Hamiltonian-Hopf bifurcation under a periodic forcing
Quasi-periodicity in splitting of separatrices
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Abstract
We consider the effect of a non-autonomous periodic perturbation on a 2-dof autonomous system obtained
as a truncation of the Hamiltonian-Hopf normal form. We study the splitting of the invariant 2-dimensional sta-
ble/unstable manifolds of a fixed point. Due to the interaction of the intrinsic angle and the periodic perturbation
the splitting behaves quasi-periodically on two angles. Different frequencies are considered: quadratic irrationals,
frequencies having continuous fraction expansion with bounded and unbounded quotients, and “typical” frequencies
in measure theoretical sense.

The model

We consider the (2 + %)—dof Hamiltonian system H(x,y,t) = Hy(x,y) + €H(x,y,t), being
(x,¥) = (1,72, y1, yo), where

Hy(x,y) =T+ v(Ty — T3 +T%),
Hi(x,y,t) = g(y1)f(0),

'y =xy9 —woyy, 219 = 517% + ZL‘%, 2's = y% + y%,
gly1) =y /(d—v1), f(O)=(c—cos(d)t, 6 =~t+0.

e We fix concrete values of ¢, d, v and ¢, and consider v > 0 as a perturbative parameter.
e The parameter 0 € |0, 27) is the initial time phase.

e Note that /71 contains all powers y]f, k > 5, and all harmonics in 6.

The unperturbed system H(. The functions G; = 'y and Go =19 — '3 + F% are independent

first integrals. In polar coordinates x{+ixo = Ryé Y1, Y1+iyo = Roé ¥2 the restriction to (R1, Ro)-
components 1s a Duffing Hamiltonian system (hence having figure-eight shape separatrices). On
WU/5(0) one has 9| = 19 £ 7, 19 = t + 1. The 2-dimensional homoclinic surface is foliated by
homoclinic orbits (x1(t), zo(t), y1(t), yo(t)) given by

w1(t) +izs(t)=—Ri(0)e Y, yi(t) +iya(t) = Rolt)e! ),

being 1(t) =t + vy, R1(t) = v/2sech(vt) tanh(vt), and Ry(t) = /2 sech(vt).

Periodic forcing: e H;. When restricted to the unperturbed W%/$(0), g(y; ) has a factor 1-periodic in
t while f(0) is periodic in ¢ with frequency 7. Hence, v € R\ Q leads to quasi-periodic phenomena.

The invariant manifolds 17*/(0) for different v values

The angles (v, 6) are initial conditions on a fundamental domain (torus 7) of W"/$(0). Write
Hy= G +vGo, G1=I"1, Go=T9—T'341'%, and consider the Poincaré section ¥ = max(R>).
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Figure 1: Splitting of the invariant manifolds: AG, (left) and AG, (right) for v = 27* (top) and v = 27° (bottom). We
have considered ¢ = 5,d =7,¢ = 1073, and vy = vy = (v — 1)/2.

The Poincaré-Melnikov function

For simplicity, we discuss on the G1-splitting (similar for the (-splitting). Recall that | =
g(y1)f(0), where g(y) = y?(d —yy) " Land f(#) = (c — cos(f))~t. Let c; (resp. dy,) be the co-
efficients of the Fourier (resp. Taylor) expansion of f (resp. ¢’), that is,

F0) =Y cjeos(j0),  gy) =D dgi .

i>0 k>0

If ¢V(s) is a solution of the system when e = 0, then one has 1) =t+1)g, § =~t+6y, (g, 8y) €T, and

the distance )
G (%o, 00) — Gi (o, 0g) = AG1 + O(€7),

1s given by

AG1 = E/OO {G1,H } o CO(S) ds

o V2EFL g (cos(t + 1)) HHE
de / sin(t + o) f(t +00) ) (C(]jsh(yt>>5+ko

X k>0

dt.

After some algebra one obtains

AGI =€y ;N 25 dy N by Y Tsin((k+5—20)+1500)

720 k>0 0<2:<4+k [=%1
=€ S: S: 07%3,777»2 sin(mjg — mabp), where
mle mQEZ
o cos(st) m+1—2i [ m+1
I1=11(k+5— 21+I k+5 I = dt = . :
1 1( + 1+ J7V Vs + )7 1(87V7 n) /R(COSh(Vt))n y m,1 2m<m+1> ( 1 )
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Main result

Assume thate > 0, ¢ > 1,d > V2,7 € R \ Q and v < vj; < 1. Let mj /mo be an approximant of
7, and let ¢s € R be the constant such that cgmj|m; — ymo| = 1.

Theorem. There exists a “universal” (almost independent of ~y) function ¢); (L) s.t. the contribution
of the harmonic associated to my/ms to the splitting satisfies

wi(L)\L:CSsz ~~ \/csV log \C%)mQ\, when v — 0,

1

where Uo(L) = Uy(L) — v/ Llog L/mq, V;(L) < ¥ ~ —4.860298.

In particular, if m/ms9 corresponds to a dominant best approximant harmonic (BA) of AG;
(resp. AGo) for v € (v, v1), vy, v < 1, then AG; =~ exp (%(L)\L:Vm%cs/w/csy), i =1,2.

-2.45

_25 -

-2.55

-2.6

-2.65

-24 -20 -16 -12 -8 -4 -40 -35 -30 -25 -20 -15

Figure 2: For v = (/5 — 1)/2, ¢ = 10~* we represent /v log |Cf(r}1),m2 /€| as a function of log,(~). In the right plot, the
points correspond to the values v; where the dominant harmonic changes. As expected, dominant harmonics are associ-
ated to best approximants: from m; = F; — Fj1;, where {F; }; denotes the Fibonacci sequence. The rightmost change
corresponds to m; = 55 — m; = 89, while the leftmost to m; = 196418 — m, = 317811.

Other frequencies: hidden/not hidden best approximants
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Figure 3: We display /v(log(AG,)/€) as a
function of log, (V).
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| Top left :
25] 25 | w o= (Vb —1)/2 = [0;1,1,1,1,1,..] =
shlhhf : 3}/ 0.618033988749894.
350 35 Top right :

v = [0;10 x 1,1,10,1,1,10,1,1,10,1,...] =~
0.618051226819253.

ol o Bottom left :
v = [0;10 x 1,1,10,1,10,1,10,1,10...] =
20 2l 0.618051374461158.
25 25 Bottom right:
3] 3 v3 = [0;10 x 1,2,3,4,5,6,7,8,9,10,...] =

0.618020663293438.

Hidden BA (HBA) and “‘typical” measure-theoretical properties

Assume that (our system satisfies these assumptions):

e The perturbation is the product of two functions f(x1, x2,y1,y2) and g(0).
Denote by Py (t, 1) and Py(0) their contribution to the Poincaré-Melnikov integral.

e The homoclinic connections tend to zero when ¢ — o0 as sech(vt).

e Py(t,%) is of the form »  A;(t)sin(j¢), ¥ = t + 1y, where A; depend on powers of sech(t) and
1Al ~ exp(=jp1), p1 > 0,

o Py(0) is of the form B ) | ;- exp(—jp2) cos(j8), 0 = vt + 0y, po2 > 0.

Then minus the logarithm of the contribution of the harmonic related to the BA N;./D;. to the
Poincaré-Melnikov function 1s

T(v, Dy) = Dy + sp/v,
where s;. = | N, — vD;.| and where we have approximated N;. = vD;. + O(D];Q). The role of CFE
appears as slzl =Dy, (CZ + 1/(:];) : CZ = k41 Qhv2s - - - |, ¢ =19k Qre—1, - - - » 1]- We are interested
in minimizing 7'(v, D;.) for a given v.

Theorem. (1) Two consecutive harmonics associated to BA cannot be hidden.
(2) If the £ + 1-th harmonic associated to BA is hidden then g5 = 1.

The following properties related to the CFE of « hold for numbers in a set of full measure:
e The geometric mean of CFE quotients tends to the Khinchin constant KC ~ 2.685452.
o If D,, are the BA denominators, then limy, oo log(Dy,)/n — LC = 72 /(121og(2)) (Levy constant).

e The Gauss map x — 1/x — |1/x]| is ergodic and the probability of having k£ as a quotient is given
by the Gauss-Kuzmin law: P(k) = logo(1 + 1/(k? + 2k)). For a “typical” number, its CFE is a
sequence of realizations of not independent identically distributed random variables.

Conjecture: Under the stated assumptions on the homoclinic and the perturbation, for a set of ratios
of two frequencies (1, y) of full measure, the distribution of HBA follows a normal law.
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Figure 4: We display the results for v = m — 3. Counting the HBA 1n blocks of 1000 consecutive BA, we obtain that the
CDFis N(u, o) with 41~279.118 and 0 ~9.604 (more than 1/4th of the BA are HBA). One has 2785810 HBA from the first

107 quotients. Similar results were obtained for the “typical” frequencies €70 — 1, evV?— 4, eV — D, eV — 9, and eV —14.
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