (p;); < D(Q2) we say that ¢; — ¢ if and only if there exist
K € K(2) and jo € N such that Vj > jo we have that ¢; € Dk and ¢; — ¢ in Dg.

Now we can define what is a distribution.

Definition 1.4.3. A distribution, A, is a linear and continuous functional over D(£2) such
that A € D'(Q) and
A: D) - K

in the following sense:

VK € K(Q) there exist N € N and C' > 0 such that
M)l < Cleln,  Vye Dk
And we will say that (Aj); < D'(Q) converges to A € D'(Q2) if and only if
Aj(e) = Ap), Vo€ Dk.

Remark 1.4.4. The map

where

is injective but not exhaustive.

1.4.1 Tempered Distributions

The aim of the tempered distributions is that if ¢ € D and ¢ is its Fourier Transform
then we never have that ¢ € D. So, in general, we cannot apply the Fourier Transform to
distributions.

Definition 1.4.5. A tempered distribution u is an element of the dual space S’.
Remark 1.4.6. Let ue S" as D — S we have that u|p is a distribution.

Theorem 1.4.7. If P is a polynomial, g € S and u € S’ then D*u, Pu and gu are also
tempered distributions.

The proof of this theorem can be found in [9, Theorem 7.13].

Definition 1.4.8. If u € S’ we define i(p) := u(p) where ¢ € S.
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Now we are going to see that this definition is consistent when f € L'(R") and u € S’
is of the form

up(¢p) = | f(z)o(z)dz.

RTL
Let ¢ € S, then by definition we have that

A~

ise) = us(9) = | S@)p(a)d

Using the Hat Theorem 1.3.25 we arrive at

ap(p) =up(@) = | [flo)p(z)de = f () f(x)dz = ug(p).
Rn

n

Remark 1.4.9. The map .% : S’ — S’ is continuous, bijective, has period 4 and its inverse
is also continuous.

The proof of this result can be found in [9, Theorem 7.15].

Example 1.4.10. 1 = §, and 50 =1.

Let ¢ € S(R), by the Definition 1.4.8 we have that

i(p) = 1(¢) = fRsa(x)d:c _ j B(x)e™ Oz,

R

And, by the Inversion Theorem 1.3.32 we obtain that
i(e) = | ¢lo)et"0dz = p(0) = doe).

Therefore, 1 = dy in the sense of distributions. Now, again by the Definition 1.4.8 we have
that

Go(i) = () = 9(0) = | pla)de = 1(¢).

Hence, 6 = 1 in the sense of distributions.



Chapter 2

Classical Methods in the
Interpolation Theory

In this chapter we study the classical methods in the interpolation theory, these are the
Riesz-Thorin Theorem and the Marcinkiewicz Theorem. These results provided the im-
petus for the study of the interpolation theory, the proof of the first theorem gives the
idea behind the complex interpolation method, meanwhile the proof of the second theorem
provides the construction of the real interpolation method.

2.1 Riesz-Thorin Theorem

The first theorem that we will prove is the Riesz-Thorin Theorem. For this theorem we
assume that the scalars are complex numbers.

Theorem 2.1.1 (Riesz-Thorin interpolation Theorem). Let (U, 1) and (V,v) be two mea-
surable spaces. Assume that pg # p1, qo # q1, and that

T:LP°(U)— LP(V)
1s bounded with norm My, and that

T:LP(U)— L7 (V)
15 also bounded with norm My. Then

T:LP(U)— LY(V)
s bounded with norm

M < MM

provided that 0 < 6 <1 and

1 1-6 6 1 1-6 0
== +—=, -= +—. (2.1)

p Po P q q0 Q1

Notice that the points (1/p,1/q) described in (2.1) can be geometrically interpreted as
the points in the line with end points (p%, q%) and (=, 1).

31
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D=

(1, 1)

Figure 2.1: Geometric interpretation of (2.1)

Proof. Let
1 1-6 0 1 1-6 0
== +—, -= +—.
p Po Y41 q 4o q1

And let % =1- %. Then, by Holder’s inequality,

M = sup{| [ Tt 15 = 10l =1}

Since p < o0, ¢’ < 0 we can assume that f € L? and g € LY are bounded with compact
supports.

For 0 < R(z) < 1, we put

L _l-z z 1 1-=z n z

piz) o p dk) 4 4
and

o) = pla,) = 1@ HD ae.

_ _ A= 9()

U(z) =(y,z) = |g(y)|7® o V.

Now, we will see that ¢(z) € LPi(U).
P_ Pidy — piv/o(z) 1L (@)
loll = | teta2Pdi = | 1rta)pme L

= J |f($)|PjP/P(z)dM < J |f(x)‘§)?(pjp/p(z))d'u.
U U



2.1. RIESZ-THORIN THEOREM 33

Since, 0 < R(z) < 1, we have that p;/R(p(z)) < 1. Then, we obtain

J lo(z, 2)[Pidp < f \f(g;)ﬁﬁ(PjP/P(Z))dM
U U

< j @) Pdu < | 2.
U

And the same argument can be used to see that ¢ (z) € L% (V).

Since ¢(z) € LPi(U), then Tp € L% (V) with j = 0,1. Also, we can check that
¢'(2) € LPi(U), ¢'(z) € L% (V) and thus also that (T¢)(z) € Ly, (V) if (0 < R(2) < 1).
This implies the existence of

FE) = | Teluman 0<Re) <1

Even more, we have that F' is an analytic function on the open strip 0 < R(z) < 1, and
bounded and continuous on the closed strip 0 < R(z) < 1.

Also, by definition of ¢ and 1 we have that

(i)l = 11177 L ~If =1,
li(1 + i)l = 1177 Y

and the same for ¥

l(it)llg = @ +it)]gy = 1.
Therefore, we obtain

Holder

[F(it)] < [Te(it)|pol¥ (i)l < Mo,
PO+it)] < [To(1+i0)ly, 001 +it)l,; < M.
Moreover, since p(6) = p and ¢'(0) = ¢, we have
o0)=f, () =g,

and so,

F(0) = fv Tf(y)g(y)dv.

Using now Theorem 1.1.2 we obtain

< M0u,

f TF(y)g(y)dv
Vv

or what is the same (taking supremum in the both sides and using that M&_er is
constant)

M < M~'MY.



34 CHAPTER 2. CLASSICAL METHODS

2.2 The Marcinkiewicz Theorem

In this section we give the statement and the proof of the Marcinkiewicz Interpolation
Theorem. As we said before this theorem contains the main ideas used in the real inter-
polation method. We are going to use some results seen in Section 1.3.

Also, it is important to note that from now the functions f can take values in R and in
C as a difference with the Riesz-Thorin Theorem 2.1.1 where the values had to be complex.

Another important difference between these two theorems is that now, in the hypothe-
sis, we replace the strong spaces (L) for the weak spaces who are largest spaces. Therefore,
this theorem can be used where Theorem 2.1.1 fails.

So, let us give the statement of the Marcinkiewicz Interpolation Theorem.

Theorem 2.2.1 (The Marcinkiewicz Interpolation Theorem). Let (U, ) and (V,v) be two
measurable spaces. Assume that pg # p1, qo # q1, and that

T:LP(U) — L*(V)
is bounded with norm Mg, and that
T:LP(U) — L™*(V)

is also bounded with norm M;".

Let

and assume that
P <q. (2.2)

Then,
T:LP(U)— LYV)
with norm M satisfying

M < Cy(Mg)' 0 (M)’

Before we start with the proof we pay attention with the statement. Notice that we
have one hypothesis more than in the Theorem 2.1.1 that is the restriction (2.2). Moreover,
notice that in this theorem M satisfies

M < Co(Mg)' " (M)’

while
M < (M0 (M)°

this is because if the scalars are real then we can only prove the convexity inequality
M < Cy(M) 0 (M)’

Now, let us prove the theorem but only for ¢y = pg and p; = ¢q1. The general case can be
found in [13, Theorem 4.6, p.112].
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Proof. Let pg = qo and that p; = ¢; then we define p as

1 1-0 0
+7
p Po D

and we have that p = q.

Let f e LP, we want to see that Tf belongs in LP, that is, there exists M < oo such
that

ITflp < M f]p-
Define () £
x), ifzxeF
fo(z) = fo(t,z) = { 0, otherwise

where Ec {zeU: |f(x)| = f*(t)}.
Define also fi(x) = f(x) — fo(x). Then, fo € LP°(U) and f1 € LP2(U).
Recall that we want to see that |1 f[l, < M| f|,, and that by can write |7 f|, as follows

|szz=\L (T ().
Also, we have that

(TF)*() = (Tfo + TF)* (1) < (Tfo)*(t/2) + (T'f1)* (t/2).

Therefore,

e 0] o0

(G%VW%Vﬁ+J(@hVW®Wh

0

!Tf$==£f«TTYTwVﬂt<~[

0

And, by the hypothesis of T', we have that
(Tf;)*(t/2) < MFt~"%] fjl, withj =0, 1.
Thus,
e} e}
IT1I5 < L (M2 fo )Pt + L (Mt P fup, )Pt

So,

0 e}
TSI < (Mo*)”f0 (720 follpo )Pt + (Ml*)pL (P frlpy )Pt
= (Mg)?Io + (M)’ 1.
Now, we will study Iy and I; separately. We start with Ij.

0 © p/po
b= [ ol = [ (e golz)" dn
0

0

Applying the definition of fp and | - |,, we obtain

Iy = JOO (tpo/po f t( f*(s))mds> v dt.

0 0
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Then, we have that

L

And taking o = s/t, we obtain

oL

Now, in order to be able to apply Minkowski’s integral inequalities we take (I(])l/p,

notice that ||Tf||, < (Io + I;)"/? < Ié/p + Ill/p.
1/ o po/p
J <J (f*(to'))pdt> do
0o \Jo

1P = ( L - (fol(f*(ta))7’<)cla>p/p0 dt> " < (

Doing the change of variables t = =.

[ < ( f: < Lw(f*(S))p C(lj)po/p dg) 1/po |

Using Theorem 1.3.7, we obtain that

1/ po ds\ Po/P 1/po 1 do \ /P
(L)) "= ([ )
1 do 1/po
171 ([ o)

f 1( f*(ta))p0d0> " dt.

0

1/po

Since pg < p, we have that

L do 1/po O.l—po/p Po
(o) = (=)

Therefore, we obtain that

1:<1>p0:<p>pozc
0 1 —po/p P — Do P

I,/ < Gyl f -

As we have the bound for Ij let us study the I integral.

o0
I - f (1P| o o Pt
0

Let ¢ = |f|P* and n = pﬂl < 1, then ¢* = (f*)P* and I; becomes

I = LOO <t1 fo go*(s)ds)ndt.
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Since ¢! St ©*(s)ds and ¢*(t) are positive and decreasing functions of ¢ we can apply the
integral test for convergence, using the dyadic partition in the two intervals, we have

0 0 n 0 n
J <t_1f go*(s)ds) dt < C Z 2Y Z p*(2m)2m ) 2V
0 t vV=—00 mz=v
Since (z 4+ y)" < 2" + y", we can estimate the right hand side by a constant multiplied by

Z Z 2(1—n)v((p*(2m))n2mn _ Z <2m77 Z 21) (1-n )

v m=v m v=m
But, note that
> (2m"(<ﬁ*(2m))” > 2”(1")> < DI2MIH ()T < DL 2m (@ (2™)".
m v=m m m
Therefore, we obtain
0 0 n
J (tl J go*(s)ds) dt < Z 2™ (p*(2™))".
0 t poo

And applying again the integral test for convergence we deduce

L B (t—l f:o cp*(s)ds) "t < ; 2 (*(2™) cj ))ds.

Now, applying the definition of n and ¢*, we obtain

T-’IP
CJ 77als—Cf Plds—C’J ))Pds.

Therefore, we have that
n<o [ (rras = sl
Hence,
1
L < V| f,.
Then, putting the two bounds in ||T'f|, we obtain
ITflp < (MECp + MFCYP)| flp = M| |-
Now, we go to see that M < Cp( M) =0 (M)?.
First, we express MFC), + MFCVP in terms of (Mg)'=% and (M;)?.
(M)~ (Mg)° (M)’
(M)?
(M) (M) 0 (MF)°
()=

MEC, + MFCY? < C,

+CVr

As p depends of 0 we can take Cj) = max(C), C'/P), then
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MEC, + MFCV? < C) <(M6">”’(M8‘)9(Mf‘)9 (M;“)”(Mg)”(Mf)@)

(M)? (Mg)-=*
— Cj(A+ B).

So, we want to bound A + B by Ky(MF)1=%(M;)?, and considering Cy - Ky = Cp, we
will obtain that M < Cy(MF)'—0(M;)°.
But,
A+ B < (M§)'(MF)? + max(Mg, M7),
and as M and M7 are finite and greater than 0 there exist Ky > 0 such that

max (Mg, M7) < Ko(M§)' 0 (M7)°.
So,
A+ B < (MF)O(M})? + Ko(Mg)' 0 (M) < (Ko + 1)(Mg) 0 (M7)°.

Therefore, taking Cy = C§- (1+ Kg), we have that M < Cp(MF)'=0(M;)?, as we want.
|

Before finish this chapter we will see an application of Marcinkiewicz interpolation
theorem, this will be the interpolation of the Fourier Transform operator.

2.3 An Application of Marcinkiewicz Theorem

As we mentioned before in this section we will see an application of Marcinkiewicz inter-
polation theorem for the Fourier Transform operator.

Assume that we are in (R", dx), where dx denotes the Lebesgue measure in R™. Denote
by LP the LP-space of (R",dx), and let w be a weight function on R", that is, a positive,
measurable function on R" and such that w € L}, .(R"). Then, we denote by LP(w) the
LP-space with respect to wdz.

In fact, we will see two things:

1. The Fourier Transform goes from L? to L¥ if 1 < p < 2.

2. The Fourier Transform goes from LP to LP(w) if 1 < p < 2, where, in this case,

(&) = [¢[me).

First we see that the Fourier transform goes from LP? to LP if 1 < p < 2.

To see the proof of this we use that as we saw in Section 1.3.3, the Fourier transform
(F) goes from L' to L®, and also is an isometry from L? to L?. Then, by Marcinkiewicz
interpolation Theorem 2.2.1 we have that .%# goes from LP to L? with p and ¢ satisfying
1:1_9+£:1_0+Q:2;6’

p Po  Pp1 2 2
1 1-0 66 1-60 0 0
q 2

= + —=—+
q0 q1 0

27
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with 0 < 0 < 1.
But notice, that

Therefore, ¢ = p'.

Also, since M; = 1 because the Fourier Transform is an isometry from L? to L?, we
obtain that

M < CoM3=MY = CyM .
And since My is also 1, we have that
M < CHMOI_H = Cy.

Notice that we can apply the Theorem 2.2.1 because the Fourier transform is a strong

type (1,00) and is also a strong type (2,2). Then, in particular, it is a weak type (1, 0)

and is also a weak type (2,2). We have that p < ¢. So, we are in the hypothesis of the
Marcinkiewicz interpolation theorem.

Now, let us see that if w is a weight in R™, then the Fourier Transform goes from L”
to LP(w) if 1 <p<2.

Theorem 2.3.1. Assume that 1 < p < 2. Then

I fll e (g-ne—vy < [If[p-
Here, | - | p(j¢|-n(2-»)) denotes the norm in Lr(|¢|7"2-p),

Proof. Consider the map K
(TF)(&) = [€]"F(8)-
Then, using Parseval’s Identity, for all f € L? we have that

T g = [ THOPIE"de
- | P
= [ 1ras = 17 = 1513

Therefore, T' is a strong type (2,2) operator, and so T' is a weak type (2,2) operator.
Then, in order to apply the Theorem 2.2.1 we have to see that T' is a weak type (1,1)
operator because if we see it, then p = g and T is a strong type (p,p) operator.

Let us see that T is a weak type (1,1) operator. If f € L', then
HTfHLLoo(m—zn) = sup t)\Tf(t).
t>0
Now, using that the measure of a set I/ with respect to wdzx is SE wdx, we have that

Arp(t) = p{€ e R™ ¢ [€[*f(€)] > ¢}
3

Lsew: €™ 1£(&)[>t}
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Assume that | f[; = 1, then since | f|o < |f]1 = 1 we have that

s%p f(O < 1.

Therefore, |f(€)| < 1. Putting this in A we obtain

Ay (t) = f g
{€eRm: [€"| f(&)|>t}

< f €72
{€eR™: [¢|m >t}

- J |€]72nde < Ct L.
€I >t

So, we obtain that

HTfHlew(IH*Q") = Supt/\Tf(t) < Suptct_l =C.
t>0 t>0

And since | f|; = 1, we have that |Tf]1,60 < C| f]1.

Therefore, we are in the hypothesis of Marcinkiewicz interpolation theorem and then
T:IP — LP(|€2]) with1<p<2.

Notice that when we take f € L? and compute |Tf|} (]¢|7*") what we have is

e TGl
= [ rerme-mifieae
Rn

= HfHLP(m*n(?*P))-
Therefore, for 1 < p < 2 we have that

| fll e g—ne—ny < [If[p-



Chapter 3

Real Interpolation

In this chapter we will study the real interpolation methods and also some properties
of the real interpolation spaces. As we said in the previous chapter, those methods are
inspired in the proof of the Marcinkiewicz Theorem 2.2.1.

3.1 Real Interpolation Methods

In this section we will study the main subject of this chapter, that is the Real Interpolation
Methods. In particular, we will study the J-method and the K-method.

But, before to see the results we have to introduce the compatible couple of quasi-
Banach spaces.

Definition 3.1.1 (Compatible couple of quasi-Banach spaces). Let Ay and A; be two
quasi-Banach spaces. We say that A = (Ap, A1) is a compatible couple if there exists a
Banach space A such that Ay, A1 — A.

With this definition we can define the different methods that will describe the diverse
interpolation spaces.

3.1.1 K-method

In this section we will study the K-method, but first we define when a belongs in Ag + A1,
where (Ap, A1) is a compatible couple of quasi-Banach spaces.

Definition 3.1.2. If (A4p, A1) is a compatible couple of quasi-Banach spaces, we say that
a € Ag + Aq if there exist ag € Ag and a1 € A1 such that a = ag + a;.

The K-method is based in the Peetre’s K-functional which is defined as follows.

Definition 3.1.3 (Peetre’s K-functional). Let A = (Ag, A1) be a compatible couple of
quasi-Banach spaces, and let @ € Ag + A1. We define the Peetre’s K-functional as follows

a=

K(t,a; Ao, Ay) = inf  {Jaola + tlasa, }, with t > 0.
=ap+ai

41
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Let us see one property of the Peetre’s K-functional.

Remark 3.1.4. Fix a € Ay + Ay, then K(t,a; Ag, A1) is an increasing function with
respect to t.

Proof. Let t < s and a = ag + a1 be an arbitrary decomposition of a. Then,
K(t,a; Ag + A1) < [lao| 4y + tllar]a, < faola, + slai]la;-

And, as it holds for any decomposition of a, in particular it holds for the infimum. So,
K(tya; Ao+ A1) < Jaola + tlarla, < K(s,a; Ao+ Ay).

Now, we are going to see that, in fact, K(¢,-; Ag, A1) is a norm in the space Ag + tA;.

Proposition 3.1.5. K(t,-; Ag, A1) is a norm in Ay + tA;.
Proof. We have to see that

1. K(t,a; Ao, A1) =0 for all a € Ag + A; and is 0 if and only if a = 0,
2. K(t,a+b;Ag, A1) < K(t,a; Ag, A1) + K(t,b; Ag, Ay) for all a,be Ay + Ay,
3. K(t,\a; A, A1) = |A|K(t,a; Ag, Ay) for all a € Ag + Ay and for all A € R.

By definition,
K(t,a; Ag, A1) = inf {HaoHAO + tHalHAl}, t > 0.
=ap+al

a=

Then, K(t,a; Ao, A1) = 0, and if a = 0, then K(¢,a;Ag, A1) = 0. So, let us see the
converse implication.

Let a € Ag + Ay such that K(t,a; Ao, A1) = 0. As K(t,a; Ap, A1) is an infimum, we
have that for all k € N, there exist elements af € Ag and a¥ € Ay, so that a = af + a} and

1 1
HG§|\A0 + t“a]fH/h < K(t’ a; A07A1) + % = %
Letting k tends to infinity, as £ > 0, we have that

k
lagllag — 0

lat]a, — 0.
And as Ay and A; are quasi-Banach spaces this implies that

al — 0

a]fHO.

Then, the sequence
k k
ag + a ) .
( 0Ty
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is convergent to 0 in Ag + tA;1. Hence, a = 0.
Now, let us see that K(t,a + b; Ag + A1) < K(t,a; Ag + A1) + K(t,b; Ag + Ap) for all
a,be Ay + A;x.

Let a,be Ag +tA1, let € > 0 and let a = ag + a1 and b = by + b1 be a decomposition
of a and b satisfying that

laollag + tlar]la, < (1 +e)K (¢t a; Ao + Av),
[boll 4o + tbr]lay < (1 + ) K(E,6; Ao + Ar).

Then, we have that

K(t,a+b;Ag + A1) < [ag + bo| 4, + t]a1r + b1]a,
laol 4y + tla1la, + [bo]a, + t[b1] .4,
(1+¢e)K(t,a; A) + (1 +e)K(t, b; A)

= (1+¢) (K(t,a; A) + K(t,b; A)) .

<
<
<

And, as it holds for any € > 0, we can make ¢ | 0 and obtain that

K(t,a+b;Ag+ A1) < K(t,a; A) + K(t,b; Ag + Ay).

Finally, we will see K (t, Aa; Ao, A1) = |A|K(t,a; Ag, A1) for all a € Ay + A; and for all
AeR.

Let ae Ap + A1 and A € R. Then, Aa = Aag + Aa;.

So, we have that

K (t,Aa; Ag, A1) = inf {|Aao| 4, + t|Aa1]a, : Aa = A(ao + a1)}
= inf {|A[([aol ., + tlar]a,) - Aa = Aao + a1)}
= Al _inf {laolla, + tlar]a, } = [AK (¢ a; Ao, Ar).

a=ap+ai

Therefore, the Peetre’s K-functional is a norm in Ag + tA;. [ |

For simplicity, from now we call K (t,a; Ag, A1) as K(t,a; A).

Remark 3.1.6. Fix a € Ay + Ay, then K(t,a; A) is a concave function with respect to t.

Proof. Let x,y >0and 0 <t <1,let z=tx+ (1—t)y. Take a = ap+ a1 be an arbitrary
decomposition of a. Then,

tK (2, a; A) + (1 - 1)K (y, a3 A) <t (ao] 4, + a1 a,)
+ (1 =1) (Jaol 4y + yllar]a,)
= llaollao + z[la1]a;-

As it holds for any decomposition of a, in particular holds for the infimum, that is
K(z,a;A). Then,

tK(z,a; A) + (1 —t)K (y,a; A) < K(z,a; A).
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With this norm we have the following proposition that gives us a bound for operators.

Proposition 3.1.7. Let A and B be two compatible couples of quasi-Banach spaces. If
T : Aj — Bj is bounded with norm M; for j = 0,1, then

_ M _
K(t,Ta,B) < M0K<1t,a;A>.
My

Proof. Let a € Ag+ A1, € > 0 and t > 0. Then, there exist ag € Ag and a; € Ay such that

My My -
Thus, Ta = Tag + Tay € By + Bi. So,
K(t,Ta, B) < |Tao|, + t|Ta1] 5, < Molao]a, + Mit]ai]a,
M,y
= Mo [ laolay + 3otlanla]
And applying (3.1) we obtain

_ M M B
K(t,Ta, B) < My [a0|AO + 1t|a1|A1] < My(1 + 5)K<t]\/[1,a; A).
0

My
And since K (t,Ta, B) does not depend on ¢ if we make ¢ tend to 0, we have
_ M _
K(t,Ta,B) < M0K<t1,a; A>.
Mo
|

With all those things we can define the real interpolation spaces obtained with the
K-method.

Definition 3.1.8. Let A = (Ap, A1) be a compatible couple of quasi-Banach spaces. We
define the real interpolation space (Ao, A1)g,p as follows

© _dt\ P
(Ao,Al)g,p = a e A() + A1 : HaH(AO»Al)G,p = (J tip K(t,a;A)pt> < QO ,.
0
Here we consider the cases 0 < <1, 1<p<owand 0<0 <1, p=c0.

We have two important properties of the K-functional and other relation of this func-
tional with this norm.

Properties 3.1.9.
1. For any a € Ag + A1 we have that

K(t,a; A) < max(1,t/s)K(s,a; A).

2' K(S’ a“; A) < ’797]?56“&“(140,141)94,-
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Proof. Start with the first property.

If t/s < 1, then s > t and as K(t,a; A) is increasing with respect to ¢ we have that
K(t,a; A) < K(s,a; A).
If t/s > 1, take a = ag + a1 be any decomposition of a, then

(laollao + sla1fa,)-

t
laollao + tlailla, = llaollay + st/slas]a, <

Taking infimums in both sides we obtain that

K(t,a; A) < max(1,t/s)K (s, a; A).

Now, let us see the second property. To prove it we will use the previous property but
write in the form

min(1,t/s)K(s,a; A) < K(t,a; A).
Using this we arrive at

0

<f00 t=% min(1,t/s)P K (s, a; /_l)pdt/t> " = K(s,a; A) <f =% min(1, t/s)pdt/t> 1/P

0 0
<<

o _ 1/p
J t7P K (t, a; A)pdt/t>

0
= llall(a,41),
So, we want to bound
o 1/p
( f £ min(1, t/s)pdt/t> .
0

Let r = t/s, then

0 0

© 1/p 1 1/p 1
r~ P min(1, r)Pdr/r = — = —.
D e ) B

Therefore, we have that

But,

K(s,a; A)
O < llal(a0,41).,-

Proposition 3.1.10. If Ay and A are quasi-Banach spaces, then (Ao, A1), is a Banach
space with norm | - | (a,,4,)

0,p°
Proof. Note, that in the earlier prove we do not use that |- |4, 4,),, is a norm. So, in
order to see that (Ao, A1), is a Banach space with the norm | - |(4,,4,),, We have to

prove the following things.
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L | llcag,41)e, is @ norm,
2. ((Ao,Al)gyp N ||(A07A1)9,,,) is complete.
Note that

| leao e, = [EPK (5 A) | ogarse,

where LP(dt/t) is the LP space with respect to the Lebesgue measure with weight ¢t~1.
But, in Proposition 3.1.5 we proved that K (t,-; A) is a norm in Ay + tA;. So,

|- leao e, = £ Lag+ean) oo garye)-

Then, that for all a € (Ao, A1)g, we have that [al(4,,4,),, 15 positive and that is 0 if and

only if @ = 0 is clear.

P

Let us see the triangular inequality. Take a,b € (Ao, A1)gyp

la + bll(ag, 4110, = 167" (la + bllag+a:) | Lo arye)
< [t~ (allag+ay + 18140+40) | 2o a /e
< [t~ all ag+a) Lo gaesey + 1t 9(HbHA0+A1)HLP(dt/t)

= llallcao,a1)6,, + 10l (a0,41),.,

Then7 ||a/ + b||(A07A1)9’p < HaH(A(),Al)G’p + HbH(A07A1)0,p'
Now, let us see that for all a € (Ag, A1)p,, and for all A € R we have that

laXl 0,413, = M@l (49,41,

Let a € (Ag, A1)pp and A € R, then

laXlcae, 410, = IE7° (laX] a0 +a0) 2o (atse
= ¢ (lal g+ A o a /o
= M0 (lall ag+-a0) 2o aese

= [Alllall (40,416,

Therefore, [|aA|(a9,41)y, = [M[@ll(a0,41),, and, hence, |- [[(45,4,),, is & norm.

So, we have to see the completeness of ((Ao, A1)y | - H(Ao,Al)op)‘ By, the Theo-
rem 1.2.1 it is enough to see that every absolute convergent series is a convergent series in

((A07 A1)9,p ) H : H(Ao,Al)e,p>'

Let >, lanll(ag,4,),, be an absolute convergent series in (Ao, A1)gp, then we want
to see that Y0 a, is convergent in (Ao, A1)g,p.

In order to simplify the notation we put the space in the superindex instead of in the
subindex.

Let a® + al be a decomposition of a,, satisfying that
n n P

lanllag + lag]a, < K(Lan; A) +27". (3.2)
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By the Properties 3.1.9 we have that K(1,a,; A) < Yo,plan(A9,41)y,- Then, we have
that

0

a0
Z (1 yan; A < Yo.p Z HanH(A07A1)9,p7

n=1 n=1
which is convergent in R, so >.° | K(1,a,; A) is convergent in R. By (3.2) we have that

o]

0
2 |84, < Z (1,an; A) + 1.

And the same for >, |a}]a,. Then, we have that >, [a%]4, and Zf L lat ] are
convergent in R. Since, Ag and A; are quasi-Banach we have that Y. ;a2 and > »
are convergent in Ag and A; respectively. Therefore,

0 0 0
PRI
n=1 n=1 n=1

is convergent in (Ao, A1)g,p- [

nln

The first theorem that we meet with these definitions is the Interpolation theorem
that tells us that if an operator is continuous between two compatible couples of quasi-
Banach spaces then, it is continuous between the interpolation spaces of the two couples.
Moreover, its norm in the interpolation spaces is [T (4, 4,),, < MMy,

Theorem 3.1.11 (Interpolation theorem). Let A = (Ag, A1) and B = (By, By) be two
compatible couples of quasi-Banach spaces. Let

T:Aj—>Bj, j=0,1
be continuous with norm M;. Then,
T : (Ao, A1)op — (Bo, B1),p

s continuous with norm M, for 0 <6 <1 and 1 < p < 0.

Moreover,
M < M}0MY.

Proof. Let a € (Ao, A1)g, - By the previous proposition we have that

* i _ dt 1/p
HT@H(BﬂvBl)e,p = <J;) t P K(t7Ta7 B)pt)

00 M P 1/p
< My <J t—P9K<Mlt a; A> C?) .
0 0

Taking s = %t we have that % = 4 and that t7P? = s7P9(My/M;)~P?. Putting this in
the last expression we obtain

© M P 1/p Mt
My (f t_p0K<1t a; A) dt) = Moy—— (
0 M t M,

% 1/p
j sPYK (s, a; A)pds> .

0 S
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And by definition of |af/(4,,4,),, We have that

A{Aﬂ 0 B _ dS h@ B
My 0_9 (J S pHK(S7a;A>p> = M(} eMlgHaH(Ao,Aﬂe,p

Therefore,

—0 70
”TaH(Bo,Bﬂem < M(} Ml HaH(Ao,Al)g’p

and M < My~ MY. |

Because of this bound, we say that the K-functor is an exact interpolation functor.

We can generalize this method in many ways, but the most useful is the discrete
K-functional, where t is changed for a discrete variable n using the relation ¢t = 2.

Denote by A4 the space of all sequences (an)nez, such that

1/q
I(cn)nlre.a = (Z(Q_ne|an|)q> < 0.

nez
The next lemma says us that we can characterize the elements in (Ag, A1)y, via the
sequence o, = K(2",-; A).
Lemma 3.1.12. Let (Ao, A1) be compatible couple of quasi-Banach spaces.

If a € Ag + A1 and we take o, = K(2",a; A), then a € (Ao, A1)g,p if and only if
(n)nez € AP, Even more, we have

27%(10g(2)) P |(@n)allror < lalag,a1),, < 2008(2)) 7 (an)nl .-

Proof. First note that we can write [al|(4,,4,),, 28

2n+1

gt 1/p
lall (a0, 100 (2 |, ereaay t) .
nez

because this is the dyadic partition of the interval (0, ).

Now, since K (t,a; A) is increasing and concave with respect to ¢, if we take 2" < t <
2n+1 then
K(2" a;A) < K(t,a; A) < K21 a; A) < 2K (2", a; A).

Hence, t=% € [270~9 279] and using the concavity with respect to ¢ we obtain that

Kt-t7% aA) <t K(t,a; A) < 272K (2", a; A).

And that,
tUK(t,a; A) = 27927 K (2", a; A).

Thus,
2709 K (9" a; A) <t 'K (t,a; A) <2- 27K (2", a; A).

And by definition of a,, it is

279970, <t7'K(t,a; A) <227,
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Applying this to |al(4,,4,), , We obtain the following:

2n+1 dt 1/]3
lalao,41)0 < tK(t, A))pt>
nez
2n+1 1/p
( (2-27"K (2", a; A))Pdt>
nez ¢
2n+1 dt l/p
=2 (Z 2””9K(2”,a;f_1)pf >
NeZ " ¢
2n+1 1/p
=2 27K (27 a; A)P1
(Z (2", a; A) 0g<2n >>

nez

= 2(10g(2)) /7]l (@)l xo -

Doing the same argument with 2727q,, < =YK (t,a; A), we conclude that
27 (10g(2))*(an)nlxew < lall(ag,a1), < 2(108(2))7[[(cn)nlr0.5-

Then, [[(an)nlxo.0 is finite if and only if [af (4, 4,),, is finite. So, we have proved that
a € (Ag, A1)gp if and only if (ay)nez € AOP. [

3.1.2 J-Method

In this section we will study the J-method. Instead of starting with the space Ag + A
starts with the space Ay n Ay. Therefore, we start this section defining the space Ag N Aj.

Definition 3.1.13. Let (Ap, A1) be a compatible couple of quasi-Banach spaces. Then,
a€ Ay n Ay if |la]a, < o0 and [ja]4, < 0.

And we define the J-functor as follows.

Definition 3.1.14 (J-functor). Let A = (Ao, A1) be a compatible couple of quasi-Banach
spaces and let a € Ag n A;. We define the J-functor as

J(t, a; Ao, A1) = max(|al| o, tala,), > 0.

And, by simplicity we denote J(t,a; Ag, A1) by J(t,a; A).

As in the K-method, the J-functional is a norm in Ag N Aj.

Proposition 3.1.15. Let A = (Ag, A1) be a compatible couple of quasi-Banach spaces.
Then

J(tv g A)

s a norm in Ag N A;.
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Proof. Let A = (Ag, A1) be a compatible couple of quasi-Banach spaces and let a € Agn Aj.
And fix t > 0. As

J(t7 a; A) = maX(HaHAm tHa”Al)'
Then, J(t,a; A) is positive and is 0 if and only if |a|4, = lalla, = 0. And, as Ag and 4,
are quasi-Banach spaces this implies that a = 0, hence J(¢,a; A) = 0 if and only if a = 0.
Let A € R, then

J(t,aX; A) = max(|Aa] a,, t[aX] 4,)-

And, as | - |4, and | - |4, are quasi-norms, then |Aala, = |A||ala, and t|aA]|4, =
’)"t”a”z‘h' SO,

J(t,ax; A) = [ max(alag, tlala,) = [N a; A).

Let a,b € Ag n A;. Then, as || - |4, and || - |4, are quasi-norms, then |a + b|4, <
HG’HAO + HbHAo and Ha’ + bHAl < ”a”z‘h + HbHAl Therefore,

J(t,a+b;A) < J(t,a; A) + J(t,b; A).

Using this proposition, the J-functor is a positive function of ¢. Also, it is increasing as
a function of ¢ because if t|alla, = ||la]a,, then J(t,a; A) = t||a],. So, it is a polynomial
of ¢t of degree 1 and positive coefficients.

And, using a similar argument as in the Remark 3.1.6 we can prove that this functor
is a concave function of t.

The following lemma gives us a relation between J (¢, a; A) and J(s, a; A); and between
J(s,a; A) and K (t,a; A).

Lemma 3.1.16. Let A = (Ag, A1) be a compatible couple of quasi-Banach spaces and let
a € AO N Al. Then,

< max(1,t/s)J (s, a; A),
K(t,a; A) < min(1,t/s)J (s, a; A).

Proof. First, let us see J(t,a; A) < max(1,t/s)J(s,a; A).

If t/s < 1, then t < s and max(1,t/s) = 1. And, as J(¢,a; A) is an increasing function
of t, then J(t,a; A) < J(s,a; A).

If t/s > 1, then t > s and max(1,t/s) = t/s. So, we have to see that
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_ S _ t
It 2) = 7 (2,05 2) = o (Jalag s 2ol )

A
=

t
= max HaHAmSHagHAI

t t
o (o Lap sla .,
= J(s,a(t/s); A).
And, by Proposition 3.1.15, Jgs,a(t/s);ﬂ) = (s/s)J(t,a; A). Then, we have proved that
J(t,a; A) < max(1,t/s)J(s,a; A).
Now, we are going to see that K (t,a; A) < min(1,t/s)J (s, a; A).
First, since a € Ag N A1 we have that

K(t,a; A) < min([la] a,, taf a,)-

Because, as a € Ag n A1 we can consider the decompositions a = ag + 0 and a = 0 + ay.
So,
inf  {llaolla, + tlafa,} < min(fala,, tlala,)-

a=ap+a

Now, consider t > s, so min(1,t/s) = 1 and we have three cases:

o If afa, < slaa, < t]afa,, then

K(t,a; A) < a]ag < J(s,0; A).

o If slala, < afa, < tfafa,, then
K(t a3 A) < |la] 4,
and J(s,a; A) = ||la| 4,. Therefore, K(t,a; A) < J(s,a; A).

o If t|a|a, <|ala,, then B
K(t,a; A) < tlala, < |afa,,

and J(s,a; A) = |a| a,- Therefore, K(t,a; A) < J(s,a; A).
And, finally take ¢t < s, this implies that min(1,¢/s) = t/s. Again, we have three cases

o If |alla, < tl|la]a,, then

K(t7a; A) < Ha’Hon
_ ¢ _
70,03 4) = thalla, = U8 — 17555, a: 4),

So, K(t,a; A) < J(t,a; A) = (t/s)J(s,a; A).

o Iftlafa, < lafa, < slafa,, then

K(t,a; 4) < tlalay,
J(t,a; A) = |afa, = K(t,a; A).
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But, notice that writing ¢ as ts/s we can get
J(t,a; A) = max (|a] a,, slta/s| a,) < J(s,ta/s; A).
And, by Proposition 3.1.15, J(s,a(t/s); A) = (t/s)J(s,a; A). So, we have that

K(t,a; A) < (t/s)J(s,a; A).

o If s|afa, < af,, then

K(t,a; A) <t]a]a,,
J(t,a; A) = |afa, = K(t,a; A).

And, using the same argument that in the case t|a]a, < |alla, < s|all4,, we arrive
at

K(t,a; A) < (t/s)J(s,a; A).

Therefore, we have that K (t,a; A) < min(1,t/s)J (s, a; A). [

Now, we are going to define the interpolation spaces obtained via the J-functor. But,
first we introduce some notation in order to distinguish the spaces generated by the K-
and the J-functors.

From now, the spaces

© _dt\ P
(Ao, A1)gp = a€ Ao+ A1 |lal(ag,a,),, = (J Kt a; A)pt) <
0
will be denoted by (Ao,Al)gfp and its norm will we denote by | - [/(4g,4,),, ,+ and the
real interpolation spaces generated by the J-method will be denoted by (Ao, 41)j , and
its norm will we denote by || - [|(a9,4,),,-

So, let us define the (A, Al)ip spaces.

Definition 3.1.17. Let A = (Ap, A1) be a compatible couple of quasi-Banach spaces. We

define the spaces (A, Al)g‘]p, as the elements in Ag + A1, such that:

e There exists a measurable function u with values in Ay N A1, satisfying that

k 0
a = (A() + Al) — llclTrglo Jl uit)dt = L ugf)dt. (3.3)

Notice that this integral is a limit of Bochner integrals as in Definition 1.2.3.

UOO P18, u(t); A)p?) . (3.4)

0
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Here we consider the cases 0 < <1, 1<p<owand 0<0<1,p=1.

We define the norm in (Ao, Al)gp as

. © A\ P
fllao ., =t ([t ater 0 )

t
where the infimum is taken over all u such that (3.3) and (3.4) hold.

As in the K-method we have the following proposition that tells us that the (Ao, A1) bj, »
spaces are Banach spaces.

Proposition 3.1.18. If A = (Ag, A1) is a compatible couple of quasi-Banach spaces, then

(Ao, Al)‘g{p is a Banach space with norm || - H(Ao,Al)e,p,J'

Proof. Using a similar argument that in Lemma 3.1.10 we have that | - [[(4,4,),,, I8 a

norm. S0, let us prove that the space (Ao, Al)gp is complete with the norm |- |4y 4,),,. -

Let (an)n be a Cauchy sequence in (A, Al)ip, then

lan = aml (10,4116, = 0
as n, m — o0. But,

) 0 0 _dt 1/p
Jan =ttty = ([ 07000~ w0 27 )

where u,, is a sequence of measurable functions such that

@ t)dt
an = J un<t> (with convergence in Ay + Aj).
0

This means that,
T(t,un(t) — um(t); A) = max(|un(t) — wm(t)] ag, thun(t) — um(t)]a,) — 0
as n,m — o0. Hence
Jun(t) = um(t)]la, — 0,
[un(t) = wm(t)]a, — 0.

And, as Ay and A; are quasi-Banach spaces there exist b € Ay and ¢ € Ay such that
|tn (t) — b4, — 0 and |Jun(t) — ¢|a, — 0 as n — oo.

Now, if we are able to prove that b = ¢, then u,(t) has a limit in Ap n A; and taking

o n(t)dt
QZJ limu (t)

0 n

we have that |an — af(4,,4,),,, — 0 as n — 0.

In order to prove that b = c let u,, (t) be a subsequence with limit b and wuy,, () be a
subsequence with limit ¢, and assume that b # c¢. Then,

J(t,b—c; A) > 0.

Thus,
J(t, un,, (t) — up, (t); A) — J(t,b—c; A) > 0.

This is a contradiction with the that (u,), is a Cauchy sequence, so b = c. |
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Proposition 3.1.19. Let a € Ag n Ay, then

H@H(Ao,Al)gw < Cs_eJ(s,a; A)

where C' is independent of 0 and p.

Proof. Let a € Ay n A1, then by Proposition 3.1.16 we have that

. © A\ VP
llton,s = ([ e 0, 0 )

0
<inf(
u

< <f:0tp9 max(1,/5)PJ (s, u(t): A)Pcff) "

1/p

Oo—pf)max s)PJ(s,u '7p@
[ oy, atey a7 )

Now, as it happens for all u(t) such that

azfou(t)‘it

0

we can take
u(t) = (log(2)) " ax 2 ()

and we obtain that

o _de\/P
lltotin, s < ([ 677 maxta,t/sr s uior ar )

g

But notice that we can decompose the interval (1,2) in the intervals (1,s) and (s,2)
where the values of max(1,t¢/s) are 1 and t/s respectively. Thus,

2 1/p
J t=P max(1,t/s)PJ (s, (log(2))1a;A)pcit> .
1

- 2 d\ VP
oty = o) ([ 6 max(t /975,05 47 )

s _odt 1 (2 o dt\'P
= (log(2)) 7t (L t=J (s, a; A)p? + sPJ tPoP g (s, (a;A)pt> .

As J(s, (a; A)P does not depend on ¢, we can take it out and obtain:
(5 _adt 1 (2 dat\ "
-1 . —pb —pb
HCLH(AO,Ang,p,J < (log(2)) " J(s,a; A) (L tP n + spL P tpt> .
But, notice that t_pe/t is positive, so

S 2
J t*pQﬂ <J t*pe@ < 2P
1 13 1 t
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For the other integral, as we are in (s,2) we have that t? < 2P and t77? < s, So,

2 —pl 2
1J t—PQtP@ < 2857 @
sP t spP s U

s

Again, as t is positive we have that

X

opg—P0 (2 gt - op g—10 j2 dt B 2P
t sP

- . T 20D log(2).

And, as s > 1 and log(2) < 1, we arrive at

2p 2p
———log(2) <

8p(9+1) SF

Therefore,

) o dt 12 P
ot < Q0@ s, ) ([ oo o L [Trme )

sp?

p\ 1/p
<U%@)U®m@<?+2>

<G%mYU@MAﬂ@+yWy@

But, we have that
1/
(1 + s_pe) g <1+s70
Then,
—1 = _pe 1/p
lalag Ao, < (108(2)) 7 I (s,a3 4)2 (1 -+ 57)
< (log(2)) "1 (s, a; A)2 + (log(2)) " J(s,a; A)2s7°.

Notice that now there exists some constant k such that it is independent of 6 and p; and
satisfies that

lallag.40),, < (108(2) 7" (s, a5 A)2 + (log(2)) ™" (s, a; A)25~°
< k(log(2)) "1 (s,a; A)257°.
Calling C = 2(log(2)) 'k, we arrive at
1) o—0

lall(ag,A1)p,., < CJ(s,a;A)s

Now we will prove that as the K-method, the J-method is an exact functor of exponent
f and that the J-method can be discretized in the same way that the K-functor.
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Proposition 3.1.20. Let A = (Ag, A1) and B = (By, By) be two compatible couples of
quasi-Banach spaces. Let

T:Aj—>Bj,j:0,1
be continuous with norm M;. Then,
T : (Ao, A1)y, — (Bo, B1)j,
is continuous with norm M. Moreover,

M < My~Mp.

Proof. Let a € (Ag, A1), then

0,p’

ra-r ([ ).

But, as T is bounded in B; and u is measurable we can commute it with the integral and
obtain that
@ dt
Ta = Tu(t)—.
0 t
This follows from Proposition 1.2.16. Using this, we have that

J(t,Tu(t); B)

max(||Tu(t)| By, t|Tu(t)|5,)

< max(Mo |u(t)] a5, tM1u(t)] 4,)
< Mo max([u(t)] ag, tM1/Mo[u(t)] a,)
= MoJ (EMy /Mo, u(t); A).
So, we have that
- yp dt p [ ,-0 “pdt
=P J(t, Tu(t);B)p? < M, t pJ(tMl/Mo,u(t);A)pT.
0 0

Taking s = tM; /My in the second integral we obtain

© _ dt N —dt
t pJ(t,Tu(t);B)p?iMO t pJ(tMl/Mo,u(t);A)pT
0 0
Mo —Op _ _..ds
<Mpf ( ) s7PJ(s,u(s); AP=—
i (s,u(s): Ay

T inp 48
=My "M7)P | sTPJ(s,u(s); AP —.
Now, taking infimums in both sides we arrive at

—0
HTaH (Bo.B1)o < (My oMy HaH (A0,A1)op.s”
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Proposition 3.1.21. Let § € (0,1), if p € (1,00] and 6 € [0,1], if p = 1. Then a €
(Ao, Al)ip if and only if there exist u, € Ag N A1, n € Z, with

o= un (35)

with convergence in Ag + Ay, and such that J(2",u,) € NP, Moreover
lallao, )0, ~ IE[TE",wn) [ xo,
where the infimum is extended over all sequences {uy} satisfying (3.5).

Proof. Let a € (Ao,Al)gp. Then,

ee}
a= J u( )@
0 t
So, we can take as {uy}
gn+1
dt
Uy = f u(t)T

Then (3.5) holds because this is the dyadic partition of (0,00). Even more,

172w A) 5, = 3 (2700 (2" un,A)>p

nez
2n+1

CZJ = ‘)Jtu();A))p%.

nez

Taking infimums we arrive at

inf [7(2", un; A)[50,, < Clally,,

A1)op,g°

For the converse implication, assume that a = ) u, and J(2", up; A)e NP Taking

u
t — 4427 2n S;t < 2n+1
U( ) 10g;2’ I
we obtain that
2t © o dt
=N u, = t—.
“= Zu ZJ log L u(t) t
Also, we have that
o NP dt 2n ~\P dt
f (fftf(lt,u(lt);A))p7 -3 f (fflf(lt,u(t);A))”7
0 nez v2"
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Again, taking infimums we arrive at

Callall{ay,ar),,., < 01727 uns A) 5 -

Then, as we have

inf,, |J(2", un; _)HI))\H,p < Clalf (Ao,A1)0,p,0
<

CQHG’H AO Al 9PJ lnf’un HJ(2 » Uns )“Z))\Q,pu

we conclude that
Ha”(Ao,Aﬂe,pJ ~ i&f ”J(2na Un)”)ﬁ,z%

3.2 The Equivalence Theorem

In this section we will prove that the spaces generated by the K— and the J— methods
are equivalent for the 8 and p where the two methods are defined. But for this purpose we
need the following lemma that gives us a bound for the J—functional by the K —functional.

Lemma 3.2.1 (The fundamental lemma of interpolation theory). Assume that
min(1,1/t)K (t,a; A) — 0
ast | 0 orast? oo.

Then, for any € > 0, there is a representation

a= Zun, with convergence in Ag + Ay

n

such that
J(2" un; A) < (v + ) K (27, a; A),

where v 1s a universal constant less than or equal to 3.

Proof. Let a € Ag + A;. For every integer n, there exists a decomposition a = ag, + a1y,
such that for a given € > 0

laon]a, + 2" < (1+¢e)K(2" a; A). (3.6)

Thus, since -
min(1,1/t)K(t,a; A) — 0

ast | 0 orast ! oo, we obtain that

laon]a, — 0, asn — —oo,

la1n]a, =0, asn — oo.

Take
Up = A0;n — AOn—1 = Aln—1 — Al yn-
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Then, u, € Ag n A1 and
M
a— Z Up = a — agM + ao,—N—-1 = @1, M + Q0,—N—1.
-N

Hence

M
K <17a - un;A> < lao,—n-1]a0 + llar,ar]a,-
~-N
Letting N, M — oo and using that the K-functor is a norm (Proposition 3.1.5) we can see

that
o0
a= Z Up,
—o0

where the convergence is in Ag + A;.

But, by definition of u,, we also have that

J(2", up; A) < max(||aonla, + [aon—1]a0, 2" (larnlla, + larn-1]a,))-

Using (3.6) and that K(t,a; A) is increasing with respect to ¢, we have that

Ao + laon—1]49, 2" (larnf 4, + arn-1]a,))

<max(2(1 + €)K (2", a; A), 2" |a1nlla, +2- 2" Ha1n_1]4,))

<max(2(1+¢)K (2", a; A),3((1 + &) K (2", a; A)))
=3(1+¢e)K(2",a; A).

max([agn

Theorem 3.2.2 (The equivalence theorem). If 0 < 6 < 1 and 1 < p < o0, then
(A07A1)g7p = (AO,Al)gfp with equivalence of norms.

Proof. Let us verify that | - H(Ao,Al)g,p,K < | llcao,a0)
Take a € (Ao,Al)g,p and
© dt
a= J u(t)—.

t
0
Then, by Proposition 1.2.16 and the Lemma 3.1.16, we have that

6,p,J"

K(t, a; ) gLOOK(t,u(s);A)‘iS <Loomin(Lt/s)J(s,u(s);A)‘iS

ds

- LOO min(1, s~ 1)J(ts, u(ts); /_1)?

So, we have that
0 3 0 ] _ _ ds p dt 1/p
HaH(Ao,Al)s,p,K < (j +—po (L min(1, s 1)J(ts,u(ts);A)S) t) .

0
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Let r = st, then

0 B 0 B ‘ B —ds\P? dr 1/p
lallag g, < ( [ ( [ s omingr,s 1>J<r,u<r>;A>) )

0 S T

0 9 . -1 ds
= “a’“(Ao,Al)g’pJ 0 S mln(173 )? = CHGH(AO7A1)07])”]'

Then, we have that || (9,41),, % < |*l(40,41)5,.,- Now, let us see the converse inequality.
Let a € (Ao, Al)gp, by Properties 3.1.9 we have that

K(t,a; A) < Copt’all(a0,41)

0,p,K "

Thus, it follows that min(1,1/t)K(t,a;A) — 0 as t — 0 or t — oo. Consequently, the
Lemma 3.2.1 implies the existence of a representation a = ), u, such that

J(2" un; A) < (v +€)K (2", a; A).

Thus,
[ 72" uns A) o < (v + )| K (2", a3 A) |10

But, by Lemma 3.1.12 we have that
27" log(2)" 7| K (2", a; A) o < al(a0,A1)0p 5
Then,

HaH(AO’Al)Gm,K20 2HaH(AO»Al)9,p,K = C|al
log(2)1/» = log(2) (A0,41)0,p,K *

| K (2", a; A) o0 <

And, by Proposition 3.1.21 we have that

172", uns Ao ~ llallap,a1)0,,0-

Therefore, we have that
HaH(Ao,AﬂG,p,J < CHaH(onAI)G,p,K'

And this implies that || - H(AO,Al)e,p,J <|- H(AO,Al)gqp’K- Then, we have that | - ”(AO,Al)e,p,J
and | - “(A07A1)0p . are equivalent and, in particular, that (A07A1)b],p = (Ao, Al)gfp. |

This theorem tells us that if 0 < § < 1 and 1 < p < o0, then the notations (A, Al)er
and (Ao,Al)g(p are not necessary because they are the same space, so we can call this
space (Ao, A1)g,p as in the beginning of this chapter.

Asif p=1and 0 < 6§ <1 we only have defined the space (Ao,Al)ip and if p = o0

and 0 < 6 < 1 we only have defined the (A, Al)gfp, we can also denote these spaces by
(Ao, A1)gp. And, we denote the norm on (Ag, A1)gp by || - [lo,p-
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3.3 Some Properties of (Ag, A1),

In this section we will study some properties of the space (Ao, A1)g,. We divide the prop-
erties in three theorems, the first theorem deals with inclusions between various (Ao, A1)g,p
spaces. The second deals with the inclusion of the space Ag N A7 and its closure between
the space (Ao, A1)pp. And the last theorem which deals with the duals of Ag + A; and
A() N Al.

Theorem 3.3.1. Let A = (Ag, A1) be a compatible couple of quasi-Banach spaces. Then
we have that

1. (Ao, A1)gp = (A1, Ag)1—0,p, with equal norms;

2. (Ao, A1)op < (Ao, A1)or if p<r

3. (Ao, A1)eg.po N (Ao, A1)oy pr < (Ao, A1)ap if o < 0 <6y

4. if Oy < 61 and Ay < Ag, then (Ao, A1)o, p < (Ao, A1)ay ps

5. Ay = A1 with equal norms implies that (Ao, A1)s,p = Ao and

lala0 = (O(1 = )P |alg,p.

Proof. Let us prove that (Ao, A1)s,p = (A1, Ao)1-0,p, With equal norms. Let a € (Ao, A1)g,p
by the definition of the norm in (Ag, A1)g, we have that

lal, fw(fﬁKXtaxﬂ)p?

P dt
[ (int, {haor sy + 8- tanla}) G
0 p
=J <t1 9K< a; Al,A0)>> @.
0 t
Taking r = 1/t we arrive at
e'¢) p dt
iy = [, (K (st ) ) 5
0
@© pdr
-(1-0) g A A il
- (0K (1 A0)) T = el

So, (Ao, A1)gp = (A1, Ag)i-6,p, With equal norms.

In order to prove that (Ag, A1)gp < (Ao, A1)s, if p < 7, we will notice that as the
K-functional satisfies that

K(Sv a; A) < 79,]330Ha”9,pa
which implies (Ao, A1)gp < (Ao, A1)g,o0 if p < 00. So, assume that p < r < c0. Then
all, = | (K0 1)
0
[ o) ()
0 t

< Clalg,lallg,",
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which implies that (Ao, A1)gp < (Ao, A1)gr if p <7

To prove that (AQ, Al)eo,po N (AQ, A1)91,p1 c (AQ, A1)97p if 6y < 0 < 0; we observe the
following inequalities.

pdt\ VP
lallop = ( t K (t,a; A )

1/p
< t7 9K (t,a; A) d? ( t_eK(t,a; fl))p C?)

1/p1 0 1/po
dt —\po dt
7K (t,a; A o > + U tTOK(t,a; A >
( )> t . ( ( )) t

< [allos.py + lalao.po

This implies that if a € (Ao, A1)aypo N (Ao, A1)6, p1» then a € (Ao, A1)gp. Therefore,
(Ao, A1)og.po N (Ao, A1)oypr < (Ao, Al)ap

Now, we are going to see that if y < 6, and Ay < Ay, then (Ao, A1), p < (Ao, A1)y p-
First observe that if A; < Ay, then there exists some constant & such that |a] 4, < k|a4,.

So, if t > k then K(t,a; A) = |lal|a, because if a = ag + a; is any decomposition of a in
Ay + A;q then

t
lallay < llaollag + llar]a, < flaolao + tlaila,,

taking the infimum over the decomposition of a in both sides we arrive at |af4, <
K(t,a; A) and by definition of infimum |al 4, = K(¢,a;A). With this equality we can

conclude that
k 1/p
P dt
o~ ([ (K D) §) + lala,

lal

Thus,

koo N dt\?
s ~ ([ (e )5 )+ lala
0
koo \pdt 1/p
< ([ (rrmean) E) + lata ~ lalo

0
Then [alg,p < [alg, p- So, (Ao, A1), p = (Aos A1)ggp-

Now it remains to see that if Ag = A; with equal norms, then (Ap, A1)g, = Ao and

lalao = (O(1 — 60))"7|

As Ag = Ay we have that (Ao, Ao)sp = (Ao, Ao)1-9p. Even more, we have that
(Ao, Ao)e,p < (Ao, Ao)ep is 0 < 01. Therefore, taking 6 near 0 we have that for all
61 € (6,1), then (Ao, Ao)g, p < (Ao, Ao)s,p- But, in particular, if 1 — 6 > 6; we have that
(Ao, Ao)ep = (Ao, Ao)i—6,p < (Ao, Ao)e, p- This implies that the spaces (Ao, Ao)g, p and
(Ao, Ag)gp are equal for all 61,6 € (0,1).
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By the Properties 3.1.9 we have that min(1,¢/s)K (s, a; A) < K(t,a; A), using this with
s = 1 we have that

lop = (LOO (f"K(t,a;fl))p Cff)w
o ([ ([

_ K(1,a; A) ((1_19)10 + 91p> " K(1,a: A) <(1_19)0p)1/p.

Since K(1,a; A) = |a| 4, we arrive at

a

lallop((1—60)8p)"" > |a] 4,

So, we have to see the other inequality, but for this we will use the Lemma 3.1.16 that
tells us that B B
K(t,a; A) < min(1,t/s)J(s,a; A).

Take s = 1, then we have that
J(1,a; A) = max(|a] 4y, |al 40) = [al4-

So, we have that
0 1/p ) 1/p
_ —0 A p@ 0. p@
0p = (Jo (t K(t,a; A)) ; ) < ||al 4, (L (t mln(l,t)) ;

= lal, ((1_10)9})/

0.5((1=0)0p)"" > |a] 4,

So we conclude that ||| 4, = |la]s,((1—8)0p)"/P. And this finish the proof of the theorem.
|

lal

Hence, we obtain that

lallao = lal

Theorem 3.3.2. Let A = (Ag, A1) be a compatible couple of quasi-Banach spaces. Then
we have that

1. If p < oo then Ag N Aq is dense in (Ao, A1)g,p-
2. The closure of Ay n Ay in (Ao, A1)g,p is the space (Ao,Al)g’p of all a such that
tPK(t,a; A) — 0
ast— 0 ort — c0.

3. If A? denotes the closure of Ay n Ay in A; we have for p < o0,

(AOaAl)G,p = (A8>A1)9,p = (A07A(1))9,p = (A87A(1))97P'
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Proof. Let us prove that if p < oo then Agn Ay is dense in (Ag, A1)gp. Note, that if p < o0
then 0 < § < 1. By Theorem 3.2.2 and Proposition 3.1.21 every a € (Ao, A1)p, can be

expressed as
0= Y
n

where u,, € Ag n Ay and

n

1/p
(Z(Q"QJ(Q",un;fl))p> < 0.
Then

o 3w

[n|<N

1/p
< < 2 (2_"9J(2",un;fl))p> — 0,
O.p In|>N

as N 1 c0. In other words, every a € (Ag, A1)g, can be approximated by a sequence in
Ag n Aq, s0 Ag n Ay is dense in (Ao, A1)g,p-

Now we are going to prove that the space (A, A1)2,p is closed. Let a, be a convergent
sequence on (Ao, Al)ep, then we know that there exists a € (Ao, A1)p,, such that a, — a,

but we want to see that a € (A, Al)gp. Also, we know that

t_eK(ta an; A) Y0.p

anllo.p < Yo, SUP lan]o,p-

As ay, is convergent we have that sup,, |anllg, is finite, and by hypothesis we have that

lim lim t YK (¢, a,; A) = 0.
nfoot|0t

So, applying the Dominated Convergence Theorem we arrive at

0 = lim lim ¢t~ 6]K(t an; A) = lim lim ¢~ OK(t an; A) = lim t_eK(t,a;fl).
ntoot|0+ t|0t ntoo t{0+

Therefore, t_eK(t,a;A) — 0 ast — 0". And the same happens when we take t — o
since the bound sup,, ||a, ¢, does not depend on t¢.

We now prove that the closure of Ag N Ay in (Ao, A1)p, is the space (Ao, Al)g,p‘ Let
ae (Ao,Al)gp and assume that 6 € [0,1]. By Lemma 3.2.1 we have that a = Up,
where u,, € Ag n A1 and B B

J(2" up; A) < CK (2", up; A).
Then

< C sup 27K (2" uy; A) - 0, as N 1 0.
0.p In[=N

a— Z U,
In|<N
Hence, Ayg n A is dense in (A, A1)0 If we are able to see that the closure of Ag N A

is in (A, Al)e , we will be done because (Ao, A1) g 18 closed. So, take a in the closure
of Ay n A; in (Ao,Al)gp then we can find b € Ag n Ay such that |a — bfg, < e. By
Lemma 3.1.16 and Properties 3.1.9, we obtain that

K(t,a; A) < K(t,a — b; A) + K(t,b; A) < Ct%|a — b|lg, + min(1,¢)J(1,b; A).
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Thus,
tPK(t,a; A) < Ce + t P min(1,1)J(1,b; A).

It follows that a € (Ao, Al)g,p

It remains to see that if A?» denotes the closure of Ag n Ay in A; we have for p < o0,
(Ao, A1)op = (A7, A1) = (Ao, Ao = (A7, Aoy

As p < o0 then 0 < # < 1 and we can use the J-functor. Even more, since (AJ + A})
(Ap + AY) = (Ap + A1) and (A N AY) = (Ag n AY) = (Ap N A1), we obtain that

(A9, ANg.p = (Ao, AD)op < (Ao, A1)op

So, we only need to prove that (Ao, A1), < (AY, A9)g, (because we have the same
inclusions for (A3, A1)p,). Let a € (Ao, A1)g, we want to see that a € (A9, AY)g,. By
Proposition 3.1.19 we have that

lall(ag,41)5, < CJI(1, a5 (Ao, A1) < 0

Note that (Agn A1) < (A§n AY) because (A4gn A1) = A?. Then, if u(t) takes values in Agn
Ajq then u(t) takes values in (A§nAY). Therefore, J(t, u(t); (Ao, A1)) = J(t,u(t); (A, A)),
so we have that

qwt_pgj(t:u(t);(fl ADY Cf>l/p < <Joot_pej(t,u() (Ao, A1) 0?)1/?

0 0
So, if we take u(t) satisfying that

A A li o dt
a= (Ao + 1)—1;{{)1L e

and take the infimum over those u in both sides, we can conclude that
HGH(AO,A1 HGH(AO A%,
Therefore, (Ag, A1)p,, = (AY, A?)g,p and this implies that
(Ao, A1)gp = (A, A1)gp = (Ao, AD)gp = (AD, Ao
[

Also we have the following theorem which gives a relation between (Ag+ A1), Ag+ A1,
Ap n Ay and Aj n AL

Theorem 3.3.3. Suppose that Ay n Ay is dense in Ay and in Ay. Then, (Ag N A1) =
A+ Al and (Ag + Ay)' = Ay n A}, More precisely

/ [a', a)|
allagrpa = sup ———
lall g+ a1 aeAonA; allagna,

and

[{a’, )|
Ha/HAE,mA’l = sup T
acAg+A1 HaHAo+A1
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Proof. Let us begin by proving the first formula. First, let o’ € Aj + A} and o’ = aj, + d}
with a] € A;. Then

Ka', )l < Kag, a)l + Kat, a)l < (lagllay + @i ].4) max(flaf g, [l 4,),

with a € Ag N A;. Consequently, a’ € (Ao N A1)’ and ||a'|(ana,) < @[ a7 447

Conversely, let 1 € (4g n Ay)', i.e.,

(L)l < [Uiagnarylalagnar,  a€ Ao Ar

Then the linear from

A (ag,a1) — <l, ao;La1>

on E = {(ap,a1) € Ao ® Ay : ap = a1} is continuous in the norm max(|lag|a,, ||a1].4,)
on Ay @ A1, E is a subspace of Ag @ A;. Then, by Hahn-Banach theorem, there is
(af,a}) € Ay @ A) such that

lagllay + latlla;, < Il agnany

and
Mag, a1) = {ag, ap) + {a},a1), (ag,a1)€ E.

Thus, taking ag = a1 = a, we obtain
{1, a)y = {aj,ay + {a},ay = {ay + a},a), ae€ Agn A;.

As Ag n Aj is dense in A qj and @} are determined by their values on Ag N A;. Putting
| = ajy + a}, we have that

Il a4y < [l apnayy-
This implies that

, ', )
a'l|grpar = sup ———.
e R e PT Y

Now we are going to prove the second formula. Let a’ € Aj n A} and a € Ay + A;.
Take € > 0 and let ag. € Ag and a1 € Ay such that a = ag + a1 and satisfying that

laoellap + larelay < llalao+a, +e.

Then, as a’ € A) n A} we have that o’ € A}, and o’ € A]. Therefore

Kd',ap] < Kd', a0.)| + Ka', a1,6)] < a4y lao e A

< (la"lay + o |a) (lal 4o+, +€)-

40+ a4y lar e

Letting ¢ — 0 and taking the supremum over a € Ay + A; we can conclude that a’ €
(Ap + A1) and that

la"| 4y naq < lla"(apra,)-

For the other inclusion, let a’ € (4g + A1)’. We will start proving that o’ € (49 N A;)" and
by density of Ag n A; in A; we will see that o’ € Aj N A.

So, take a € Ay n Ay, then by definition of ||a| 4,44, we have that

', )] < 1l aps ary lalagsar < 1l (agsarylala, &= 0,1
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Therefore, taking supremum of a € Ay N A1, we have that
la' [ ag+a1y < o[ (agnayy-

Now, since Ay n A7 is a subspace of Ay and A; for Hahn-Banach theorem we have that
there exist b € Af, and ¢ € A} such that

b|A0ﬁA1 = C|AOF\A1 =d.

And as Ag n A; is dense in Ag and in Ay, we have that b and ¢ are determined by their
values in Ay N Ay, so they are ' = b = ¢. Hence, a’ € Aj) and o’ € A| which implies that
a’ € A n A). Therefore,

la"|aynar = lla"|(agr A,y
and (Ao + A1) = Aj n A]. [ ]

3.4 The Reiteration Theorem

In this section we will study one of the most important property of the interpolation spaces,
that is the Reiteration Theorem that gives us a relation between the space obtained via
a couple of interpolation spaces and the original couple. Also, we will give an expression
for the K-functional under some reiterations.

Let us begin by defining intermediate space and the classes ¢k and €.

Definition 3.4.1 (Intermediate spaces). Let A = (Ag, A1) be a given couple of normed
spaces. We say that X is an intermediate space with respect to A if

Aygn Ay c X < Ag + Ay

Definition 3.4.2. Let A = (Ag, A1) be a given couple of normed spaces. Suppose that
X is an intermediate space with respect to A. Then we say that

1. X is of class €k (0; A) if K(t,a; A) < Ct?|a|x for all a € X;
2. X is of class €;(6; A) if |a|x < Ct~%J(t,a; A) for all a € X.
Here 6 € [0,1]. We also say that X is of class €(0; A) if X € €k (0; A) and X € €;(6; A).

By Properties 3.1.9 and Proposition 3.1.19 we have that if 0 < # <1 then the spaces
(Ao, A1)gp € €(0;A). Moreover, we have that Ay € €(0;A) and A; € €(1;A). This

follows from
K (t,a; A) < min(|a] ay, t]a]4,) < max(|al|ay, tlala,) = J(t,a; A).

Proposition 3.4.3. Let A = (Ag, A1) be a given couple of normed spaces. Suppose that
X is an intermediate space with respect to A. Then,

1. X is of class €k (0; A) if and only if for any t > 0 there exist ag € Ay and a1 € Ay,
such that a = ag + a1 and |ag|a, < Ct0)alx and |ai]a, < Ct*a|x.
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2. X is of class €5(0; A) if and only we have
lalx < Clals,’lalf,-

Proof. Let us begin by proving that X is of class €k (6; A) if and only if for any ¢ > 0
there exist agp € Ap and a; € Ay, such that a = ag + a3 and |aglla, < Ct%|allx and
lailla, < Ct*~al x.

First, assume that for all ¢t > 0 there exist ag € Ay and a1 € A1, such that a = ag + a1
and [aolla, < Ctallx and [a1]a, < Ct?1|a|x. Then

laolla, + tlaila, < Clalx (@ +t°) = 2Ct°|a| x.
Taking the infimum over the decompositions of a we arrive at
K(t,a; A) < 2Ct%)a||x.

For the other implication, as we know that X is of class €k (0; A), then we have that
K(t,a; A) < Ct?|a|x for all @ € X. Since, the K-functor is an infimum by definition we
have that there exists a decomposition ag + a1 = a such that

laollay + tlar]a, < CJal x
Therefore, |ad||a, < Ct?|a|x and |al|4, < Ct*~Ya|x-
Now we are going to see that X is of class €7(0; A) if and only we have
lalx < Clal,’lalf,-
If X € 6;(0; A) then
lalx < Cmax(t~afag, t'~*ala,)-
As it holds for any ¢ > 0 we can take

_ lafa,

t =
a4

and obtain that
lalx < Claly.’lal%, -

For the converse implication, if |al|x < C HaH}L‘;aHaH%l then we can write this inequality as
lalx < Ct?lals’ (tlala,)’ < Ct=0J(t, a; A).
Therefore,
la|x < Ct70J(t,a; A) = X € €;(0; A).
|

We can formulate the definition of those classes in another useful way given by the
following theorem.
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Theorem 3.4.4. Suppose that 0 < 8 < 1. Then

1. X € €x(0; A) if and only if Agn Ay X < (Ao, A1)g,00-

2. A Banach space X is of class €;(0; A) if and only if (Ag, A1)g1 = X < Ag + Ay.

Proof. By definition of (Ao, A1), we have that X < (Ag, A1)s,«0 if and only if

supt 'K (t,a; A) < Cla|x.
t>0

By definition of supremum, for all £ > 0 we have that

7K (t,a; A) < supt K (t,a; A) < Cla|x = K(t,a; A) <t'Cla]x.
t>0

So, we have that X € € (6; A) if and only if Ag n A; = X < (Ao, A1)g, o0

In order to prove that a Banach space X is of class €(6; A) if and only if (4g, A1)g1 <
X < Ag + {11, we assume that @ = > u, in Ag + A;. Then if X is a Banach space of
class €;(0; A) we have that

lalx < Junlx < C Y] 270027, up; A).

neZ nez

And )]
For the other implication, if we have that (Ao, A1)g,1 < X then we can put

a, ifn=m,
Uy = )
0, otherwise.

27 J (2" up; A) converges by Proposition 3.1.21. Therefore, (A, Ap)gy c X.

nez

Hence
lalx < Clafg,y < C270J(27, a; A),

which shows that X € €(0; A). |

We now are going to see one of the most important results in interpolation theory,
which is the Reiteration Theorem also called the stability theorem.

Theorem 3.4.5 (The Reiteration Theorem). Let A = (A, A1) and X = (Xo, X1) be two
compatible couple of normed linear spaces, and assume that X; are complete and of class
€ (0;; A), where 0 < 6; < 1 and Oy # 6.

Put 0 = (1 —n)0y +nby with0 <n < 1. Then, for 1 <p < ®©
(X0, X1)n,p = (Ao, A1)o,p,

with equivalent norms. In particular, if 0 < 0; <1 and (Ao, A1)g, p, are complete then

((Ao, A1)6g,p0+ (Ao, A1)ey p1)np = (Ao, A1)ep,

with equivalent norms.
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Proof. Suppose that a = ag + a1 € (Xo, X1)y,p with a; € X;. Since X; € €(6;; A), we have
K(t,a; A) < K(t,a0; A) + K(t,a1; A) < C(t%)ag|| x, + t"]a1]|x,)-

It follows that
K(t,a; A) < CtP K ("% a; X).
So, we have that

(foo( IR (1 s )Y dt)l/p o (Joo(t_(a_e‘))[((tel_eo,a; X))pcit)l/p.

0 13 0

Changing s = t9177% and as 0 = (1 — 1)0p + nfy, then n = (6 — 6y) /(01 — 6y), we have

that
o0 3 dt 1/p 0 _ B ds 1/p
flaoon, = ([ O Kaapt) " <o([ e rnanr?)

= lallxo,x1),.,-

This inequality implies that (Xo, X1)yp < (Ao, A1)s,p. For the reverse inclusion, as-
sume that a € (A, A1)p, and choose a representation

@ dt
a= f u(t)—
0 t
of ae Ag+ Ay. If a € (Xo, X1)y,p we have that

pdt
lalx, xy), . = cf 0 (100 ) L

Using Lemma 3.1.16 and that X; € €(6;, A) we obtain that

0
(s ,00) < [ (R0 000 0) 2
0 S

P ds

< JOO (t% min(1, (/)77 (s% % u(s); X)) —

<cC f N (19 min((t/s)%. (t/)")0 (s, u(s); 4) )" %.

Integrating this inequality with respect to dt/t, changing ¢ = s/r and using again the

Lemma 3.1.16, we arrive at
© g _g odr © —...ds
Ha” (Xo0,X1)n.p <C <J remln(r 90,74 91)) <J (s 9J(s,u( ); A))P )
0 r 0 S

© dr
f r? min(r_go,r_el)— =D
0 T

is finite, if we take infimum over w and using the Theorem 3.2.2 we arrive at

lal?x, 1y, < CDlalls air,
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So, we have that (Xo, X1),,» = (Ao, A1)s,p and that the norms |- ”(Xo,X1)n,p and ||- H(Ao,Al)e,p
are equivalent.

In particular, if 0 < 6; < 1 and (Ao, A1), p, are complete, then (Ao, A1)g, p; € € (6;; A).
So, taking X; = (Ao, A1)y, p, We arrive at

((Ao, A1)6,p0> (A0s A1)oy p1)np = (Ao, A1) p,

with equivalent norms. |

Suggested by this theorem we have a formula connecting the functional K (¢, a; A) and
K(t,a; X), where X = ((Ao, 41)gy.pos (A0, A1). Such formula was given by Holmstedt in
[3].

Theorem 3.4.6 (T. Holmstedt). Let A = (Ao, A1) be a given couple of normed spaces and
put Xo = (Ao, A1)ypo and X1 = (Ao, A1)g, p,, where 0 < 0y < 01 <1 and po,p1 € [1,0].
Put N\ =01 —0y. Then

£/

K(t,a; X) ~ ( | s A))Pods) . ( j O K (s A))p1d5> "

0 S 1/X S

Proof. We first prove that

£/ 1/po © 1/p1
[ e A))mds) o[ s rGaam )
t

K(t,a;X)Z<
0 S 1/ S

Let a = ag + a1 € Ag + A1. By Properties 3.1.9 and Minkowski’s inequality it follows that

£/ ds\ ™ £/ as\'"™

0 S 0 S

£/ ds 1/po
+ <f (SQOK(S,al;A))p())
s

0

i1 ds
< laollx, +C ( | <sAr\alrx1>p°S)

< C(Jaollx, + tllat]x,)-

1/po

Using a similar argument we arrive at
o0 ) 3 ds 1/p1
([ e ma ) T < llal, + thal,)
$+1/X S
Therefore, we have that
41/ 1/po o 1/p1
— ., d — . d
( [ ks A))p”) e ([ E )
0 S $1/2 S

< C"(Jlaollxo + tlaa]x,)-
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Taking the infimum over the decompositions of a € Ay + A1, we conclude that

Jtm( 0K (s,a; A))Po is)l/po o (J:O (7K (s 0 A>)p1ds>1/p1'

K(t,a;X)Z<
0 1/ S

Let us prove the other inequality. By definition of K (t, a; A), we may choose ag(t) € Ag
and a1(t) € Ay such that a = ag(t) + a1(t) and

lao ()] 40 + tlar(t)] 4, <2K(t,a; A).
With this choice we have

K(t,a: %) < Jao(t")xy + taa ()] x,
0 B ds 1/po
=(f (s~ K (s, ag(£1%); A))Po )

0 S

0 1/p1
+t (fo (s™ K (s,a,(t"7); A))Pr dg)
s/ 1/po
< (f (s7"K (s,ao(t”);fi))mds)

o0 /po
(f (s 90K(s ao (tl/A) A))po 0 48 )17’
t1/>\ ds 1/p1
+t< sTK (s, a1 (¢Y7); A))Pr )

0 S
1/A S
0 S

OO

1/p1
+t 5K (s, a1 (¢Y7); A))Pr dS) .

1/ s

Call

S/ ds 1/po
<f (8_9°K(8,ao(tm);x4))p°) ;

0 S

(1) =
an- (] <s—"0K<s,ao<tW>;A))podsf/po;

(
(

We will study (1), (IT),(I1I) and (IV') separately. Since the study of (I11) and (IV) is
analogous to the study of (I) and (I7) we only study such integrals. So, let us estimate
the term (I). By the triangle inequality, we obtain that

S/ ds 1/po £1/2 ds 1/po
(I) < (J (s7 K (s, a; A))p°> + <J (s" P K (s, aq(tV*); A))Po ) .

0 S 0 S

£/ 1/p1
= | <s—91z<<s,a1<tw);A»mf) ;
(

t
o0 N ds 1/p1
vy =t ([ oG a@ )
t

1/ S
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Since by Remark 3.1.6 s~'K(s,a; A) is a decreasing function with respect to s, we have
that

£1/2 ds /o t / ds v
B /A
(J (ngK(s,al(tl/)‘);A))m) <(f0 (57 sl (¢ >Als>

0 S

< CtAK (2, a; A0/

<c<

$1/2 B 1/po
(IH<(1+0) <J (S_QOK(s,a;A))pOd> )

0 S

£1/2

1/po
J (s 0K (s, a; fl))pods> .

0 S

Then,

For (II) we have that

o ds Y/Po B
1< ([ a1 ) < ()

< Ot K (VA a; A)

t1/A ds 1/po
< (J (s7%K(s,a; A))p°> .

0 ]
$1/A d 1/po
(I)+ (II) < K ( f (s~ K (s, a; A))p08> ,

0 S

Therefore,

where K = (1+C+ C’). As we already mentioned an analogous argument holds for (1171)
and (IV). So, we have that

0

(IIT) + (IV) < K't < L (s K (s, a; A))plds> o .

/2 S

Hence, we conclude that

YN 1/po . 1/p1
f (s_GOK(s,a;A))pOds) +t (f (s_elK(s,a; A))plds> .
t

0 S 1/ S

K(t,a;X)$<

Therefore,
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3.5 Duality Theorem

The last property of the real methods that we will see is the relation between interpolate
a dual couple of Banach spaces and dualize a interpolation space.

Theorem 3.5.1 (The duality theorem). Let A be a compatible couple of Banach spaces,
such that Ay n Ay is dense in Ay and in A;. Assume p € [1,0) and 0 < 60 < 1. Then

(AOaAl)ng = ( 6714/1)9717/

with equivalent norms, where 1 =1/p+ 1/p’.

Proof. For the proof of this theorem we will use the Equivalence Theorem 3.2.2 and the
Theorem 3.3.1. Also we will use the discretization of the K— and J— methods (Theo-
rem 3.1.12 and Theorem 3.1.21). In fact we will see the following inclusions

(A()? Al)lé,]p - (A?lu AE)){(—Q,[)’ (37)

(A()v Al);{; - ( /17 A())f—@,p" (38)

Recall that the superindex is the method used to obtain those spaces. In order to prove

(3.7), we take da’ € (Ao,Al)lg‘{p, and apply the first formula of the Theorem 3.3.3. Thus,

given € > 0, we can find b, € Agn A; such that b, # 0 and, since a’ € (Agn A1) = A+ A],
K27 d;(Ap, A))) —emin(1,27™) < (J (2™, by; [1))71<a/, bp).
Choose a sequence (ay,) < AP, and put

o = D (J (2", bp; A)) Lo - b

n

Then since (a;,) € AP we have that

T2, bas A)) o < 0

n

and as b, € Ag N A; we have that a, € (Ao, A1)9Jp~ Moreover we have that

Z(K(T"?a’;( 0, A1) —emin(1,27")) < {d,aq)

n

and, since |afgp,; < |/ yo.» we have that
(d,aa) < HO‘HX‘LPHa/”(Ao,Al)’e’p’J'

Also, by Theorem 3.3.1 we have that K (27", d/; (A, A})) = 27" K (2", d’; (A}, 4))), so we
obtain that

32 (K (2", s (A}, 4))) — emin(1,27) < ol yosld' g0y,
n

J

Now, since A%? and A1=%%" are dual via the duality

D27 "B,
n
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and ¢ is arbitrary, letting € — 0 we obtain that
lodya-o 1ty gy e < Idlnoslalanary, -
And by the duality of \%? and \=%%"| we arrive at

Ha/H(A'l,A'o)o,p’,K < ”a,H(Ao,Al)'g,p,J'

In order to prove (3.8), we take an element a’ € (A4, AB)i]fe,p' and a € (Ao, A1) We
write o’ as
a = Za%
with convergence in Aj + A} = (Ao n A;)’. Then it follows that
o) < X ey ad] < ST, aly (A, A1) (2", a; A).
And since
J(27", a’; (Ap, AY)) =277 J(2", a5 (A, Ap))

we obtain that

n’

K ap] < D127"T (27, aly; (A), Ap)) K (27, a; A).
n
But, using Holder’s inequality we have that

D272, a4 (AL AG) K (27, a5 A) < lal (g4 10 Nty a0), 0 e
n

So, we have that
Ka'sa)l < llallag,ar)g, 0 Ncas a0y, 00,

and this implies that
Ka', )]

< |d'ar
lal (A0,A1)9,p,K

17A6)179,p/,_7.
Taking the supremum over a € (A, Al)g(p, we have that
] e < la'll g 4
(A0,A1)'0,p, 0 =S (ALAD) 10,0 0
Hence, we have that

(AU’ Al)lé,]p = ( /17 Aé){ie,p'

(on Al)leli) > (Allv Aé){—e,p"
But, by the Theorem 3.3.1 we have that
(A07A1)9{p < ( ll?A{)){(—O,p’ = ( 6?A/1)£fp’
(AO’Al)GI,; - ( /lﬂA{))i]—G,p’ = ( 67A,1)9J,p/'

And by the Equivalence Theorem 3.2.2 we have that
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(A07 Al)/e,p < ( ,0’ A,I)eyp’
(Ao, A1)p 2 (Aps A1)p -

Therefore
(A07A1)/0,p = ( 67“4/1)9717"
[ |

Remark 3.5.2. The J— and K— functional with p = 1 and p = o respectively are ex-
tremals in the sense that if F' is any interpolation functor of exponent 6 then (Ao, A1)p1 <

F(A) c (Ao, A1)p,0, where F'(A) is the interpolation space obtained with F.

We say that I is an interpolation functor of exponent @ if for all pairs of couples A
and B, and for all linear and continuous operators 7' : Aj — Bj, with norms My and
M respectively, then we have that T : F(A) — F(B) is linear and continuous with norm
M < C’M&_QMIG, where C is a positive constant. If C' = 1 we say that F' is an exact
interpolation functor of exponent 6, so the J— and K — functional are exact interpolation

functors of exponent 6.



Chapter 4

Complex Interpolation

In this chapter we will study the most relevant methods in the complex interpolation
theory, those techniques are based in the Calderon’s theory. We will see that usually the
results are analogous to those obtained in the real case, but they are more precise.

In this chapter our couple of spaces need to be Banach instead of quasi-Banach or
normed spaces as in the previous chapter.

We have two interpolation functors, Cy and C?, we will define them and their spaces,
and we will see that unlike in the real case those spaces, in general, are not the same, but
we have an inclusion of Cy in C?.

We will focus to study of the properties of the spaces fl[g], letting the space Al a5 a
technical tool.

4.1 Definition of Methods

In this section we will define the Cp and C? methods and see some properties of this
methods. We will work with analytic functions with values in Banach spaces.

Given a couple of Banach spaces A = (Ag, A1), we consider the space .#(A) of all
functions f with values in Ag + A1, which are bounded and continuous on the closed strip

S={2eC:0< Rz <1},
and analytic in the open strip
S={2eC:0<Rz<1},

and moreover, the functions t — f(j + it) with j = 0,1 are continuous functions from the
real line into A;, which tends to 0 as |t| — 0. We provide .# with the norm

| £l 7 = max(sup(|[ £ (it) | a,), sup([ £ (1 + it) | a,))- (4.1)

Lemma 4.1.1. The space .¥ is a Banach space.

Proof. In order to prove that .# is a Banach space with the norm | - | # we have to see
that

77
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1. | - |l# is a norm,

2. % is complete with this norm.

That | - ||# is a norm follows because, by (4.1), for any ¢ € R we have that | f(j +it)]a, is
a norm, that is that for all f,g € .% and A € C we have

1 f(5 +it)|a; =0
If(G +it)]a; =0« f(j+it) =0
1f(G+it) + g9 +it)lla;, < |fG+it)]a; + g0+ it)]la,;
LfG+ i) Aa, = [AFG +it)]a,-

Then, taking supremum in those inequalities we arrive at sup(|[f(j +it)| 4;) is a norm for
j=0,1,50 |- | # is a norm.

Now we are going to see the completeness of % with this norm. By Theorem 1.2.1 we
can see the completeness via series. Assume that

2 I falls < 0.

Since f,(z) is bounded in Ay + Ay and A; < A + Ay, and f,(z) are analytic in S and
continuous in S, we can apply the Hadamard Three Line Theorem 1.1.2 to each f, and
obtain that

[£n(2) [0+, < max(sup([fn (i) a0 +4,), suD([fu(1 + i) 40 +4,)) < [ fnl 2

for all n € N. Then, we have that

2 | fn(2)|40+4, < o0,

but as Ag + A; is a Banach space there exists f € Ag + Ay such that
= Z fn(2)

and the convergence is uniformly in the closed strip S. Moreover, we have that this happens
also in the boundary of S, so it happens for z = j + it, this means that f(j +it) € A; and

f(j +it) Efanrzt

Also, since the convergence Is uniformly in S, we have that f is bounded and continuous
in S and analytic in S. Therefore, f €., so .Z is a Banach space with the norm | - | z.

In order to define the space generated by the C?—functional we need to define the
space Y (A).

Definition 4.1.2. The space ¥(A) is the space of analytic functions g defined on the strip
S with values in Ag + Ay, satisfying the following properties:
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a) |l9(2)] a0+, < c(l+[2]),
b) g is continuous on S and analytic on S ,

c) g(j +it1) — g(j + it2) has values in A; for all ¢1,¢2 € R and for j = 0,1, and
)

Lemma 4.1.3. The space 4(A), reduced modulo constant functions and provided with the

g(]_ + ’itl) — g(l + itz)
t1 —to

g(it1) — g(ita)
t1 —to

)
Ap tit2

l9lly = max <sup
t1,t2

is finite.

norm | - |4y is a Banach space.

Proof. In order to see that | - |¢ is a norm we only need to see that |||y = 0 if and only
if g is constant. Because for any t1,%s € R we have that

g(j +it1) — g(j +ita)
t1 — t2

A;
satisfies the other properties of being a norm for j = 0,1, so taking supremum in 1, to
and taking the maximum still satisfying those properties.

So, let us check that |gll¢# = 0 if and only if g is constant. Take h # 0 a real number
then

‘9(2 +ih) — g(2) < lgls-

ih

Aog+A1
Thus, letting h — 0 we have that

19" ()| a0+, < gl

Therefore, if ||g|¢ = 0 then g is constant, and then for all ¢1,t2 € R we have that

=0.
Aj

g(j +it1) — g(j + ita)
t1 — &2

So, |gll# = 0 and therefore | - || is a norm.
Now we are going to see the completeness. We have that on the open strip S
lg(2) = 9(0)[ a0+, < [2llgle- (4.2)

By Theorem 1.2.1 we can study the completeness using series. So, take (g,), € 4(A) such
that

2. lgnlly < 0.
n

By (4.2) and since Ag + A; is Banach we have that

Z(Qn(z) — gn(0))

n

converges uniformly to g on every compact subset of S. Again, by (4.2) we have that
g(z) satisfies the property a) of Definition 4.1.2 and as the convergence is uniformly we
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have that g(z) also satisfies the property b) of Definition 4.1.2. So, we need to see that
g(j + it1) — g(j + it2) has values in A; for all ¢1,%2 € R because if this happens then

> lgnlly = lgly < .

n

So, let us see that g(j +it1) — g(j + it2) has values in A; for all ¢1,t5 € R. Notice that by
definition of supremum and maximum we have that

2

n

gn(j + it1) — gn(J +ita)
t —ty

< Z ”gan < 0.
n

J

And as A; are Banach spaces then

D gnli + itr) — gn (i + ita))

n

converges to g(j + it1) — g(j + ita) in A;. So, g € 4(A) and this implies that ¥(A) is a
Banach space. n

Now we are able to define the functors Cy and C? which are based in the spaces .7 (A)
and ¥(A) respectively.

4.1.1 Functional C)y

In this section we will define the spaces generated by the functor Cy and we will see that
those spaces are Banach. Recall that those method is based in the . (A) space.

Definition 4.1.4. Given A = (Ap, A1) a compatible couple of Banach spaces and 6 €
(0,1), we define the space Afg) = Cy(A) as

={a€e Ay + A; : If € Z such that f(0) = a}.
We define the norm in /_1[9] as

lalg) = nf{] f].7 : f(0) = a, feF}.

Now we are going to check that | - ||j¢] is really a norm.

Proposition 4.1.5. Given A = (Ag, A1) a compatible couple of Banach spaces. | - IKE
a norm.

Proof. In order to see that | - [|[g) is @ norm we need to check that for all a,b e Ay and for
all A € C we have that

(i) el

(i) [aljg) =0« a=0;

(iii) fla + bl < llalljgy + bl
(iv) faXly = IMllale
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(i) follows because the infimum of positive numbers is positive. If a = 0 then taking f =0
we have that [a][g) = 0. Conversely, if |alp; = O then the infimum is taken by f =0 and
as 0 = f(0) = a, this implies that a = 0. So this shows (ii). For (iii), Let a,b € A and
let any f,g € F#(A) such that f(6) = a and g(f) = b. So, f(0) + g(d) = a + b, but

If +9lz <|flz+lglz
Taking infimums we have that ||a +b|jg) < [la] g+ [0][s)- In order to prove (iv), if f(0) = a
then Af(0) = Aa, and [\ f|# = |A|[ fll#. Taking infimums we have that [a)|g = |[Al|al/g)-
|

Theorem 4.1.6. The space /_1[9] is a Banach space and an intermediate space with respect
to A.

Proof. Let us start proving that f_l[g] is an intermediate space with respect to A, that is
that (Ag N A1)  Apg) = (Ao + A1). Since, f(0) = a € Ag + A1 we have that

lalag+a, = 17(0)[ a0+, < |f7-
Taking infimum we have that fl[g] c (Ap + Aj). Let § > 0 and take
flz) = =07,
Note that f(z) = a if and only if z = 0. As (Ag n A1) < A; we have that

lalioy < [ 7 < max(sup([[f(it)| agna,), sup(|f(1 +it) ]| 49na,))-

But, by definition of f(z) we have that

max (sup([[ f (it)[ agna,), sup(| f (1 + it)[ a0~ a,))

=|allagna, max (sup <)e§<it-9)2’) ,sup (‘65(1+it—9)2

))

So, letting § — 0 we have that

. Sy 2
’eé(j-i-zt 0% _, 1

for j = 0,1, then when § — 0 we have that

max(sup([[ f(it)] agna1), sup([ f (1 + it)[ agna,)) = lafagna; -

Therefore, |afjg < [a]ayna,- So, we have that (Ag N A1) < A

Take the linear mapping f — f(6), it is continuous because

1f ()] a0+a, < [fllz-

Denote by Ny = {f : f € F(A), f(6) = 0} the kernel of this map. Then, by the First
Isomorphism Theorem f_l[g] is isomorphic and isometric to the quotient .#(A)/Np. As
this mapping is continuous and {0} is closed we have that Ny is closed, so the quotient
F(A)/Np is closed. Since, closed subspaces of a complete space are complete spaces and
Ap + A is a Banach space, we have that 121[9] is a Banach space. |
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The last theorem shows that the functor Cy is an exact interpolation functor of expo-
nent 6 (see Remark 3.5.2).

Theorem 4.1.7. The functor Cy is an exact interpolation functor of exponent 6.

Proof. Let A = (Ag, A1) and B = (By, B1) be a pair of compatible couple of Banach
spaces, a_nd T is continuous with norms M;. Let a € /_1[9] and £ > 0 such that there exists
f e F(A) with f(0) = a and | f|# < |alg) + . Since T is continuous in Ay + A; then
T'(f) is continuous on the closed strip S. Even more, as f is bounded and analytic in S
then T(f) is bounded and analytic in S. Therefore if we consider

9(2) = Mg~ "My *T(f(2))
then, g € .7 (B). Moreover, since |T'(f)||la, < |f]a, we have that
l9l 7z < [flzca) < lalp +e&.
Taking z = 6 we have that
9(6) = Mg~ "M "T(£(9)) = M~ "M, "T(a) < T(a) = My~ " M{g(6).

Hence,
IT(a)lfg) < Mo~ MY |9l 75y < My~ M{ (lallfg) + ©)-

Letting € — 0, we have that
IT(@)g) < Mo ~" MY al)

So, T': 121[9] — Bjg) with norm
M = M;M7.

4.1.2 Functional C?

In this section we will define the space A% = C?(A) where A = (Ag, A1) is a couple of
compatible Banach spaces. Also, we will see that those spaces are Banach spaces and that
the functor C? is an exact interpolation functor of exponent 6.

Definition 4.1.8. Let 0 < 6 < 1 we define the space Al?] as
Al —fae Ay + A1 :a=g'(0), ge9(A))}.
We define the norm on Al?] as

la] = inf{gly : ¢'(0) = a, g€ F}.

The proof that
la|) = inf{|gly : g'(0) = a, g€ ¥}

is a norm is analogous to the proof of Proposition 4.1.5.
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Theorem 4.1.9. The space Al is a Banach space and an intermediate space with respect
to A.

Proof. We first will prove that Al ig an intermediate space with respect to A. The
fact that All = Ay + A; follows from the definition of Al?l. So, we have to see that
Agn Ay c APl Let a e Ay n A; and let g(z) = a then ¢'(2) = a, so

lalagnar = lg(2)] a0na:-

But, as [a]4y~a, = [ala; for j = 0,1 we have that

l9(2)0na: = lgllo-

And by definition of infimum we have that

19(2)|40n a2 = gl = o).
Therefore, Ag N Ay < Ale].

Now we are going to the that Al is complete. We will use an analogous argument
as in Theorem 4.1.6. Since [¢'(0)]49+4, < |gle, we see that the mapping g — ¢'(6)
is continuous from ¢ to Ag + A;. The kernel ¥ of this mapping is closed and A% is
isomorphic and isometric to ¢ /N 9 which is closed. So, Al?l is a closed subspace of Ag+ Ay
which is a Banach space, therefore, Al?l is a Banach space. |

The following theorem shows that as the functor Cy the functional C? is an exact
interpolation functor of exponent 6.

Theorem 4.1.10. The functional C? is an exact interpolation functor of exponent 6.

Proof. Assume that T': A; — B; with norm M; for j = 0,1. Then we choose a function

g € 9(A) such that ¢'(0) = a,
lgllyay < Ja| +e.

Consider the function

o) =g~ [ (s 5 ) MM T, (09

there [0, z] means any path in the closed strip S connecting 0 and z. Notice that if we

have 7 € § then
d(T(jW =T(g'(n))

and by definition ¢'(n) is bounded and continuous on S. Thus T(¢'(n)) is continuous on
S and bounded in By + Bj. So, if the path [0, z] has all its points except the point 0 and
maybe z in S then we can integrate (4.3) by parts. Therefore, we obtain

hz) = f M M (dg(n)),
[0,2]
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where in general the integral is to be interpreted as a vector-valued Stieltjes integral. As
T'(dg(n)) is bounded in By + B; we have that

IhllBo+ By < cl2l.
Notice that since g(j + it) takes values in A; then T'(g(j + it)) takes values in B; for

Jj=0,1,and T'(g(j + it)) is a Lipschitz function in B;. Thus it follows that
to
1 + i) = WG+ ita) s, < M [Tt + i)
t1
if 1 < to. But
1 to to
My [ gt + i)ls,dt < [ dg+ 9yt < (2~ gl
t1 t1
And as ||gly 1) < |a|”) + & we arrive at

|z < la]!®) +&.

Moreover

HO) = a0 (Sram)) =M T)

Then
T(a) = 1’ (0)ML O Mf e B,

and we conclude that
IT(a) | < My=0 M7 (a1 + €).

Letting ¢ — 0, we have that |T(a)|!?) < Mg M{|a|l). So, T : A’} — Bl with norm
M = M}~M7. |

4.2 Some properties of Cy

In this section we will prove two theorems concerning with inclusion and density properties
of the spaces Afg). The first theorem deals with the inclusions between Apg;; and Apg,j.
The second theorem deals with the density and closures of the space Ag N A; in these
spaces.

Theorem 4.2.1. We have
(i) (Ao, A1)[e) = (A1, Ao)[1—g) with equal norms,
(ZZ) ifO <0 <1 then (A,A)[g] = A,

(iii) if Ay < Ag and 0y < 01 then Apg,) < Afgy)-

Proof. In order to prove that (A, A1)rg) = (A1, Ao)j1—g With equal norms, note that if
f € Z((Ao, A1)) then if we define g(z) = f(1 — z) we have that g € % ((A1, Ap)) and
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f(0) = a = g(1 —0). Therefore, we have that (Ao, A1)g) = (A1, Ao)j1—g With equal

norms.

Now, for proving that if 0 < 6 < 1 then (A, A)y) = A, but if Ag = A; = A then
AnA=Aand A+ A= A. Therefore, since A[g] is an intermediate space we have that.

Ac 121[9] c A.

So, if 0 < 8 < 1 then (A,A)[g] = A.

Now, it remains to see that if A; < Ay and 6y < 67 then /_1[91] c /_1[90] we will use that
(Ao, A1)e) = (A1, Ao)j1—g) With equal norms. We are going to see that Ag = Ay implies
(Ao, A1)[g) (AO,Al)[é] when 0 < 0. Let a € (Ag, A1)[0] we can choose f € .Z(A) such
that f(0) = a and | f# < |afg +e. Put & = A0 where 0 < A < 1 and

p(2) = f(b2) exp(e(z? — N%)).
Writing By = (Ao, Al)[(;] we have that

1£6 +it) B, < £

It follows that
lellz(a0,8) < (lalfg + €)e”.
But ¢(\) = a and (Ag, B1)[x] € (B1, B1)[z] = Bi, the equality follows from (ii), and that
(Ao,Bl)[)\] c (BLBI)[)\] follows since Ag < Bj. And this holds since if we take a € Ag
and f € .Z(A) then f( — z) € F(A), if we call g(z) = f(0 — z) then g(d) = f(0). So,
a € By, as this happens for all a € Ay we have that Ag < By. Thus

lallg < cleMlla0,B1)py < clelza0,81)-

Then, ”a”[é] < c|allg- [

As we said the second theorem deals withe the closure and density of Ay n A; in the
space Ag. But, the proof of this theorem requires the following lemma.

Lemma 4.2.2. Let .%y(A) be the space of all linear combination of functions of the form

) N
eéz 2 ane)\nz
n=1

where a, € Ag N A1, Ay € R and § > 0, then Fy(A) is dense in F(A).

Proof. Since | exp(622)f(2) — f(2)|# — 0 as § — 0 for all f e .Z(A), it is enough to show
that all functions g(z) = exp(§z2)f(z) with f € .#(A) can be approximated by functions

in #y(A). Take
gn(z) = Zg(z + 2mikn),
k
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where n > 1. Then g, is analytic in the open strip S and continuous on the closed strip
S with values in Ag + A;. Moreover, g, is periodic with period 27min, and g,(j + it) € A;
for j = 0,1. Even more,

lgn (G +it) — g(j + it)|a;, — 0

as n — o0 uniformly in compact sets of t-values and | g, (j +it)| 4, is bounded as a function
of n and ¢. It follows that, for all s > 0, we have

e gn(2) € Z(A).
Therefore, we can find s and n so that
2
[ gn(2) — g(2)| 7 <e.

But ¢,,(2) can be represented by a Fourier series

gn(z) = Z apne®™, 2 = s+it, (4.4)
k

where
1 T™nm

gn(s + it)e RE+t)ngy,

Qkn =

2mnm J_rnm

As g, are periodic we have that this integral is independent of m. Let s1, s5 two values of
s then

T™m

1 Tm ' ‘
5 ‘ J gn(51 + it)e—k(s1+zt)/ndt _ J gn(SQ + ,L-t)e—k(82+zt)/ndt =0
™m| J_rnm —rnm

as m — o0, and these integrals do not depend of m we have that

Qkn =

1 T™TNnm i
5 J gn(s + it)e FEF/ngy

is also independent of s, so we can take m = 1 and s = j for j = 0,1. Then we have that
akn € Ag N A1. Now we consider the (C, 1)-means of the sum (4.4), i.e. we consider

k
Umgn(z) = Z (1 - m|+| 1) aknekz/n'

|k|<m

Then
lomgn(j +it) — gn(j +it)|a, — 0, as m — o,

uniformly in n. Thus
822

(omgn — 9)|lz < 2e.
But %% omgn € Zo(A). So, Fo(A) is dense in .7 (A). [ |

e

Theorem 4.2.3. Let 0 <0 < 1. Then

(i) Ao 0 Ay is dense in Ajgy;

(i) let Ag denote the closure of Ag n Ay in Aj, then

(Ao, A1)jg) = (AD, A1)y = (Ao, AY)[e = (A, AD)jg;
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(iii) the space Bj = f_l[g] with j = 0,1 is a closed subspace of A; and the norms coincide
m Bj,'

(iv) (Ao, A1)[g) = (Bo, B1)(g), with B; as in (iii).

Proof. Let us prove (i), if a € Ay there exists a function f € #(A), such that f(0) = a.

Then, by Lemma 4.2.2, there exists g € Fy(A), such that |f — g|# < e. Therefore
la —g()][g) < € and since g(0) € Ag n A; we have that Ag N A is dense in Ap).

In order to prove (ii) notice that
(Ao, A1)[g) @ (A7, A1)jg) = (AT, AY)[g)-

Then, it is enough to prove that (Ao, A1)g) = (A3, A?)[g]. Note that A? are closed in A;
and since A; are Banach spaces then Ag are also Banach spaces so, by Theorem 4.1.6, the
space (Af, AY)g is also Banach.

Now we want to see that (A§, A7) is closed in (Ao, A1)[g). So, let (an)n < (A7, A)[g)
be a convergent sequence with the norm in (A, A1)[g), call @ the limit in this norm. Then,
we want to see that a € (A7, AY)[g). Since

HanH(A()7A1)[9] - ||a||(A0,A1)[9]7 asn T 0
we have that for j = 0,1
sup | fn (7 + )|, = sup | f(j +it)] 4,

where f,,f € F((Ao, A1), fu(0) = a, and f(#) = a. But, since by definition A(])- are
closed in A; and (an)n < (A, AD)[g], we have that f,, f € F((A], A?)) and that

Sup | £ + it) Lao — sup | £ + it) Lo

As this happens for any f, and f such that f,(f) = a, and f(f) = a, we can take the
infimum and obtain that

“anH(Ag,Ag)[g] - HG/H(AS:A?)[G]’ asn 1 oo.

Therefore, (Af, AY)[g) is closed in (Ag, A1)jg;. Moreover, we have that (A, AD)g is an
intermediate space, so we have that

Agn A c AJn A c (A07A(1))[9].
Taking closures with respect to (Ao, A1)[g) and using (i) we have that

(Ao, A1) (6]

) ——(Ap,A e
(Ao, Av)gy 2 Ag ~ A0 < (A3 AD) = (48, A
Therefore, we have that

(Ao, A1)g) = (AD, A)jg) = (Ao, ADjg) = (A7, AD)jg)-

For (iii) we have that B; < A; for j = 0,1. Let us prove that the norm in By
coincides with the norm on Ag (for B; it is the same argument). Take a € By. Then,
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by Lemma 4.2.2, we can find a; € A9 n Ay such that |a —a1|p, < e. Consider f,(z) =
a1exp(z? —nz) € F(A). Then f,(0) = a1 and | f,]l#7 < |a1]a, + exp(1 — n)|a14,. Since
la1]l B, < | fnl# for all n, we conclude that |a;|p, < |ai]a,- But |a]a, < |la|s, and so

la —ailla, < |a—a1]B, <e¢
Therefore we have that
lalls, < e+ lailp, <2+ lal 4,-

So, ||la| B, < ||a|a,, and this proves that |la|p, = ||a|a,. Also, since B; are Banach spaces,
they are closed spaces with their own norm, but as their norm coincides with the norm of
A; we have that B; are closed subspaces of A;.

(iv) follows if we are able to see that #(A) = F#(B). As B; < A; we have that
F(A) o> F(B). Let f(z) € Z(A) then f(j +it) € Bj. So, f(z) € d\(B), this means that
Z(A) ¢ Z(B). Therefore, F(A) = .7 (B). [

4.3 The Equivalence Theorem

In this section we will study the relation between the functional Cy and C?. For instance,
we will prove that in general we have that Apy < AlP] and that if Ag or A; are reflexive
then /_1[9] = Al with equality of norms. In order to see this we need two previous lemmas.

Let us denote by P; with j = 0,1 the Poisson kernels for the strip S. They can be
obtained from the Poisson kernel for the half-plane by means of a conformal mapping.
Explicitly, we have that

e ™" Dsinrs
Pi(s+it,7) = — , 7=0,1.
i ) sin? s + (cos s — eldm—m(T—1))2 J

Lemma 4.3.1. If f € Z(A) we have that

(i) log | £(8) ey < i (§log |.f(j +iT) |4, Ps(8,7)dr).
(i)

0

1)y < (119 JR ’f(”)’AoPO(H’T)dTy_G (; JR I£(1 + z‘r)\Alpl(e,T)dr)

(iii) |£(0)l o) < Si—o (§ 1£( +i7) | a, P3(0, 7)dT).

Proof. The most difficult part of this proof resides in (i), since (ii) follows applying Jensen’s
inequality to the exponential to (i) and using that

J PyO,T)dr =1—-0
R

and that
f Py(0,T)dr = 6.
R
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In fact, applying the exponential to (i) we have that

17Ol < exp ( [ 1o |f<z‘r>|A0Po<e,T>dr) exp ( [ toela+ mulmemdr) .

Now, in order to apply Jensen’s inequality we will multiply and divide the first integral
by 1 — 6 and the second by 6. Then,

P0(97 T)dT (9’ )d

0 and — Y
are probabilistic measures (this means that the measure of the full space is 1), and using
that exp(ab) = (exp(b))®, we have that

151y < oo [ 10215610, D) e ([ romipca 1 imp, O

Now, we can apply Jensen’s inequality and obtain that
1 1-0 /4 ]
Ol < (15 | 1@ R, nar) (5 150+ iy o rdr)
1-0 Jr 0 Jr

Finally (iii) follows since

(ﬁe | 1 e T>df)1_9 (é | isa+iniap W)dr)

is the geometric mean and

; ( JR £ + 7)., P50, T)dT>

is the arithmetic mean of these integrals, and the geometric mean is less than or equal to
the arithmetic mean. So, proving (i) we will have the lemma proved. Then, let us prove
(i). Since f € .Z(A) we have that log | f(j + it)|4, is upper bounded we have that there
exists ¢; infinitely differentiable bounded function such that

0

log [ f(j +it)|a, < ;(t), j7=0,1.

Let ®(z) be an analytic function such that
—J wo(T)Po(z, T)dT —&-J 01(7)Py(z, 7)dr.
R

Therefore, RO (j + it) = ¢;(it) for j = 0,1 and P is continuous and bounded on S. Since

e OFD [ (i +it)| 4, < e PO £ +it)]a, <

it follows that [e~® f| # < 1, thus e"®f € .F(A) and

le™® flljg <
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So,
1 £ 1oy < le® oy

Therefore we conclude that
l0g 1o < R2(6) = [ )6, 7)dr + [ or(r)Pa(0. 7).
R R

Since f € .Z(A) we have that f is continuous in the boundary of S. Then, we can take a
decreasing sequence of functions ¢; converging to log | f(j + it)|4,, we get

log | £(6) 2( [ 0170 + in)1a, 20 T>d7).

Lemma 4.3.2. If f € 9(A) satisfies that

F(it +ih) — f(it)
h

converges in Ag on a set E of positive measure as h — 0 with h € R, then f'(6) € A[g] for
0<6<l1.

Proof. Take

ful2) = <n>(f (:+1)-1e).

Then | fn(it) — fm(it)| 4, — 0 as n,m — o for all ¢ on a set E of positive measure. Even
more, we have that

e fu(z) € Z(4)

for all £ > 0. From Lemma 4.3.1 we obtain that

log]le® (£2(8) — fm()]1o)
1
< 30 ([ 108 1504 5+ 1) = s # i), P67 )
j=0

Since | fn(j +it) — fi(j + it)| 4, < 2|f|o and since || f,(it) — fm(it)]|, — O for all t € E,
we obtain that |f|¢ — —o0 as n,m — . Thus

10g % (fu(8) — fn () o]

as n,m — oo. Therefore |[(f,(0) — fm(0))][jg) = 0. So, fu(f) converges in Ap. But, we
have that f,(0) — f'(0) in Ao+ A;. Since, by Theorem 4.1.6 we have that A is Banach
and then it is closed, we can conclude that f,(6) — f/(6) in Ap. [

Theorem 4.3.3 (The complex equivalence theorem). For any couple A = (Ao, A1) we
have that
A[Q] (e A[e]

and ||a|l? < lal[e)
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Also, if at least one of the two spaces Ay or A1 is reflexive and 0 < 0 < 1, then
A N
Apg) = AV
with equality of norms.

Proof. We begin by proving that for any couple A = (Ag, A1) we have that
A[@] c A[e]

and ||a|l” < |ap. Take a € Ay, and choose f € Z(A) so that f(0) = a and |f] 7 <
laffg) + €. Then put
9(2) = f(Q)dg,
[0,2]

where [0, z] is a path connecting 0 and z. Then ¢/(z) = f(z) and

19() ap sy < f Qe < 151 f d¢ < (1+ |2]) /] 7.

) 072

So, g € 9(A) and
lglly < 1.f].-
Since ¢'(z) = f(z), we have that ¢'(#) = f(0) = a. So,

[4
lal® < llgly < If]7 < lallg)-

Therefore we have that

A[@] e /_1[9]

Now we are going to see the second part of the theorem. By Theorem 4.2.1 it is enough
to prove that if Ag is reflexive then Ay = Al with equality of norms.

If f € 9(A) then f(it) is continuous and therefore its range lies in a separable subspace

V of Ag. Take .
o= (r(=+ 1) - 1) (2)

and let R,,(t) be the weak closure of the set {f,(it) : n = m}. Put R(t) =), Rm(t).
Then R,,(t) and R(t) are uniformly bounded subsets of Ay wit respect to ¢ and m. Since
R, (t) is bounded and weakly closed, and since by Corollary 1.2.11 we have that the unit
sphere of Ay is weakly compact (because Ag is reflexive), we can deduce that R, (t) is
weakly compact. Therefore R(t) is non-empty. Let g(t) be a function such that g(t) € R(t)
for each t. Since R(t) < V, the range of g is separable.

Now we want to prove that f(it) = f(0) + zgé g(7)dr, because if this happens then
f(it) is derivable almost everywhere and we can use Lemma 4.3.2 to finish the proof of
this theorem. So, let us prove that f(it) = f(0)+1 Sé g(7)dr. Let L be a continuous linear
functional on Ay, and put ¢(t) = —iL(f(it)). Since f € ¥(A) we have that ¢ is Lipschitz

continuous. Even more,
Lifati) =n (i ¢+ 3 ) - 000).
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The image of R,,(t) under L is the closure of the set {n(o(t + 1/n) —¢(t)) : n = m}. The
image of R(t) is contained in the intersection of these sets. If ¢ is differentiable at the
point ¢, then L(R(t)) = {¢'(t)} and L(g(t)) = ¢'(t). But ¢ is Lipschitz continuous, then
by Rademacher’s theorem (see [6, Theorem 3.1.6]), ¢/(t) exists almost everywhere and is
measurable . It follows that L(g(t)) exists almost everywhere and is measurable. Since
the range of g is separable, it follows that g is strongly measurable. Since the sets R(t)
are all contained in a bounded set, g(t) is also bounded. Then
t ¢
Lf(i0) = i(t) = ip(0) + 1 | o/ (r)dr = L(0)) +3 | Lig(r))ar.

0 0

And as L is continuous and linear we have that

t

L(g(r))dr = L (f(O) + ijtg(T)dT> .

0

L(f(it)) = L(f(0)) + f

0

And we have that f(it) = f(0) + iSég(T)dT. Then f(it) has a strong derivative almost
everywhere. Thus Lemma 4.3.2 implies that f'(0) € Afg. But f'(0) € Al?l 5o Apg = Alf],

It remains to see that |af[g) < la|l?). Let a € Al) we can choose f € 4(A) such that
() = a and
1fl7 < la) +&.

Consider the function ,
hn(2) = € fn(2).
Then hy € F(A) and |hn| 7 < € fly. Thus |hn(0)]g < e*(Ja|®! + €). But
[hn(0) — 6592(1\][9] —0 as n— oo
So, letting n — o0 in the inequality |hn(0)] (g < e*(||la]t + £) we have that
2
¢ Jlaly < e (a]! +¢).

Now let € — 0 and we arrive at a5 < a1, So lalje) = ] (1. [

4.4 The Reiteration Theorem

In this section we will see that the complex method Cjy is stable under iterations in the
same sense that in the real case. In order to prove this theorem we will use the complex
equivalence Theorem 4.3.3 and the duality theorem (see [4, Chapter 4, Section 5]).

Theorem 4.4.1 (The Reiteration Theorem). Let A be a compatible couple of Banach
spaces and put
Xj=Ap,) (0<0;<1;5=0,1).

Assume that Ay n Ay is dense in the spaces Ag, A1 and Xo n X1. Then
X[n] :A[Q] (OSHS 1),

with equality of norms, where 6 = (1 — )6y + nb;.
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Proof. We will begin by proving that HaH)-([n] < HaHA[g] if a € Apgy. Take a € Ay, then there

exists f € .7 (A) such that f(f) =aand | f|z < ||a\|A[0] +e. Put f1(2) = f((1—2)00+261).
Then fi(n) = a and

f1(G +it) = f((1 —4)bo +it(6h — 0p)) € X;, j=0,1;
fi(j +it) -0, |t| — o0.

Also, by the Hadamard Three Line Theorem 1.1.2 we have that the maximum of f is given
in the boundary of S. So we arrive at

lalx,, = IAlzx) < 1flza) <lala, +e

Using a similar argument with g € 4(A) we can see that |a|yp < |a|A®) where Y; = Alfsl
and a € Al
Let us prove that HCLHX[W] > ‘|a‘|A[9] if a € X, By Theorem 4.2.3 we know that Xon X,

is dense in X and in X7, and also by Theorem 4.2.3 we have that Xy n X7 is dense in X [7]

and Ag n A is dense in /_1[9]. But as Ag n A7 is dense in Xy n X7 we have that Ag n A7 is

dense in X,;. Also, if we are able to see that HZHA’[B] > HlHan] forl e fl’[e], then by Duality

Theorem we will have that

I, = Wz = (U ateo, aoym = Mg =[x, -
And this is telling us that the norms on X [7] and A[g] coincide, and as Agn A; is dense
in both spaces we have that Xp,;; = A with equal norms. |

Remark 4.4.2. If Ayg ¢ A; then Ag n A; is dense in Xy n Xy, since by Theorem 4.2.1
Xo c X (if 61 < 6p) and by Theorem 4.2.3 Ay n A; is dense in Xy and in X;.






Chapter 5

Interpolation Spaces

In this chapter we will study several spaces and apply the interpolation methods studied
in the last chapters to these spaces. In particular, we will see that we obtain when we
interpolate the LP and the Hardy spaces.

5.1 Lorentz Spaces

In this section we will interpolate the LP” and the Lorentz spaces, one example of what
we obtain are the weak LP spaces, LP'®, studied in the Section 1.3. For instance, we
will use the real methods and we will use strongly the distribution function of f and the
non-decreasing rearrangement of f.

5.1.1 Definition

In this section we will define the Lorentz space.

Definition 5.1.1. We say that f € LP? with 1 < p < oo if and only if

OO 1/p px dt Y .
Iflpq = <j0 (t/Pf (t))qt> <o, ifl<qg< oo,

[ fllp,c0 = suptl/pf*(t) <o, ifg=o0.
¢

Here f* is the non-decreasing rearrangement of f (see Definition 1.3.5).

5.1.2 Interpolation

In this section we will see the results obtained when we interpolate the LP and the LP4
spaces. In particular, we will see the general Marcinkiewicz interpolation theorem and the
Calderon’s interpolation theorem.

The first result that we find gives us a formula for the K— functional for the couple
(LP, L™), and also says us that the interpolation space of the couple (L, Ly, ) is a Lorentz
space.

95
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Theorem 5.1.2. Assume that f € LP + L*® with 0 < p < c0. Then

K. s )~ (| tp(f*(s»pds) " (5.1)

0

If p = 1 then it is an equality. Moreover, if 0 < pg < p1 < ©, pg < ¢ < © and
1/p=(1-6)/po+0/p1 with0 <6 <1, then

(Lpos Lp, )o,q = LT with equivalent norms. (5.2)

Proof. Fix a measure space (A,du). We will begin by proving (5.1), first we will prove
that

K< tp(f*(s»pds) "

for some constant C. Take

[e=]

{f(x) — @) i f@)] > )

0 otherwise

and fi(z) = f(x) — fo(z). Let E = {x € A : fo(x) # 0}, then pu(F) = a < tP, that is
Ar(f*(tP)) < t? where Af(s) is the distribution function of f. Also, we have that
F*(a) = int{s : M\y(s) < a} = inf{s : Ap(s) < Ar(F*(2)}

and, as we see in Section 1.3, A¢(s) is decreasing with respect to s we have that f*(t) <
f*(a). But, since f*(t) is increasing with respect to ¢ we have that f*(t?) > f*(a),
then we obtain that f*(s) is constant in the interval [a,tP]. Also, since f; € L* because
|fi(x)] = f*(tP), so | file = f*(tP) < 0. Therefore, we have that

1/p
Kty £: 17, L) < | follp + 1 f1n = ( L(!f(m)! - f*(tp))pdﬂ) L)

- ( | ") - f*(tp))pd8> "L ( | tp(f*(s»pds) v

- <Ltp<lf*<s>| - f*(t”))”ds> " < E" " (S))pd5> 1y

<C Utp( f*(s))pds> 1/1,‘

0

Note that if p = 1, then C = 1. In order to see that

K.z | tp(f*(s»pds) "

0

we assume that f = fo + f1, with fo € LP and f; € L*. Using that Af(t +s) < Ag (t) +
At (), we obtain that

F5(8) < fE((1—¢€)s) + ff(es), 0<e<l.
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Then

(Ltp(f*(s))Pd,g) Lp <C _<Ltp(f5"((1 ) g)s))pds> 1/p . (Ltp(fl* (as))pd5> 1/p]

<c|(

= C (=) folly + tl fille |-

Taking the infimum over the decomposition of f and letting ¢ — 0 we obtain that

tP 1/p
f (fa((1— s>s>>pds) n tff(O)]

0

K(t, f;IP,L®) > C (fp( f*(s))pds) W.

0
Notice that if p = 1 then C = 1.

Now we are going to see (5.2). In order to prove this we will use the Reiteration
Theorem 3.4.5 with the couple (LP9, L*). Let p; = o0, by (5.1), we have that

o0 1/q
1Flo0 = ( ) <t—9K<t,f;LPO,LOO>>pdt)

t

/a
0 e PO i ! q/Po dt 1
~<L (o [ rrtomas)
/q
- 0 . 1 - 05d«9>q/p0dt 1
—<L (o [Cremamst) )

Since ¢ > pp we have that q/py > 1, so we can apply Minkowski’s inequalities 1.3.17 and
we arrive at

1 0
log < [ (som [ 0-0nr ) £ < i
0 0

because p = pg/(1 —0). Conversely, since f* is nonnegative and decreasing, it follows that

0,q-

© 1/q
Clflpa = ( [0z mypym ) " <

So, we have proved (5.2) for p; = o0, using the Reiteration Theorem 3.4.5 we obtain that
(Lp(), Lpl)ﬁ,q = ((Lra Lw)eo,qm (LT7LOO>917Q1)TI,(1 = (Lra LOO)@,q = LM,
where r < pg and 0 = (1 — 7))y + nb;. [

The following theorem identifies the space (LPo-90, LP1:41)g ..

)

Theorem 5.1.3. Suppose that pg,p1,q90,q1 and q are positive, possibly infinite numbers
and take 1 1
_l-m_m
p Po b1
where 0 < n < 1. Then, if po # p1, we have that

(LPoso [Prsar), = [P,




98 CHAPTER 5. INTERPOLATION SPACES

Proof. By the reiteration Theorem 3.4.5 and the theorem 5.1.2 we have that taking 0 <
r < min(pg, p1) and

— = 0= (1—n)by + 16

we obtain that
1 1-90

P r

and that

(Lpquo’Lphm)aq — ((LT’7LOO)007qO’ (LT?LOO)917q1)97q — (LT’7LOO)97q = [P,

Remarks 5.1.4.

(a) If pg = p1 = p then the Theorem 5.1.3 holds, using that 6; = 6 and for any 0 <n < 1
the conditions of the theorem hold.

(b) From Theorem 3.3.1 we have that if 1 < s; < so < o0 then
(LPosto | [P1A1), = (LPO90 [P1at), o
But, by Theorem 5.1.3 we have that (LPo-%, [P141), . = [P  So, we have that
vasl c Lp’s2'

In other words, the spaces LP'? are increasing with respect to q.

As a consequence of the Theorem 5.1.3 we have the Generalization of the Marcinkiewicz
Theorem 2.2.1.

Theorem 5.1.5 (The general Marcinkiewicz Interpolation Theorem). Take two measur-
able spaces (U,du) and (V,dv), assume that

T . LP7(U, dp) — L% (V, dv),
T : LPY" (U, dp) — L7 (V, dv),

where pg # p1 and qo # q1. Take

Then
T:LP"(U,dp) — LY (V,dv), 0<r < . (5.3)

In particular, we have that

T:LP(U,dp) — LY(V,dv), ifp<gq. (5.4)
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Proof. Notice that if » = p we have that LP"(U,du) = LP(U,dp) and since L9 (V,dv) =
L%P(V,dv) < LP(V,dv) we have that (5.4) follows from (5.3). But, (5.3) follows from
Theorem 5.1.3 and the fact that the real methods are exacts (Theorem 3.1.11 and Theo-
rem 3.1.20). Since, by Theorem 5.1.3 we have that

L7 (U, dgs) = (L7 (U, dp), L (U, dp) o
and the same for L2 (V, dv).

The most general consequence of Theorem 5.1.5 is that if r < s < o0 then we can write
(5.3) as
T:LP"(U,dp) — LY*(V,dv), 0<r <. (5.5)

As a particular case we have the Calderén’s interpolation theorem.

Theorem 5.1.6 (Calderén’s interpolation theorem). Suppose that p > 0 and that

T : LPo:T0 5 [90:50
T : [PV — L9151

where py # p1 and qy # q1. Put

Then
T:LP" — [P%

if r <s.
Proof. By Theorem 5.1.3 and Theorem 3.3.1 we have that if r < s then
L?" < L9%,
And by Theorem 5.1.5 we have that
T:IP" > [P c L9 0<r<s<o.

Therefore,
T:LP" — L7,

One of the most important motivations of the Lorentz spaces is the following theorem,
that is an Improvement of Hausdorff-Young inequality.

Theorem 5.1.7. The Fourier transform is a continuous operator from LP to LV where
1<p<2andl=1/p+1/p.
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Proof. Since, by Section 1.3.3, we know that
Ll ; LOO
25 1?
we have that ~
(L', L%y, — (L®, L%,
Taking 6 = 1/p with 1 < p < 2 we have that, by Theorem 5.1.2, (L, L?)y,, = LP? and
that (L®, L?)g, = LPP. And since LP = LPP, we have that

P R PP,

5.2 Hardy Spaces

In this section we will study the Hardy spaces and we will apply the complex interpolation
method to these spaces.

5.2.1 Definition

In this section we will introduce the Hardy Spaces and we will see some properties, as for
example, that they are Banach spaces. Here DD will denote the unit ball in C.

Let us begin by defining the smallest of the Hardy spaces, the space H™.

Definition 5.2.1. We define the space H® as
H”® = H(D) = Hol(D) n L* (D).
where D is the unit disk, Hol(ID) is the space of Holomorphic functions in D and L*(D) is

the space of bounded functions in .

We define the norm in H* as || f||g» = sup,ep | f(2)]-

Proposition 5.2.2. The space H® is a Banach space.

Proof. We need to prove that H* is closed on C'(D) n L*(D) where C(D) is the space
of continuous functions. Let (f,), € H* such that f,, — f with the norm | - . Since
C(D) n L*(D) is Banach we know that f € C'(D) n L*(ID), so we only need to check that
f € Hol(D). But, as

an_f”HOO —0=f,—f

uniformly on compact subsets of D. Then, f € Hol(D). |
Now we are going to define the Hardy spaces H?, but first we will define what is a

subharmonic function and for that we need to define what is an upper semicontinuous
function.
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Definition 5.2.3. Let X be a topological space. We say that a function u : X — [—00, 0]
is upper semicontinuous if the set

{reX ulx)<al
is open in X for each a € R.

Remark 5.2.4.

(a) We say that u is lower semicontinuous if —u is upper semicontinuous.

(b) It can be proved that u is upper semicontinuous if and only if

lim sup u(z) < u(y).
r—Y

Now we can define what is a subharmonic function.

Definition 5.2.5. Let Q be a domain in C and let u : Q@ — [—00, 0), then we say that u
is subharmonic in (2 if satisfies

1. w is upper semicontinuous,
2. u #% —oo on each component of €,

3. u satisfies the submean value property, i.e. if B(a,r) < 2, then
2w )
u(a) < — f u(a + re')dt.

Definition 5.2.6. Let 0 < p < o0 and

27 A 1/p
M) = (5 [ e pan)

Then f € HP if f € Hol(D) and

Il = sup My(f.7) <.

<r<

Remark 5.2.7. Since | f|P is subharmonic we have that M,(f,r) is increasing with respect
to r. SO7 HfHHp = 1imr~>1_ Mp(fv T)'

Lemma 5.2.8. Let 0 <p < oo. If f € HP, then

1/p
< (25) Wl

Proof. Let 0 <r < 1 since f is analytic we have that

o 2,2
|f(2)[P ! J If(re’t)lpil | dt

T or 0 |reit — z|2

(see [1, Theorem 24]). Using that |re’ — z| > r — |z|, we arrive at
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1 (7 oo 72— |2)? r? —|z|? T+ |2
%L |f(7"eZt)|p‘T€it — Z\Zdt < (r — ‘Z|)2Mp(fa7")p = " ’z‘Mp(faT)p
2
< ———M(f,r)P.
r— ’z‘ p(f T)

Letting r 1 1~ we have that

1/p
sl (12)

Corollary 5.2.9. For p > 1 we have that HP is a Banach space.

Proof. Let (fn)n < HP be a Cauchy sequence, by Lemma 5.2.8 we have that (fy), is
uniformly Cauchy on compact subsets of . Then there exists f € Hol(D) such that
fn — f uniformly on compact subsets of . From the Cauchy condition we have that

[fn = flar = 0= | flar < [fo = flar + | falze < .
|

Since if f € HP, then we have that f, = f(re’) € LP(D) for all 0 < r < 1, we have
that f € LP(DD). Moreover, since D is a compact subset of C we have that LP(D) < L9(D)
if p > q. Hence, we have that HP < H? if p > q.

5.2.2 Interpolation

In this section we will see that if we have two couples of Hardy spaces, (HP*, H?') and
(HP2, H%2), and a linear and continuous operator 7" such that

T:HP* > H?  with norm M,
T:HP? - H®  with norm Mo,

then, T is a linear and continuous operator from H? to H? with p € [p1, p2] and q € [q1, ¢2]
as in Theorem 5.2.13. In order to see this we need to introduce some tools. We will begin
by defining the Blaschke condition and the Blaschke product.

Definition 5.2.10. Let {23} € D, the condition ), (1 — |z;|) < o is called the Blaschke
condition.

Now we will define the Blaschke product and we will see that it converges uniformly
in compact sets.
Theorem 5.2.11. Let {2z} < D satisfying the Blaschke condition. Then, the Blaschke

product defined as
Zk 2k — &
B(z) = ko
@ =117 (=)

converges uniformly on compact subset of D, and therefore defines an analytic function on
D wvanishing exactly at the points {zx}. Moreover, |B(z)| <1 for all z € D.
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Proof. We need to show that for [z2| < R < 1, >, |1 — bg(2)| < Cr < 00, where bg(z) is
the k-th term of B(z).

el = Zxz) — Za(2k — 2)

1—br(z) = —
(2) |2k (1 — Zg2)
_ el =Ll + Zo2 (X = |zel) _ (1l (l26] + Z2)
2k|(1 — Zgz) |2l(1 — Z5z)
Therefore,

(1= [zeDlzel(t+2]) _ 200 = Jzxl) _ 200 = |zl) _ 2

1—b2’< ~x < ~x .
It = bi() 2l =2 1oz S 1-]2 “11R

The following theorem tells us that given any function in H?P we can take out its zeros
and this does not affect the norm of the function.

Theorem 5.2.12 (Riesz Factorization Theorem). Any function f € HP, p > 0 such that
f #£ 0 can be factored on the form f = g- B, where B is a Blaschke product and g is an
H? function without zeros on . Moreover

£z = |gllze-

Proof. Let {z,} the zeros of f in D. Then {z,} satisfies the Blaschke condition (see [2,
Chapter 5, Theorem 2.2]). Let B be the Blaschke product with these zeros and consider
the function

f(z)
B(z)

that has no zeros and is analytic on ID. So, we have to see that g € HP and that

9(z) =

| flze = lgll e

Consider the finite Blaschke product B,, with zeros z1,--- , 2z, and let

gn(z) = BEI;((ZZ))

For fixed n and € > 0, and for |z| near 1 we have that |B,(z)| > 1 —e. Then

1 21

o ). |gn(re®)[PdB < (1 — &) PMp(f,r)” < (1= &) 7P| f |-

Since the integral is monotone we have that this holds for all r < 1. Letting ¢ — 0 we get
1 21 "
sup o— | |gn(re™)[Pd0 < | £l
r<1 4T Jo

Now, using the Monotone Convergence Theorem we have that g € H? with |g| g < | f]me-
And since [f(z)] < |f(2)[|B(2)] = |g9(2)|, we have that |g]z> = | f] . u
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Now we can give the statement and the proof of the main theorem of this section.

Theorem 5.2.13. Let 0 <0 < 1,1 <pi,p2 <0 and 1 < q1,q2 < 00, consider the spaces
HPi and L% (D), and let T be a continuous operator from HPi to L% (D) such that has
norm My and Mo respectively. Then,

T:H? - LYD)
where
1 1-06 0
N + —,
p b1 P2
1 1-06 0
N + —,
q q1 q2

with norm less than or equal to KMllfeMg for some constant K depending only of p1 and
p2.

Proof. Assume that p; = po, then HPY < HP2 and let n € N such that p; < n. For any
system of n complex-valued simple functions {gi,---,gn} (i.e. g; takes values in C and
are of the form g;(z) = xk(z) for some compact K < D), we define an operation T as

T*(glu)gn):T(FlF2Fn)a (56)

where

1 21 eit 1z
R = g |05 e

By Lemma 5.2.8 we have that |Fj|g- < A|lgj|g- for 1 < r < oo. So, F; € HYP'. By
Hélder’s inequality we have that [ [; F;j € HP', and so the left-hand side of (5.6) is defined.
T* is additive in each g; because

Fy-Fy- (Fj+ F))- Fii1- F_HFkJr HFk - Fl,
k#]

and the linearity of 1. Moreover, by Holder’s inequality we have that
IT* (g1, s gn)llLan () < Myl Fy - Follgee < Mgl Fr|mee - [ ol ew,

for k = 1,2. Using that || Fj|gr < A;|gj]|ar for 1 <r < o0, we arrive at
IT*(g1, -+ gn)lLow @y < Mi|Fr - Frl e < Mg(A7,) H 1g; || o

Then, T* is a multilinear operation defined for all simple functions g¢i,--- ,g,. Then, it
can be proved (see [13, Chapter XII, Theorem 3.3]) that

IT* (g1, 9n) | oy < (Apy? A% )™ (M0 M) HHQ;\H% (5.7)
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where 0 < 6 < 1 and

1 1-6 ¢
P P1 p2’
1 1-6 0
q q1 q2

As it holds for g; simple functions, we can extend 7% to L™% (D) x - - - x L% (D), preserving
the inequality (5.7). But, if g; € L™?(D) then F; € H™? and so Fy - Fy--- F,, € HP2.
Therefore, the right-hand of (5.6) makes sense. Now we are going to show that (5.6) still
holds in the case that g; € L"2(D). Let g; € H"P? and g} be simple functions such that

lg7" = gjllzrmes — 0 asm — o,

then
HT*(g{nv ’gqun) _T*(.gla"' 7.971)”112 -0

as m — 00. But, by definition of F; we have that

|E}" = Fyllamwe — 0, | [1nee < Anps |97 [11me2.

() (1)

Hence, (5.6) still holds in the case that g; € L"2(DD). Even more, since p; = p = ps we
have that (5.6) holds if g; € L™ (D). Now we are going to see that if P is any polynomial
then |T'Prqm) < |K MO M| P|ge. If we can see this then we can extend T' to the
whole HP.

Given P any polynomial, by the Riesz Factorization Theorem 5.2.12, we can write
P(z) = B(z)G(z) where G is a polynomial without zeros and B is the Blaschke product
of P. Hence, define

Therefore, we have that

— 0.
L2 (D)

F1:BG1/n, F2:F3::Fn:G1/n

Multiplying P by a number of modulus 1, we can assume that P(0) is real and since
G(0) > 0 then B(0) is also real. Taking the main branch of G¥/", we have that F;(0) is
real for all j. Then, since F; are bounded and F}j(0) are real we have that

1 (% et + 2

with g; € L"(D) and g; are real valued. Hence, (5.6) holds and,
n
< ()" OLME) [ Lol

J=1 L4(D) =

T(f, ) Ul (e ‘pdf)p/n = (27| Pl

Jj=1 Jj=1

ITP|Lamy =

But
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Therefore,
ITP Loy < (Agp! ADp, )" (M= ME) (2)7 || P o

npi1 - np2

Taking K = max(A}, Ap,,)(27)P, we arrive at

ITP| oy < K (M~ ME)|P| 1o

Then, as it holds for any polynomial P, it still holds for any f e HP. |



Chapter 6

Boundedness of Operators

In this chapter we will see some examples of operators and we will show how the interpola-
tion methods affect to these operators. In particular, we will study the Fourier multipliers
and, as a particular case, the Hilbert transform.

The results and definitions of those operators are in [11, Chapter II and Chapter IV.3].

6.1 Fourier Multipliers

In this section we will apply the theory of interpolation to the Fourier multipliers. These
type of operators are called “multipliers“ because its Fourier transform acts by multipli-
cation. We will define and give some examples of them. We will begin by defining what
is a Fourier multiplier.

Definition 6.1.1. Let m be a measurable function on R™ and define 7}, with domain in
L? ~n LP by the following relation

Tin(f)(z) = m(x)f(:n), felL?nLr.
We say that m is a multiplier for L? with 1 < p < w0 if T}, f € LP and satisfies that
[T fllp < Cllflp

where C is a constant independent of f.

Since L? N LP is dense in LP we have that T}, extends uniquely in LP. By simplicity
we shall denote by T}, this extension. And we denote by M, the class of multipliers such
that T, : LP — LP continuously.

The goal of this section is to see that M), = M,y if 1 = 1/p+1/p’ and that M; < Mo.
Because if we see these things, then we will have that

MicM,c My 1<p<2

and that
My M,c My 2<p<o0.

Now we are going to see which are the T,, € My and T,,, € M.
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Proposition 6.1.2. The My class is the class of all bounded measurable functions and
the multipliers norm is identical with the L™ norm.

Proof. Let f e L?(R™) and m € My, then by Parseval’s Theorem 1.3.39 we have that
ITonf13 = VT3 = ImfI3 = [ m(€)F(€) e
But, since T}, is continuous we have that |T,, f||*> < 42| f|3. Take f such that

1
|1/2 XB(z,r) (5) € LQ(Rn)

fra(§) = B[

Then, we have that ||f, |3 = 1 and that

Jnl (&) fra(§)de = B . m (&) |Pd¢ < A

(:‘Ua 7")| B(z,r)
By the Lebesgue Differentiation Theorem 1.3.22 we arrive at

1 ) ,
[Blor)] Jpyy MOLE = @) ae

as 7 — 0. Therefore, [m|, < A, but since A is the infimum over all the constants such
that |70, fll2 < A f|2, we have that A < |m|o, then A = ||m]q. [ |

Proposition 6.1.3. The M1 class is the class of Fourier transforms of elements of
BR™), (the finite Borel measures), and the norm of My is identical to the norm of
B(R").

Proof. Let f e L' and € %(R"), then the Fourier transform of p is

e = [ e o)

So, we have that

&) =

f e du(a)

So, |ife < |plz@n). Now, define

< [ e idute)) = | ldu)] = lulagen
R™ Rn

Tf(x):= o flz —y)du(y) = (f = p)(z).

Jnjn x —y)|dzdu(y) = \flfwdu(y)

Then, by Fubini, we have that

ol = | |[ e =ty

= el m@n £l

and |Tf |l < |ft]oo]l flloo- So, we have that
B(R™) <« M;.

For the other inclusion see [7, Theorem 3.6.4]. [ |
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The following theorem shows that M, = M, with 1 =1/p+1/p’.

Theorem 6.1.4. Assume that 1 = 1/p+1/p’, 1 < p < oo, then M, = M, with equal
norms.

Proof. Let m € M, and let us denote o(f)(z) = f(:c) = f(—x), then we have that
o 1(f)(x) = f(z). Moreover,

Then,

So, we arrive at

(0 Tno f@))(y) = —(Tmo(£) @) (y) = m(y) ().

Therefore, 0 'T},0 = T;5. Even more, if m € M, then m € M, with the same norm.
Now, since L? A LP is dense in LP we can consider f € L2 n LP and g € L2 n L?, and use
Plancherel’s Theorem 1.3.35 to obtain

Tufg) = | Tut@ate)de = | m@i@ite)ds = | f@)m@)i)ds = (f.Tng)

n RTL

Assume also that | f], = 1, then

S T flolgly < 1F1pAlgly = Allgly,

F(2)Tng(a)de f T f(2)3(x)da

where A is the norm of m in M,,. Now, taking the supremum over f we obtain that
| Tmgly < Allgly-

Then m € My and |m|rq, = [m[arq,. Using the same argument but assuming that
m € M,y we obtain that M,, = M, with equal norms. |

Note that by Proposition 6.1.3, we have that M; < My. Then, by Theorem 6.1.4 we
have that M, < Mas. So, it remains to see that for any 1 < p < ¢ < 2 we have that

M c M, c My, < Ma.

Theorem 6.1.5. Let 1 < p <2 and take m € M,, ,then, m e M, for p < q <2.
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Proof. Let 1 < p < 2 and take m € M, and consider T}, the operator associated to m.
Then,
Ty : LP — LP.

But, by Theorem 6.1.4 we have that m € M, so
T, : L — LV,

Take p < ¢ < 2, therefore p < ¢ < p/. By The General Marcinkiewicz Interpolation
Theorem 5.1.5 we have that
Ty : LM — L™

where

—=—t—= +
q p p p p p p
Then, we have that
p_
1_1+0p-2) ,_a=" _ 4a-p
q p -2 q(2-p)
Notice that
q—p q—p

but L% = L4. Hence, m € M,. [ |

Now, we have that for any 1 < p < ¢ <2
Mic M, c My Ms,
but, by Theorem 6.1.4 we also have that
My c My c My c Mo

and if p < ¢ <2, then p’ > ¢’ > 2. This means that the M, is increasing with respect to
pif 1 <p < 2 and it is decreasing with respect to p if 2 < p < o0.
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6.2 Hilbert Transform

In this section we will define the Hilbert transform and we will apply the interpolation
methods to this operator. We will begin by giving the expression of this transformation.

Definition 6.2.1. Let f € LP(R) we define the Hilbert transform of f as
1 T —
1)) = 2p.v. [ LE=0q,
i R Y

Note that this integral has to be interpreted as

im L [ L@, (p.v. le " f) (2).

e—=0 T ly|=e Yy

The purpose of this section is to show that H : LP(R) — LP(R) continuously for
1 < p < o0 but that for p = o it does not hold.

In the following proposition we will see that the Hilbert transform is a tempered
distribution.

Proposition 6.2.2. The Hilbert transform applied to some point x is a tempered distri-
bution.

Proof. In order to see that H is a tempered distribution we will begin by proving that it

is a distribution. That H is linear follows from the linearity of the integral and the limit.
Let ¢ € D(R) and consider |H (¢)(x)| for any 2 € R", then we have that

J w(w—y)dy j @(w—y)dy
e<ly|<1 Yy ly|=1 Yy

Without lost of generality we can consider z = 0, and since if ¢ € D(R) then ¢ € D(R)
we can take ¢(y) instead of ¢(—y) and we obtain that
J v(y) dy
y=1 Y

J w(y)dy
e<lyl<1 Y

Since 1/y € Ll _(R\{0}) we have that the second integral is bounded by Ci|¢|m where
C is constant and independent of ¢, | - |, is the seminorm of a test function defined in
Section 1.4 and m € N. So, we only need to check the first integral. Since 1/y is odd we

have that J
f Y.
e<lyl<t Y

Hence, we can add ¢(0)/y since ¢(0) is constant and it does not modify the integral. So,

we get
f o(y) dy
e<lyl<1 Y

7| H(¢)(z)| < lim +

e—0

7| H(¢)(0)] < lim

e—0

+

= lim
e—0

lim
e—0

J ey) — w(O)dy _
e<ly|<1 Y
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Now, since ¢ is infinitely differentiable, in particular it is Lipschitz, so we have that

f e(y) — <p(0)dy
e<|y|l<1 Yy

— D
o) = o0, o [ e,
e<|yl<1 |yl =0 Jecpyl<1 |y
< [De|r=|B(0,1)],

< lim
e—0

lim
e—0

where |B(0,1)| is the measure of the ball of center 0 and radius 1. But, Dz < |¢|1
where ||p|]; is the seminorm of ¢, therefore, we have that |p|; < ||p|.n and we obtain that

T H(0)(0)] < [@llm(Cr + [B(0,1))).
So, H is a distribution, now we have to see that for all f € S(R) we have that
T H(NO) < K[ fl~

for some N € N and some constant K > 0 independent of f. But notice that for the first
integral we only have used that ¢ € C*(R), then it holds for f € S(R) because if f € S(R)
then f € S(R). Then, we have to check the second integral, then we have that

[ Aoy f(y)dy|< [
=1 Y =1 Y =1 Yl

Multiplying and dividing by |y|? and using that 1 < |y| we have that

2

yl°If (y f
[ WO, [ Wy,
=1 (Y21l =1 Yl

where K is a constant independent of f. Therefore, we have that

Tl H(f)(0)] < [ f1(K +|B(0,1)]).
So, H € S'(R). u

~ Now, let us compute the Fourier transform of H, we had seen in the Section 1.4.1 that
H(p) = H(p) for ¢ € S(R). In order to simplify the notation consider = 0. Then,

)0 = Lt [ PEae Ly ([ etwean) &
€]=¢ 1/e=|¢|ze \JR

T e—0 f T e—0 f

Applying Fubini and using that

e = cos(z) + isin(x)

we arrive at

H(2)(0) = L lim o) ( f e <cos<—y-§>+z‘sm<—y-§>>d§> dy.

T e—0 f

Since, cos is even and 1/¢ is odd we have that

f cos(—yf)% = 0.
1/e=|é|=e 3



6.2. HILBERT TRANSFORM 113

And since, sin(—z) = —sin(x). we arrive at

A d
H(p)(0) = %gig% Rs@(y) <_ifl/€>|£|>s sin(y - 5)5) dy.

Now, since for all 0 < a < b < o0 we have that

b .
f sm(:c)dml <4

a x

we obtain that

d
| s
1/e=|€|=e §

is uniformly bounded by 8. Even more, we have that
lim sin(y - 5)% = msgn(y).
20 J/ex ¢z 3

Therefore, we can apply the Dominated Convergence theorem and enter the limit inside
the integral, and we get that

A 1 - N3 1 .
)0 = 1 [ ol lim ( ] 0O ) dy = | o) (=imsgn)ay
= JR p(y)(—isgn(y))dy.
Hence, H(z) = —isgn(z) in the sense of distributions.

Now, since S(R) is dense in LP(R) for all 1 < p < o0 we can compute H(f)(x) for
f € LP(R) as the limit in LP(R) of Schwarz functions. Thus, we can reduce to prove that

[H(f)|Lr < C|f]Lr

for some constant C' independent of f and for f e S(R).

Proposition 6.2.3. The Hilbert transform is a continuous operator form L*(R) to L?(R).

Proof. Let f € S(R) since S(R) is dense in L?(R) we have that f € L?(R), and then we
can apply Parseval Theorem 1.3.39 to f, and we obtain that |f|3 = ||f|3. But, using the
definition of the Fourier transform for tempered distributions we have that

|H(HIE = |H()I3,
and, since we saw before H(z) = —isgn(z) in the sense of distributions, we obtain that

IH ()3 = 1713

Moreover, since the Fourier transform goes from S(R) to S(R) we have that there exists
g € S(R) such that f = g and, then, by Parseval Theorem 1.3.39 we arrive at

lgl3 = 1715 = 1H ()3 = [H)I3 = |H(9)]3.

Therefore, H : L>(R) — L?(R) continuously with norm 1. [
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In order to prove that H : L (R) — L (R) we need the following lemma which gives
us a formula for the square of the Hilbert transform.

Lemma 6.2.4. Let f € S(R), then for all x € R we have that
(H(f)*(z) = f*(2) + 2H(FH(f))(2).

Proof. Notice that since H acts as a convolution it is a Fourier multiplier with m(§) =
H (&) = —isgn(€). So, we have that

F2&) + 2(H(FHD)E) = (f + (&) + 2m(©)(f + H())(©).

Applying that H ( f)(z) = m(x)f(x) and the definition of convolution we arrive at

(F * P& + 2m(©)( ff F(6 — )y + 2m(e ff — nym(n)ds.

But, since the convolution is associative we also have that
(F = PE) + 2m(©) o= f (62)
+2mie fR FfE—mm(e—mdn.  (63)

So, averaging (6.1) and (6.2) we get

72(€) + & = | Faf(e = n@ + mi&)mm +mc ~ )
Now, we are going to prove that

m(n)m(§ —n) =1 +m(§)m(n) + m(§)m(§ —n)
because if this happens then
fR Fm) (€ =n) @+ m(&)(m(n) + m(& —n)))dn = JR F) F (& =mym(n)m(& —n)dn

—_

= (H(f) = H())()-

Hence,

72 + 2AH(FH(F)(E) = (H(F) = H())(E)
what implies that (H(f)?(x) = f%(x) + 2H(fH(f))(x). So, let us prove that
m(n)m(§ —n) = 1+ m(E)m(n) +m(§)m(& —n)

or equivalently,
0 =1+ m(§)m(n) +m(& —n)(m(§) —m(n)).

Since m(x) = —isgn(z) we have that

L+m(§)m(n) +m(€ —n)(m(§) —m(n)) = 1 —sgn(§) sgn(n) —sgn(§ —n)(sgn(§) —sgn(n)).
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Assume that sgn(n) = sgn(§), then

1 —sgn(€) sgn(n) — sgn(€ —n)(sgn(€) —sgn(n)) = 1 —sgn(€)® = 1 — (£1)* = 0.
Assume now that sgn(n) = —1 and that sgn(¢) = 1, then
1 —sgn(&) sgn(n) — sgn(§ —n)(sgn(§) —sgn(n)) =1+ 1 —sgn(§ —n)(1 - (-1))
=2—2sgn(§ —n).
But, since sgn(n) = —1 and sgn(§) = 1 we have that £ —n > 0, so sgn({ —n) = 1 and we
obtain that
1 — sgn(§) sgn(n) — sgn(§ — n)(sgn(§) — sgn(n)) = 0.
Finally assume that sgn(n) = 1 and that sgn(§) = —1, then
1 —sgn(&) sgn(n) — sgn(§ —n)(sgn(§) —sgn(n)) = 1+1 —sgn(§ —n)(-1-1)
=2+ 2sgn(§ —n).
But, since sgn(n) = 1 and sgn(§{) = —1 we have that £ —n < 0, so sgn(§{, —n) = —1.
Therefore, we get that
1 — sgn(§) sgn(n) — sgn(§ — n)(sgn(§) —sgn(n)) = 0.

Hence,
m(n)m(§ —n) = 1 +m(m(n) + m()m(§ —n).
|

Now we are going to see that the adjoint operator of H, H* is —H, if we see this,
since (H(£))? = (—isgn(€))? = —1, we will have that H? = —I, where I is the identity
operator. But, since

A~ A~

H2(f)(x) = H(H(f))(@) = (—isgn(@)) H(f)(x) = (—isgn(2))’f = —1,

we have that H? = —1 (in the sense of distributions). Denote by my(z) = H(z) and
mpx(x) = H*(z), then by definition of adjoint operator we get that, for all f, g € S(R)

f mp (@) f(2)g(x)dz =J H(f)(z)g(z)dx =f f(a)H*(g(w))da.
R R R

Now using the Hat Theorem 1.3.25 we obtain that

JmH Jf z)ympx(z)g(z)dz.

Using again the Hat Theorem 1.3.25 we arrive at

ij ff e (@)g(x)da

Hence, my (x) = my=(z) but as my=(z) = mpg(x) = —mp(x) = isgn(x) we can conclude
that H* = —H. So, we have that H? = —1I.

The following theorem shows us that H : L2" (R) — L?"(R) continuously.
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Theorem 6.2.5. Let k € N\{0} and let p = 2%, then H : LP(R) — LP(R) with norm C,
s a constant which only depends of p.

Proof. By Proposition 6.2.3 we have that H : L?(R) — L?(R) with norm 1. So, we have
proved the case k = 1. Now we are going to apply induction with respect to k, assume
that H : LP(R) — LP(R) is bounded with norm C, and p = 2*, since S(R) is dense in
L?P(R) it suffices to consider f € S(R). Then,

|H(f)ll2p = IH P
But, by Lemma 6.2.4 we have that
IO < (LF15 + 21 HFHE) ).

Applying that |H(fH(f))|p, is bounded by Cp| fH(f)|, and that by Holder’s inequality
[FH()p < [fl2pl H(f)]2p, we arrive at

IHN? < (F17+ 2BHFHUD ) < (S5 + 20,1 F |2pl H () 129) 2.

So, we arrive at

()2 IH(f)]2
( Tz > 0y S
So, taking
L HEWD
1£]2

we have to solve the inequality t? — 2Cpt — 1 < 0, but this gives us that

I1H (f)l2p I
T =t <Oy +4/C2 4+ 1.
1f 12 P b

P

Now, taking supremum over |f[s, = 1 we obtain that H : L?’(R) — L?’(R) with norm
Cop < Cp+4/C2 + 1. Then, we have that H : LP(R) — LP(R) with norm C,, for all p = 2"
with k € N\{0}. [ |

Since we have that

H:L*[R) - L*(R)
H: 1" R) - L2 (R)

continuously, by the General Marcinkiewicz Interpolation Theorem 5.1.5, we have that
H : LYR) — L9(R) continuously, for all ¢ € [2¥,2¥"!]. And as this happens for all
k € N\{0} we can conclude that H : LY(R) — L4(R) continuously, for all ¢ € [2,00). But,
since the Hilbert transform is a Fourier multiplier for 2 < p < oo, by Theorem 6.1.4, we
have that that H : LI(R) — L(R) continuously, for all ¢ € (1,00). So, it remains to see
that for p = oo it does not holds.

Proposition 6.2.6. Let g(z) = x(0,1)(z) € L*(R), then H(g)(x) ¢ L*(R).
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Proof. Let g(z) = x(0,1)(7) € L*(R) and take x > 1, then

mH(g)(x) = lim Md

Y.
=0Jyze Y

But x(o,1)(x —y) =1if 0 <2 —y < 1, hence
lim Mdy:f yzj yzlog< v )
€20 |y ) O<z—y<1l Y z—1 Y x—1

lim H(g)(z) = lim log( ’ ) _

Note that

z—1+ z—1+ rz—1

Therefore, H(g) ¢ L*(R). [

Again, using the Theorem 6.1.4 we arrive at H : L*(R) - L'(R). Hence, we conclude
that H : LP(R) — LP(R) continuously, for 1 < p < o0.






Bibliography

1]

[10]

[11]

[12]

[13]

L.V. Ahlfors, An Introduction to the Theory Of Analytic Functions Of One Com-
plex Variable, Third Edition, International Series in Pure and Applied Mathematics.
McGraw-Hill Book Co., New York, 1978.

M. Andersson, Topics in Complex Analysis, Springer-Verlag, New York, 1997.

C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Boston,
1988.

J. Bergh and J. Lofstrom, Interpolation Spaces: An Introduction, Springer-Verlag,
Berlin, Heidelberg, New York, 1976.

E. DiBenedetto, Real Analysis, Birkh&user, Boston, 2002.

H. Federer, Geometric Measure Theory, Die Grundlehren der mathematischen Wis-
senschaften, Band 153 Springer-Verlag New York Inc., New York, 1969.

L. Grafakos, Classical Fourier Analysis, Second Edition, Graduate Texts in Mathe-
matics, 249, Springer, New York, 2008.

T. Holmstedt and J. Peetre, On certain functionals arising in the theory of interpo-
lation spaces, J. Funct. Anal. 4 (1969), 88-94.

W. Rudin, Functional Analysis, Second Edition, International Series in Pure and
Applied Mathematics, McGraw-Hill, Inc., New York, 1991.

W. Rudin, Real and Complex Analysis, Third edition, McGraw-Hill Book Co., New
York, 1987.

E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton
University Press, 1970.

K. Yosida, Functional Analysis, Springer-Verlag, Berlin, New York, 1974.

A. Zygmund, Trigonometric Series, Third Edition, Cambridge University Press, Lon-
don, 1977.

119



	Acknowledgments
	Introduction
	Basic Notions and Preliminary Results
	Complex Analysis
	Poisson Kernel in the Strip

	Functional Analysis
	Completeness
	Weak Topologies
	Bochner Integral
	Fréchet Spaces and the Big Theorems

	Harmonic Analysis
	The Weak-text Spaces
	Lebesgue Differentiation Theorem
	Fourier Transform
	Schwarz Class

	Distribution Theory
	Tempered Distributions


	Classical Methods
	Riesz-Thorin Theorem
	The Marcinkiewicz Theorem
	An Application of Marcinkiewicz Theorem

	Real Interpolation
	Real Interpolation Methods
	 K-method
	 J-Method

	The Equivalence Theorem
	Some Properties of text
	The Reiteration Theorem
	Duality Theorem

	Complex Interpolation
	Definition of Methods
	Functional text 
	Functional text 

	Some properties of text
	The Equivalence Theorem
	The Reiteration Theorem

	Interpolation Spaces
	Lorentz Spaces
	Definition
	Interpolation

	Hardy Spaces
	Definition
	Interpolation


	Boundedness of Operators
	Fourier Multipliers
	Hilbert Transform

	Bibliography

