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Introduction: general framework

Let F5 be a 2-parameter family of analytic symplectic 4d maps,
0 = (01, 9,) € R? small enough parameter.

Assume:
F5(0) = 0 totally elliptic fixed point (for all &),
spec(DF5)(0) = {1, A, Ao, Ao}, Ay = exp(2miay), k = 1, 2.

We will always assume that the eigenvalues are simple, i.e., &y # Q.

The local dynamics can be described using Birkhoff NF.

Set of resonances
F:{(kl,kg) Ikl&l—l—kg()@:o (Hl()d 1)} CZ2.

~r = (k1, ko) € I'is aresonance of order |r| = |k1| + |k2|.
=~ (k1 ko) €T & N2 =1

~ (0, 0) trivial (or unavoidable) resonance.

- We assume k; > 0 to avoid trivial symmetries in resonances.
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Introduction: fixed point types

The totally elliptic fixed point of F g, at the origin, can be:

1. Non-resonant (I is a trivial group).
In this case { a1, g, 1 } are rationally independent.

2. Simply resonant (I' is a one-dimensional lattice).

In this case there are two possibilities:
a) a; € Q, as € R\ Q (or vice versa).
b) vy, 5 € R\ Qbut { oy, g, 1 } are rationally dependent.

3. Doubly resonant (I is a two-dimensional lattice).

In this case a1, ay € Q

P1 P2
— — and Qg — —, P1,P2,41, 42 e N.
d1 q2

aq
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Introduction: frequency space

Each resonant relation (k1a1 + k2 = ks, k; € Z) defines a line on the torus

T =1 (A1, A €C23|)\1‘:‘)\2|:1}-

Simply and doubly resonant eigenvalues are dense in 7 .

0.5

S

General idea of this work

We fix (a, cvp) € T which we
assume close to a double reso-
nant relation (ov; = p;/q;+06;):

!
NV

kioi + koas = ks

J3

7101 + Ja0

and we study the dynamics of

)

7

F’s at the double resonance (0

05 small — res. BNF + unfolding).

Resonant lines (of order < 12) on the plane (a1, a2). 4133



Introduction: phase space structure

Diffusion along phase space takes place basically along single resonances but
multiple resonances play a key role in an explanation of the Arnold diffusion

(e.g. Nekhoroshev theory — upper bounds on the rate of diffusion).
10

-10 -5 0 5 10
('l,b, J) — ('I,Z, J_) = (¢1—|—5(j1—|—a2j2),¢2—|—5(a2j1 —|—a3J_2), J1 —|—5sin¢1, J2—|—5esin¢2).

—0=0.5,e=0.1,a2 = 0.5and az = 1.25. 5/33
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Takens NF

Fs symplectic 4d maps w = dzi A dy: + dzs A dys), 0 € IR? small enough,
F5(0) = 0, Spec={ A1, Ao, A1, Ao}, A = exp(2miag), k = 1,2.

R27ra1 O
1 7& Ny — DFo(O) ~ AO —
O R27ra2

A canonical change of variables reduces Fs to BNF Ng:
N(; O AO — A()N(s.

since DNy(0) = Ag the map Ay ' Ny is tangent to the identity
—> it can be formally interpolated (in a compact domain around 0) by a
(Hamiltonian) vector field:

Ns = AOCD}{(s + exp. small error
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Interpolating Hamiltonian

Moreover Hg is Ag-invariant (Hs = Hs o Ag) =—> N7 = A‘é@fﬁé forall ) € N
—> study the flow of H g instead of iterations of V.

To obtain Hg:
~ Complex vbles (zx = zx + iyk, zx = zx — iyx), Mo = diag( A1, Ao, A1, Aa).
2 2% 2L 21 resonant <= Ag-invariant <= (j — k,l — m) € T..

: : _ L 1=k Il =-m
Then Hyg is a sum of res. monomials: Hg = E Rjkim (0) 21 2) 2524

(j—k,l—m)eT
j’k7l7m20
2

In Poincaré vbles (I; = '232" , (p; = arg z;):

Hs = Z a/klk2pq(5)]1p+k1/2]2q+|k2|/2 cos(k1p1 + koo + biykapg)

(kl,kg)EF
»,q=0

Q: Dominant terms of Hg? Arithmetic properties of I depending on (i, ais).
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Minimal generators of | primary resonances

Recall: T' = { (k1, k2) : kia1 + kaaz = 0 (mod 1) } C Z? lattice.

Consider:
~ 19 = (k1, ko) € I' a smallest (maybe non-unique) non-trivial element,
- T = (ml, mg) € 1" any of the smallest elements independent from ry.

— r( and ry generate I' (provided a;; # o).

We call ry, r; the primary resonances (minimal generators of I).

We denote by n; the order of r;, 7 = 1, 2 (then, ng < ny).

Remark: The primary resonances are unique for most of the frequencies. However, there are two
situations of non-uniqueness:
® At the leading order. Consider v = 1/8, a2 = 3/8. Then ng = n1 = 4 and there are 3
resonances of order 4: (1, —3), (3, —1), (2, 2).
® Atorder ny. Consider a; = 1/11, ag = 4/11. Then no = 4 and the only resonance of order 4

is (1, —3), and n1 = 5 and there are 2 resonances: (4, —1) and (3, 2).
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Classification by primary resonances

If ng > 5 the fixed point is called weakly resonant and otherwise it is strongly

resonant. There are different situations to study:

e 5 < ng < ni: Uptoorder ng — 1 the interp. Hamiltonian of BNF looks
like the one of a non-resonant point. Moreover, up to order n; — 1 is also

Integrable.

e 5 < ng =nq: Uptoorder ng — 1 the interp. Hamiltonian of BNF looks
like the one of a non-resonant point. Adding order ny-terms becomes
generically non-integrable.

e Simply strong resonances: ng < 4 < n;.

e Doubly strong resonances: ng = 3,n1 = 4and ng = n; < 4.
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Doubly strong resonances o # Qs
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Weak double resonances: a truncated model

Recall: Fis, A\x = exp(2mia), ax = pr/qr + 0r fork = 1,2, 6 = ||8]| small.

Takens NF: Hg = Z ak1k2pq(5)lf+k1/212q+|k2|/2 cos(k1p1 + k2w2 + brykopq)
(k1,k2)€l

Assume (most common case!) that

-~ (X1, Qo are close to be doubly resonant,

~ 19 = (k1, ko) and r; = (my, mo) are the unique minimal generators of I,
-9 < ng < ny (weak double resonance).

Adapt vbles: Y =kip1+kapa, o =mip1+mape, [T =kiJ1+miJa, [a =kaJ1 +maJ2

H5 — HO(J7 5) + Hl(J7¢175) =+ HQ(Jh J27¢17¢275) + On1+1(z)

Hy = A00<J1,J2,5),
n1/no

H1 = Z Iil|k1|/2]éllk2|/214[10(<]1,J2,5) COS(lﬂbl —|—Bl10(J1,J2,5)) .
l1=1

Hy = I{m1|/21£m2|/21401(0,0,5) COS(¢2 —|—B()1(0,0, 5)) .
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Localizing around the double resonance

In a neighbourhood of the origin

Hy = c10J1 + c0J5 + a1J12 + a9 J1Jy + a3J22 + (9(55)

~inv. T? at J; = 07y, Jy = O0ry = inv. T? for the NF system if I1, I, > 0.

Then J;, = 01, + 6™0/4 ], and H = 6™/2H gives

HO(Jl,JQ,(s) = CL1J12 + a2J1J2 —|—CL3J22 _1_0(5710/4)’

n1/mno
Hl(‘]laJQa,(pl?(s) — Z 5(l1_1)n0/2Al10(J17J276) COS(Z1¢1+BZ10(J17J276))7

l1=1

Ha(Jv, Jo,th1,102,8) = 61702 a0, cos (1 + bot ) -

Furthermore, if n; < 2ng (different but similar order resonances) then

Hi(Jy, J2,¢1,8) = (a0 + S Aoy, o, d)) cos i

— No other harmonics in H; appear!
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Analysis of the truncated model

J2 J2
H (1,49, J1, Jo) = ?1 + aodiJo + &3?2 + cos(1) + € cos(1s)

~ For the moment € ~ §("1770)/2 will be considered as a small parameter.
— Change: 1;1 = ¢1, @ZQ = ’QDQ — CL2¢1, jl = Ji + CL2J2, jg = Js
H(wl, ’(ﬂg, Jl, Jg) = J12/2 -+ d]22/2 + COS(wl) -+ ECOS(wg —+ agwl),

where d = a3 — a3. We assume d # 0.
~ 4 fixed points: If v = ed > 0 and |¢| small enough

p1 = (0,0,0,0) - HH, ps = (0,7,0,0) - HE

P3 — (7T7 — A2, 07 O) — EH, P4 = (7T; (1 — CL2)7T, O, O) —EE
- Reversibilities:

RO(¢17¢27J17<]2) — (27T_¢17_27Ta2_¢27<]17<]2)7
Rl(w17w27‘]17<]2) (27T_¢1727T(1_a2)_¢27J17J2)°
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The NHIM

H (1,2, J1, J2) = Ji /2 + dJ3 /2 + cos(ip1) + e cos(2 + azipr)

e = 0:
- 1)q is cyclic (Jy is a first integral) = Pendulum (fast) dynamics in

1, Ji-coord. given by H} = ’%12 + cos(1)1).
- The cylinder IT§ = ITI5™ = {4y = 0 (mod 27), J; = 0} is a 2D NHIM.
- II§ is foliated by p.o. C} = TIg N {H = h}.
- WH(IIY) is given by J; = 2sin(1)1/2).  +— 3D
- Non-transversal: W*(IIg) = W*(II).
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The perturbed NHIM

H (1,2, J1,J2) = J12/2 + dJ22/2 + cos(1) + € cos(2 + a21)1)

e = (: Normal hyperbolicity theory (Fenichel)

- JTI? (resp. IT°™) O(¢€)-close to ITy (resp. IT3™).
(the perturbed system is not 1)1 -periodic: Ry (IT2) # I12 )

- IWS(T12) O(e)-close to W*/#(119)

- W¥(II?) given by a graph J; = 2sin % + ef (11,19, Jos €),
with fo = ——— [ 9(s, 02 + dJ, log[tan($)/ tan(4)]) ds

sin “5-
2

and g(11,19) = azsin(ya + azihy).
- Transversality? The distance between W%/ S(Hg/ Mony = mis
JP— Ji = e(fo(w, —2may — Yo, Jo) — folm, s, Jg)) + O(e?) =
= €A(Jy) sin(yy + mas) + O(€?),

where

A(Js) = as /07T cos(as(s — m) + dJy logltan(2)]) ds.
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Transversality properties

J? — J}" vanishes for 1)y = —mas (mod 7) = 2 lines of homoclinics

60 — {(¢17¢2,J17J2) : Jl — 2+6f(¢17w27*]2;€)7 ¢1 = T, ¢2 — —Taz }7
0 = {(W1,92,J1,J2) : J1 =2+ ef(Y1,¢2,J25€), Y1 =7, P2 =7(1 —a2) }.

W(T1V) intersects TW*(I1°™) transversally provided A(.J5) # 0.

N

- For Jy = 0, A(J2) = sin(mas) = transversality if ay & Z.

-~ For Jy arbitrary, A(.J2) vanishes on the lines

Fix ao and d, then:

« For J, — 00, the lines accumulate to
k/2, k € Z.

< Finite number of zeros of A(Jy) =

Given ao except for some concrete values

A

19 X » of Js5 the intersections are transversal.
x-axis: d.Jo, y-axis: as 1712

o
[E
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Dynamics on the NHIM and transversality

The dynamics on I1Y is given by 1/'\H8

J2 0.5
HY (s, 1) = A2 e cos(pz)+1+O(€), Ja | g

0.5

where (wg, Jg) are used as coordinates on T~

-1

the cylinder. : . by "

I1Y contains the fixed points p; (HH) and py (HE).

Q: Assume that W*(I1?) intersects WW*(IT™) transversally. Does it imply
that the separatrices of C| intersect transversally inside { H = h }? NO.
Any p € {}, is homoclinic to C'y with h = H(p). Then,
transversality inside { H = h} & T, ¢ T,2{H=h} &
h#1+e(—1)fcosmay + O(e?), k =0, 1.

Remark. If az ¢ Z = H(p2) < Ex < H(p1), k = 1,2 (inside the pendulum within IT2).
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Dynamics on the NHIM and transversality (Il)

0 Eiw 2p €e=0.1,a0 =0.25,d=05andh =1+ ¢
2

Assume as ¢ 7

e Consider h = H(p;) = 1 + e then C'; are the separatrices.
» Cl' = {Jy = 0} (line of fixed points) = W*(C%) and W*(Ry(Cs))
intersect transversally because A(0) # 0 and H(p;) > Ej.
» Melnikov (Kovacic) or slow-fast analysis (Haller) = angle is (’)(\/E)

e Consider h < H(py): initially £ N W*(C%) consists of 2 homoclinic
points which collide when h = E, and disappear = there are no primary
homoclinic orbits to ps (EH) because Ej, > H(p2).
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Non-analyticity of 11.: a numerical experiment

Normal hyperbolicity theory = 11, is (at most) C" with r = 5\1/5\2 the
guotient of the normal and tangent maximal Lyapunov exponents.

Q: For concrete parameters, can we easily detect the lack of analyticity?

Notations:
e Consider p; (HH fixed point). We define

JII¢
WS,L|LOW (pl) — Wu(]h) M HS
(the separatrices of the pendulum inside I1°)

e We say that an 1D invariant submanifold W (p1) C W*(p1) is a slow
unstable invariant manifold if it is tangent at p; to the eigenvector related to

the slow eigenvalue \s.
There are infinitely many slow unstable invariant manifolds (in particular,

U 0
‘/Vslo,vl\;Ie (pl))
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Basic idea

Denote by X g the vector field related to
2

J? J
H (1,19, J1, Jo) = 71 + agJyJo + 0,372 + cos(1)1) + € cos(1s).

— In these coord. H8 is given by vy = 0, J; 4+ asJy = 0.
— Denote by A = (A1, A2 the unstable eigenvalues of DX (p;).

Basic observations:

1. If I1Y is an analyti | Pyt | '
I IT ytic manifold then W, < (p1) is analytic.

2. 1f Ais non-resonant, then there is a unigue analytic slow unstable invariant
submanifold W% (1) which will be denoted by W (p1). On the other
hand, if A is resonant then generically all slow unstable submanifolds are

non-analytic.
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Proof of the basic observations

1. Assume II? analytic = H\Hg IS an analytic Hamiltonian which has a
non-degenerated saddle fixed point with eigenvalues =\

u, 119 : .. ,
—> W < (p1) is @ 1D analytic inv. manifold.

2. The restriction X of the vector field (v.f.) to W*(p;) is a 2D analytic v.f.
with (0, 0) as a repulsive fixed point with eigenvalues A.
~ If A non-resonant X is conjugated to S; = A{S1, S2 = A\aSo.

. /A & Ao/ .
Solutions: 51 = 0521/ ? (or 85 = 6’512/ ') non-analytic except

s;1 = 0land s, = 0.

- If A resonant (i.e. AN o= ko, k € N) X is conjugated to
S1 = 5\151 + ng,
So = 5\232.
Solutions: 51 = vs(log(sy) + C')/ A2 non-analytic except 55 = 0.
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How to proceed

Conclusion:

e If A is resonant then HS IS generically non-analytic.

e If A is non-resonant then the analyticity of HS implies

0
W2 (p) = W (p1) by uniqueness of the analytic invariant unstable
manifold.

To check non-analyticity of 11:
1. Consider the generic non-resonant case.

2. Numerically check that the analytic W (p; ) leaves the cylinder I1Y.

3. It follows that TV.\'e (pl) #+ W (p1) and, consequently, that 1V is
non-analytic.

Remark. The tangency order between the analytic solution s; = 0 and the other solutions of s1 = 5\1 S1,

$2 = A2S2 is 7w = A1 /A2 = necessary to approximate W.5% (p1) up to order k > .
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Example

e Parameters: as = 0.25, ag = 0.5625 and ¢ = 0.1.
e A\ non-resonant (\; ~ 1.003282954 and Ay =~ 0.222875109, then 7. ~ 4.501547788).

e Compute the parametric representation 1;(s), J;(s) of WX (py).
=N Tylst Ji(s) =) JYsE = 1,2
k>1 k>1

e Truncating at order £k = 120 the approximation of W%

Y (p1) has an error
below 10~ 1° for |s| < s, ~ 0.3635.

24/33



A posteriori check: HO; is C'* but not C”

We compute WW*(p;). Parametrization:
9(817 32) — (wl(sla 82) ¢2(817 82)7 Jl(817 82) J2<517 82)) where
i(s1,82) = D p 1 ¢k13132’ i(s1,82) = Zkl>1 313l2’Z =1,2.

At order 20: error below 1071° for s = (51, 89) s.t. ||s|| < s, ~ 0.282.

- 81 = 0 corresponds to W (p1) (analytic)

- We compute the non-analytic 1D submanifold of W% (p;) within TIY by
imposing that the homoclinic has ; = 0.

0.22 ¢ | -12 ] 3e-10 F K
-13 +
0.18 r
14 | ] RN
0.14 1 O &% o8 ¥a S i
-15 [ . e + +I+ +
01y y S:ﬁ#g ”}LH fa
-16 +
0.06 | 1 3e-10 | °
-5e-06 -4e-06 -3e-06 -2e-06 -le-06 0 -2.4 -2.2 -2 -1.8 -1.6 -1.4 -2.4 -2.2 -2 -1.8 -1.6 -1.4
S1, S2 log s2, log s1 log s2, |log s1 — f(log s2)]

f(x) = rox — 5.55007880852
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Beyond NF: a 4D map

Truncated NF: H(wh ¢2, Jl, Jz) = J—l + asJ1Jo + CL3J—2 + COS(wl) + €COS(¢2)

2

2

2

2

Generating function: S(i1, 2, J1, J2) = ¥1J1 + ada + SH(Y1, 2, J1, J2).

[y )

(5
J1

\ /2 )

Phase space structure similar to /4 (but the homoclinic trajectories split!):

[y )
s
7,

\ %2/

(

\

U1+ 0(J1 + azJs) \
wg -+ 5(a2j1 —+ Cbgjg)
Ty + 8 sin(a;)

Jo + desin(1)y) )

e 4 fixed points: p; HH, ps HE, p3 EH, p4 EE.

o NHIM ITY ;.

e Reversible: 1 = (—1, 21 — 1o, Ji, jg),

R2 — (27T _ w1,27'(' - 77D27 jla jQ) and R3 — (27T T wh _¢27 j17 j2)
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The homoclinic trajectories
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Splitting of the invariant manifolds

To measure the splitting of the manifolds W/ ** (pl), at the homoclinic point py,

on 2pg,, k =1, 2,3, we compute the volume V" defined as follows:

o | et
(W1, %2, J1, J2) = (G1(s1, 82), Ga(51, 52), G3(51, 52), Ga(51, 52)),
s1, S2 € R, be the parametrisation of the 2D local W*"(p1).

e Consider (s”, s%) such that the point with coordinates

(G1(sh, s8), Go(s?, s%), G3(s", sB), G4(s", s1)) belongs to the
homoclinic trajectory defined by py,.

e |/ is the volume defined by the unitary tangent vectors v; = v, /||v,|

where

U1(sy, 53) = (0Gi/0s1)(s1, 53). Da(s, 53) = (0Gi/0s2) (51, 55).

Us(st, s5) = Ri(01(st, s5)) and Da(s?, s5) = R1(02(s], s5)).
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Background from 2D maps

Consider F' : R? — R? analytic APM. Assume:
« F'(0) = 0 hyperbolic fixed point, Spec={\, 1/A}, A~ 1+ ¢ € << 1.

« P~ %{ibg,\’ H is the so-called limit Hamiltonian.

Let ['(¢) the separatrix of H = I'(¢) has singularities fort € C\ R =
Let 7 the closest singularity to the real axis.

Then (generically):

O~ A(log )\)Be—QWImT/log)\
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Asymptotic behaviour of V' in 2p,

For a fixed €, as and a3 parameters we study the behaviour as 0 — 0.
At py, in 22g, (homoclinic trajectory on HS,(;):

V o~ AIuQBe—QwIng/,ug

where 5 = log My, A, B € Rand 7, = im/2 + O(y/€) is related to the
“closest” singularity 7o of the homoclinic trajectory of the limit vector field.

0 v v v v v 1.5708

-200 }
1.56 }
-400 }

-600 F
155 F

-800 F

0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.02 0.04 0.06 0.08 0.1

e = 0.1, ay = 0.25, a3 = 0.5625. Left: log V' vs. 9. Right: Im 75 vs. €.

Different values of €, as and a3 have been considered.
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Asymptotic behaviour of V' in 2, and 2g,

In both cases, the volume V' behaves like
V((S) ~ A/,L?e_%ﬂm%l/'ul ’

with 117 = log A1 and where 7 is related to the closest singularity 7; of the

homoclinic trajectory of the limit Hamiltonian flow which has a homoclinic point

on the plane (11, 19) = (7, ) (or (11, 19) = (7, 0)).

— Note that the limit homoclinic trajectory is not explicitly known.

— There is no developed theory available (4D!) supporting the previously given
asymptotic formulas.

Remark. Our numerics support the fact that 5 = —3 in all the cases and

Independently of €, as and a3. Further investigations are needed.
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Future directions

e Consider \e| In a non-perturbative regime (e.g. two resonances of equal

order).

In particular, for \e[ large the EE fixed point can suffer a Hamiltonian-Hopf

bifurcation (complex instability).

e Clarify the situations where a different truncated model is obtained, and

study the strong doubly resonant cases.

e Analyse the diffusion properties (obtain quantitative data from massive
numerical simulations, and relate it with the geometry at the simple/double
resonances).

— Work in progress with E.Fontich, V.Gelfreich and C.Simo.
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Thanks for your attention!!
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