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Introduction: general framework

Let Fδ be a 2-parameter family of analytic symplectic 4d maps,

δ = (δ1, δ2) ∈ R2 small enough parameter.

Assume:

Fδ(0) = 0 totally elliptic fixed point (for all δ),

Spec(DFδ)(0) = {λ1, λ̄1, λ2, λ̄2}, λk = exp(2πiαk), k = 1, 2.

We will always assume that the eigenvalues are simple, i.e., α1 6= α2.

The local dynamics can be described using Birkhoff NF.

Set of resonances

Γ = { (k1, k2) : k1α1 + k2α2 = 0 (mod 1) } ⊂ Z2 .

→ r = (k1, k2) ∈ Γ is a resonance of order |r| = |k1|+ |k2|.
→ (k1, k2) ∈ Γ⇔ λk11 λ

k2
2 = 1.

→ (0, 0) trivial (or unavoidable) resonance.
→ We assume k1 ≥ 0 to avoid trivial symmetries in resonances. 2/33



Introduction: fixed point types

The totally elliptic fixed point of F0, at the origin, can be:

1. Non-resonant (Γ is a trivial group).

In this case {α1, α2, 1 } are rationally independent.

2. Simply resonant (Γ is a one-dimensional lattice).

In this case there are two possibilities:

a) α1 ∈ Q, α2 ∈ R \Q (or vice versa).

b) α1, α2 ∈ R \Q but {α1, α2, 1 } are rationally dependent.

3. Doubly resonant (Γ is a two-dimensional lattice).

In this case α1, α2 ∈ Q

α1 =
p1
q1

and α2 =
p2
q2
, p1, p2, q1, q2 ∈ N .
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Introduction: frequency space

Each resonant relation (k1α1 + k2α2 = k3, ki ∈ Z) defines a line on the torus

T = { (λ1, λ2) ∈ C2 : |λ1| = |λ2| = 1 }.
Simply and doubly resonant eigenvalues are dense in T .

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.1  0.2  0.3  0.4  0.5

Resonant lines (of order ≤ 12) on the plane (α1, α2).

General idea of this work

We fix (α1, α2) ∈ T which we
assume close to a double reso-
nant relation (αj = pj/qj+δj):

k1α1 + k2α2 = k3

j1α1 + j2α2 = j3

and we study the dynamics of

Fδ at the double resonance (δ

small→ res. BNF + unfolding).

4/33



Introduction: phase space structure

Diffusion along phase space takes place basically along single resonances but

multiple resonances play a key role in an explanation of the Arnold diffusion

(e.g. Nekhoroshev theory – upper bounds on the rate of diffusion).
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(ψ,J) → (ψ̄, J̄) = (ψ1+δ(J̄1+a2J̄2), ψ2+δ(a2J̄1+a3J̄2), J1+δ sinψ1, J2+δǫ sinψ2).

→ δ = 0.5, ǫ = 0.1, a2 = 0.5 and a3 = 1.25. 5/33
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Takens NF

Fδ symplectic 4d maps (ω = dx1 ∧ dy1 + dx2 ∧ dy2), δ ∈ R2 small enough,

Fδ(0) = 0, Spec={λ1, λ2, λ̄1, λ̄2}, λk = exp(2πiαk), k = 1, 2.

α1 6= α2 =⇒ DF0(0) ∼ Λ0 =

(

R2πα1 0

0 R2πα2

)

A canonical change of variables reduces Fδ to BNF Nδ:

Nδ ◦ Λ0 = Λ0Nδ.

Since DN0(0) = Λ0 the map Λ−1
0 Nδ is tangent to the identity

=⇒ it can be formally interpolated (in a compact domain around 0) by a

(Hamiltonian) vector field:

Nδ = Λ0Φ
1
Hδ

+ exp. small error
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Interpolating Hamiltonian

Moreover Hδ is Λ0-invariant (Hδ = Hδ ◦ Λ0) =⇒N j
δ = Λj0Φ

j
Hδ

for all j ∈ N

=⇒ study the flow of Hδ instead of iterations of Nδ.

To obtain Hδ:

→ Complex vbles (zk = xk + iyk, z̄k = xk − iyk), Λ0 = diag(λ1, λ2, λ̄1, λ̄2).
→ zj1z̄

k
1z

l
2z̄
m
2 resonant⇐⇒ Λ0-invariant⇐⇒ (j − k, l −m) ∈ Γ.

Then Hδ is a sum of res. monomials: Hδ =
∑

(j−k,l−m)∈Γ
j,k,l,m≥0

hjklm(δ)z
j
1z̄
k
1z

l
2z̄
m
2

In Poincaré vbles ( Ij =
|zj |

2

2
, ϕj = arg zj ):

Hδ =
∑

(k1,k2)∈Γ
p,q≥0

ak1k2pq(δ)I
p+k1/2
1 I

q+|k2|/2
2 cos(k1ϕ1 + k2ϕ2 + bk1k2pq)

Q: Dominant terms ofHδ? Arithmetic properties of Γ depending on (α1, α2).
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Minimal generators of Γ: primary resonances

Recall: Γ = { (k1, k2) : k1α1 + k2α2 = 0 (mod 1) } ⊂ Z
2 lattice.

Consider:

→ r0 = (k1, k2) ∈ Γ a smallest (maybe non-unique) non-trivial element,

→ r1 = (m1,m2) ∈ Γ any of the smallest elements independent from r0.

=⇒ r0 and r1 generate Γ (provided α1 6= α2).

We call r0, r1 the primary resonances (minimal generators of Γ).

We denote by nj the order of rj , j = 1, 2 (then, n0 ≤ n1).

Remark: The primary resonances are unique for most of the frequencies. However, there are two

situations of non-uniqueness:

• At the leading order. Consider α1 = 1/8, α2 = 3/8. Then n0 = n1 = 4 and there are 3

resonances of order 4: (1,−3), (3,−1), (2, 2).

• At order n1. Consider α1 = 1/11, α2 = 4/11. Then n0 = 4 and the only resonance of order 4

is (1,−3), and n1 = 5 and there are 2 resonances: (4,−1) and (3, 2).
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Classification by primary resonances

If n0 ≥ 5 the fixed point is called weakly resonant and otherwise it is strongly

resonant. There are different situations to study:

• 5 ≤ n0 < n1: Up to order n0 − 1 the interp. Hamiltonian of BNF looks

like the one of a non-resonant point. Moreover, up to order n1 − 1 is also

integrable.

• 5 ≤ n0 = n1: Up to order n0 − 1 the interp. Hamiltonian of BNF looks

like the one of a non-resonant point. Adding order n0-terms becomes

generically non-integrable.

• Simply strong resonances: n0 ≤ 4 < n1.

• Doubly strong resonances: n0 = 3,n1 = 4 and n0 = n1 ≤ 4.
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Doubly strong resonances α1 6= α2

num. α1 α2 n0 n1 3 resonances 4 resonances

1 1
6

1
3

3 3 (2,−1) (0, 3) (2, 2)

2 1
5

2
5

3 3 (2,−1) (1, 2) (3, 1) (1,−3)

3 1
12

1
4

4 4 — (3,−1) (0, 4)

4 1
10

3
10

4 4 — (3,−1) (1, 3)

5 1
8

3
8

4 4 — (1,−3) (3,−1) (2, 2)

6 1
4

5
12

4 4 — (1,−3) (4, 0)

7 1
4

1
3

3 4 (0, 3) (4, 0)

8 1
9

1
3

3 4 (0, 3) (3,−1)

9 2
9

1
3

3 4 (0, 3) (3, 1)

10 1
3

4
9

3 4 (3, 0) (1,−3)

11 1
8

1
4

3 4 (2,−1) (0, 4)

12 1
4

3
8

3 4 (1, 2) (4, 0)

13 1
7

2
7

3 4 (2,−1) (1, 3)

14 1
7

3
7

3 4 (1, 2) (3,−1)

15 2
7

3
7

3 4 (2, 1) (1,−3)
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Weak double resonances: a truncated model

Recall: Fδ , λk = exp(2πiαk), αk = pk/qk + δk for k = 1, 2, δ = ‖δ‖ small.

Takens NF: Hδ =
∑

(k1,k2)∈Γ

ak1k2pq(δ)I
p+k1/2
1 I

q+|k2|/2
2 cos(k1ϕ1 + k2ϕ2 + bk1k2pq)

Assume (most common case!) that

→ α1, α2 are close to be doubly resonant,

→ r0 = (k1, k2) and r1 = (m1,m2) are the unique minimal generators of Γ,

→ 5 ≤ n0 < n1 (weak double resonance).

Adapt vbles: ψ1=k1ϕ1+k2ϕ2, ψ2=m1ϕ1+m2ϕ2, I1=k1J1+m1J2, I2=k2J1+m2J2

Hδ = H0(J , δ) +H1(J , ψ1, δ) +H2(J1, J2, ψ1, ψ2, δ) +On1+1(z)

H0 = A00(J1, J2,δ) ,

H1 =

n1/n0
∑

l1=1

I
l1|k1|/2
1 I

l1|k2|/2
2 Al10(J1, J2,δ) cos

(

l1ψ1 +Bl10(J1, J2,δ)
)

,

H2 = I
|m1|/2
1 I

|m2|/2
2 A01(0, 0,δ) cos

(

ψ2 +B01(0, 0,δ)
)

.
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Localizing around the double resonance

In a neighbourhood of the origin

H0 = c1δJ1 + c2δJ2 + a1J
2
1 + a2J1J2 + a3J

2
2 +O(δ5)

→ inv. T2 at J1 = δr1, J2 = δr2⇒ inv. T2 for the NF system if I1, I2 > 0.

Then Jk = δrk + δn0/4J̃k and H = δn0/2H̃ gives

H0(J1, J2,δ) = a1J
2
1 + a2J1J2 + a3J

2
2 +O(δn0/4) ,

H1(J1, J2, ψ1,δ) =

n1/n0
∑

l1=1

δ(l1−1)n0/2Ãl10(J1, J2,δ) cos
(

l1ψ1+B̃l10(J1, J2,δ)
)

,

H2(J1, J2, ψ1, ψ2,δ) = δ(n1−n0)/2a01 cos
(

ψ2 + b01
)

.

Furthermore, if n1 < 2n0 (different but similar order resonances) then

H1(J1, J2, ψ1, δ) =
(

a10 + δn0/4−1Â10(J1, J2, δ)
)

cosψ1

→ No other harmonics in H1 appear! 13/33



Analysis of the truncated model

H(ψ1, ψ2, J1, J2) =
J2
1

2
+ a2J1J2 + a3

J2
2

2
+ cos(ψ1) + ǫ cos(ψ2)

→ For the moment ǫ ∼ δ(n1−n0)/2 will be considered as a small parameter.

→ Change: ψ̃1 = ψ1, ψ̃2 = ψ2 − a2ψ1, J̃1 = J1 + a2J2, J̃2 = J2

H(ψ1, ψ2, J1, J2) = J2
1/2 + dJ2

2/2 + cos(ψ1) + ǫ cos(ψ2 + a2ψ1),

where d = a3 − a22. We assume d 6= 0.

→ 4 fixed points: If ν = ǫd > 0 and |ǫ| small enough

p1 = (0, 0, 0, 0) – HH, p2 = (0, π, 0, 0) – HE

p3 = (π,−a2π, 0, 0) – EH, p4 = (π, (1− a2)π, 0, 0) –EE

→ Reversibilities:

R0(ψ1, ψ2, J1, J2) = (2π − ψ1,−2πa2 − ψ2, J1, J2),

R1(ψ1, ψ2, J1, J2) = (2π − ψ1, 2π(1− a2)− ψ2, J1, J2).
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The NHIM

H(ψ1, ψ2, J1, J2) = J2
1/2 + dJ2

2/2 + cos(ψ1) + ǫ cos(ψ2 + a2ψ1)

ǫ = 0:

→ ψ2 is cyclic (J2 is a first integral)⇒ Pendulum (fast) dynamics in

ψ1, J1-coord. given by H0
1 =

J2
1

2
+ cos(ψ1).

→ The cylinder Π0
0 = Π2π

0 = {ψ1 = 0 (mod 2π), J1 = 0} is a 2D NHIM.

→ Π0
0 is foliated by p.o. C0

h = Π0
0 ∩ {H = h}.

→ W u(Π0
0) is given by J1 = 2 sin(ψ1/2). ←− 3D

→ Non-transversal: W u(Π0
0) = W s(Π0

0).
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The perturbed NHIM

H(ψ1, ψ2, J1, J2) = J2
1/2 + dJ2

2/2 + cos(ψ1) + ǫ cos(ψ2 + a2ψ1)

ǫ 6= 0: Normal hyperbolicity theory (Fenichel)

→ ∃ Π0
ǫ (resp. Π2π

ǫ )O(ǫ)-close to Π0
0 (resp. Π2π

0 ).

(the perturbed system is not ψ1-periodic: Rk(Π
0
ǫ) 6= Π0

ǫ )

→ ∃W u/s(Π0
ǫ)O(ǫ)-close to W u/s(Π0

0)
→ W u(Π0

ǫ) given by a graph J1 = 2 sin ψ1

2
+ ǫf(ψ1, ψ2, J2; ǫ),

with f0 =
1

2 sin
ψ1

2

∫ ψ1

0
g(s, ψ2 + dJ2 log[tan(

s
4
)/ tan(ψ1

4
)]) ds

and g(ψ1, ψ2) = a2 sin(ψ2 + a2ψ1).
→ Transversality? The distance between W u/s(Π

0/2π
ǫ ) on ψ1 = π is

Js1 − Ju1 = ǫ
(

f0(π,−2πa2 − ψ2, J2)− f0(π, ψ2, J2)
)

+O(ǫ2) =
= ǫA(J2) sin(ψ2 + πa2) +O(ǫ2),

where

A(J2) = a2

∫ π

0

cos
(

a2(s− π) + dJ2 log[tan(
s
4
)]
)

ds.
16/33



Transversality properties

Js1 − Ju1 vanishes for ψ2 = −πa2 (mod π)⇒ 2 lines of homoclinics

ℓ0 = { (ψ1, ψ2, J1, J2) : J1 = 2 + ǫf(ψ1, ψ2, J2; ǫ), ψ1 = π, ψ2 = −πa2 },

ℓ1 = { (ψ1, ψ2, J1, J2) : J1 = 2 + ǫf(ψ1, ψ2, J2; ǫ), ψ1 = π, ψ2 = π(1− a2) } .

W u(Π0
ǫ) intersects W s(Π2π

ǫ ) transversally provided A(J2) 6= 0.

→ For J2 = 0, A(J2) = sin(πa2) =⇒ transversality if a2 /∈ Z.

→ For J2 arbitrary, A(J2) vanishes on the lines
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x-axis: dJ2, y-axis: a2

Fix a2 and d, then:

⋆ For J2 → ∞, the lines accumulate to

k/2, k ∈ Z.

⋆ Finite number of zeros of A(J2) ⇒
Given a2 except for some concrete values

of J2 the intersections are transversal.
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Dynamics on the NHIM and transversality

The dynamics on Π0
ǫ is given by

H0
2,ǫ(ψ2, J2) = d

J2
2

2
+ǫ cos(ψ2)+1+O(ǫ2),

where (ψ2, J2) are used as coordinates on

the cylinder.
-1

-0.5

 0

 0.5

 1

 0  pi  2pi

p1 p2

Π0
ǫ

ψ2

J2

Π0
ǫ contains the fixed points p1 (HH) and p2 (HE).

Q: Assume that W u(Π0
ǫ) intersects W s(Π2π

ǫ ) transversally. Does it imply

that the separatrices of Cǫ
h intersect transversally inside {H = h }? NO.

Any p ∈ ℓk is homoclinic to Cǫ
h with h = H(p). Then,

transversality inside {H = h } ⇔ Tpℓk /∈ Tp{H = h }.⇔
h 6= 1 + ǫ(−1)k cos πa2 +O(ǫ2), k = 0, 1.

Remark. If a2 /∈ Z⇒H(p2) < Ek < H(p1), k = 1, 2 (inside the pendulum within Π0
ǫ ).
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Dynamics on the NHIM and transversality (II)
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 0.5

 1

 0  pi  2pi
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ǫ

ψ2

J2
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ψ1

ψ2

J2

ǫ = 0.1, a2 = 0.25, d = 0.5 and h = 1 + ǫ

Assume a2 /∈ Z :

• Consider h = H(p1) = 1 + ǫ then Cǫ
h are the separatrices.

◮ Ch
0 = {J2 = 0} (line of fixed points)⇒W u(Cǫ

h) and W s(Rk(C
ǫ
h))

intersect transversally because A(0) 6= 0 and H(p1) > Ek.

◮ Melnikov (Kovacic) or slow-fast analysis (Haller)⇒ angle isO(√ǫ).
• Consider h < H(p1): initially ℓk ∩W u(Cǫ

h) consists of 2 homoclinic

points which collide when h = Ek and disappear⇒ there are no primary

homoclinic orbits to p2 (EH) because Ek > H(p2). 19/33



Non-analyticity of Πǫ: a numerical experiment

Normal hyperbolicity theory⇒ Πǫ is (at most) Cr with r = λ̃1/λ̃2 the

quotient of the normal and tangent maximal Lyapunov exponents.

Q: For concrete parameters, can we easily detect the lack of analyticity?

Notations:

• Consider p1 (HH fixed point). We define

W
u,Π0

ǫ
slow (p1) = W u(p1) ∩ Π0

ǫ

(the separatrices of the pendulum inside Π0
ǫ )

• We say that an 1D invariant submanifold W u
slow(p1) ⊂ W u(p1) is a slow

unstable invariant manifold if it is tangent at p1 to the eigenvector related to

the slow eigenvalue λ̃2.

There are infinitely many slow unstable invariant manifolds (in particular,

W
u,Π0

ǫ
slow (p1)).
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Basic idea

Denote by XH the vector field related to

H(ψ1, ψ2, J1, J2) =
J2
1

2
+ a2J1J2 + a3

J2
2

2
+ cos(ψ1) + ǫ cos(ψ2).

→ In these coord. Π0
0 is given by ψ1 = 0, J1 + a2J2 = 0.

→ Denote by Λ̃ = (λ̃1, λ̃2) the unstable eigenvalues of DXH(p1).

Basic observations:

1. If Π0
ǫ is an analytic manifold then W

u,Π0
ǫ

slow (p1) is analytic.

2. If Λ̃ is non-resonant, then there is a unique analytic slow unstable invariant

submanifold W u
slow(p1) which will be denoted by W u,ω

slow (p1). On the other

hand, if Λ̃ is resonant then generically all slow unstable submanifolds are

non-analytic.
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Proof of the basic observations

1. Assume Π0
ǫ analytic =⇒H|Π0

ǫ
is an analytic Hamiltonian which has a

non-degenerated saddle fixed point with eigenvalues±λ̃2
=⇒W

u,Π0
ǫ

slow (p1) is a 1D analytic inv. manifold.

2. The restriction X of the vector field (v.f.) to W u(p1) is a 2D analytic v.f.

with (0, 0) as a repulsive fixed point with eigenvalues Λ̃.

→ If Λ̃ non-resonant X is conjugated to ṡ1 = λ̃1s1, ṡ2 = λ̃2s2.

Solutions: s1 = Cs
λ̃1/λ̃2
2 (or s2 = Ĉs

λ̃2/λ̃1
1 ) non-analytic except

s1 = 0 and s2 = 0.

→ If Λ̃ resonant (i.e. λ̃1 = kλ̃2, k ∈ N) X is conjugated to

ṡ1 = λ̃1s1 + νsk2,

ṡ2 = λ̃2s2.

Solutions: s1 = νsk2(log(s2) + C)/λ̃2 non-analytic except s2 = 0.
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How to proceed

Conclusion:

• If Λ̃ is resonant then Π0
ǫ is generically non-analytic.

• If Λ̃ is non-resonant then the analyticity of Π0
ǫ implies

W
u,Π0

ǫ
slow (p1) = W u,ω

slow (p1) by uniqueness of the analytic invariant unstable

manifold.

To check non-analyticity of Π0
ǫ :

1. Consider the generic non-resonant case.

2. Numerically check that the analytic W u,ω
slow (p1) leaves the cylinder Π0

ǫ .

3. It follows that W
u,Π0

ǫ
slow (p1) 6= W u,ω

slow (p1) and, consequently, that Π0
ǫ is

non-analytic.

Remark. The tangency order between the analytic solution s1 = 0 and the other solutions of ṡ1 = λ̃1s1,

ṡ2 = λ̃2s2 is r∗ = λ̃1/λ̃2 ⇒ necessary to approximate Wu,ω
slow (p1) up to order k > r∗.
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Example

• Parameters: a2 = 0.25, a3 = 0.5625 and ǫ = 0.1.

• Λ̃ non-resonant (λ̃1 ≈ 1.003282954 and λ̃2 ≈ 0.222875109, then r∗ ≈ 4.501547788).

• Compute the parametric representation ψi(s), Ji(s) of W u
slow(p1).

ψi(s) =
∑

k≥1

ψ
(i)
k s

k, Ji(s) =
∑

k≥1

J
(i)
k sk, i = 1, 2

• Truncating at order k = 120 the approximation of W u
slow(p1) has an error

below 10−15 for |s| < s∗ ≈ 0.3635.
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A posteriori check: Π0
ǫ is C4 but not C5

We compute W u(p1). Parametrization:

g(s1, s2) = (ψ1(s1, s2), ψ2(s1, s2), J1(s1, s2), J2(s1, s2)) where

ψi(s1, s2) =
∑

k,l≥1 ψ
(i)
k,ls

k
1s
l
2, Ji(s1, s2) =

∑

k,l≥1 J
(i)
k,ls

k
1s
l
2, i = 1, 2.

At order 20: error below 10−15 for s = (s1, s2) s.t. ‖s‖ < s∗ ≈ 0.282.

⋆ s1 = 0 corresponds to W u,ω
slow (p1) (analytic)

⋆ We compute the non-analytic 1D submanifold of W u(p1) within Π0
ǫ by

imposing that the homoclinic has ψ1 = 0.
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s1, s2 log s2, log s1 log s2, | log s1 − f(log s2)|

f(x) = r∗x− 5.55007880852 25/33



Beyond NF: a 4D map

Truncated NF: H(ψ1, ψ2, J1, J2) =
J2
1

2
+ a2J1J2 + a3

J2
2

2
+ cos(ψ1) + ǫ cos(ψ2)

Generating function: S(ψ1, ψ2, J1, J2) = ψ1J̄1 + ψ2J̄2 + δH(ψ1, ψ2, J1, J2).

Tδ :















ψ1

ψ2

J1

J2















→















ψ̄1

ψ̄2

J̄1

J̄2















=















ψ1 + δ(J̄1 + a2J̄2)

ψ2 + δ(a2J̄1 + a3J̄2)

J1 + δ sin(ψ1)

J2 + δǫ sin(ψ2)















Phase space structure similar to H (but the homoclinic trajectories split!):

• 4 fixed points: p1 HH, p2 HE, p3 EH, p4 EE.

• NHIM Π0
ǫ,δ.

• Reversible: R1 = (−ψ1, 2π − ψ2, J̄1, J̄2),

R2 = (2π − ψ1, 2π − ψ2, J̄1, J̄2) and R3 = (2π − ψ1,−ψ2, J̄1, J̄2).
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The homoclinic trajectories

Reversibilities⇒ T has 6 primary homoclinic trajectories.
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9
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Splitting of the invariant manifolds

To measure the splitting of the manifolds W u,s(p1), at the homoclinic point ph
on ΣRk

, k = 1, 2, 3, we compute the volume V defined as follows:

• Let

(ψ1, ψ2, J1, J2) = (G1(s1, s2), G2(s1, s2), G3(s1, s2), G4(s1, s2)),

s1, s2 ∈ R, be the parametrisation of the 2D local W u(p1).

• Consider (sh1 , s
h
2) such that the point with coordinates

(G1(s
h
1 , s

h
2), G2(s

h
1 , s

h
2), G3(s

h
1 , s

h
2), G4(s

h
1 , s

h
2)) belongs to the

homoclinic trajectory defined by ph.

• V is the volume defined by the unitary tangent vectors vj = ṽj/‖ṽj‖
where

ṽ1(s
h
1 , s

h
2) = (∂Gi/∂s1)(s

h
1 , s

h
2), ṽ2(s

h
1 , s

h
2) = (∂Gi/∂s2)(s

h
1 , s

h
2),

ṽ3(s
h
1 , s

h
2) = R1(ṽ1(s

h
1 , s

h
2)) and ṽ4(s

h
1 , s

h
2) = R1(ṽ2(s

h
1 , s

h
2)).
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Background from 2D maps

Consider F : R2 → R2 analytic APM. Assume:

⋆ F (0) = 0 hyperbolic fixed point, Spec={λ, 1/λ}, λ ≈ 1 + ǫ, ǫ << 1.

⋆ F ∼ ϕHt=log λ, H is the so-called limit Hamiltonian.

Let Γ(t) the separatrix of H =⇒ Γ(t) has singularities for t ∈ C \ R=⇒
Let τ the closest singularity to the real axis.

Then (generically):

σ ∼ A(log λ)Be−2π Im τ/ log λ
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Asymptotic behaviour of V in ΣR1

For a fixed ǫ, a2 and a3 parameters we study the behaviour as δ → 0.

At ph in ΣR1 (homoclinic trajectory on Π0
ǫ,δ):

V ∼ AµB2 e
−2π Im τ̂2/µ2

where µ2 = log λ̃2, A,B ∈ R and τ̂2 = iπ/2 +O(√ǫ) is related to the

“closest” singularity τ2 of the homoclinic trajectory of the limit vector field.
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-400

-200

 0

 0  0.1  0.2  0.3  0.4  0.5  0.6
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 1.56

 1.5708

 0  0.02  0.04  0.06  0.08  0.1

ǫ = 0.1, a2 = 0.25, a3 = 0.5625. Left: log V vs. δ. Right: Im τ̂2 vs. ǫ.

Different values of ǫ, a2 and a3 have been considered.
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Asymptotic behaviour of V in ΣR2 and ΣR3

In both cases, the volume V behaves like

V (δ) ∼ AµB1 e
−2πImτ̂1/µ1 ,

with µ1 = log λ̃1 and where τ̂1 is related to the closest singularity τ1 of the

homoclinic trajectory of the limit Hamiltonian flow which has a homoclinic point

on the plane (ψ1, ψ2) = (π, π) (or (ψ1, ψ2) = (π, 0)).

→ Note that the limit homoclinic trajectory is not explicitly known.

→ There is no developed theory available (4D!) supporting the previously given

asymptotic formulas.

Remark. Our numerics support the fact that B = −3 in all the cases and

independently of ǫ, a2 and a3. Further investigations are needed.
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Future directions

• Consider |ǫ| in a non-perturbative regime (e.g. two resonances of equal

order).

In particular, for |ǫ| large the EE fixed point can suffer a Hamiltonian-Hopf

bifurcation (complex instability).

• Clarify the situations where a different truncated model is obtained, and

study the strong doubly resonant cases.

• Analyse the diffusion properties (obtain quantitative data from massive

numerical simulations, and relate it with the geometry at the simple/double

resonances).

→Work in progress with E.Fontich, V.Gelfreich and C.Simó.
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Thanks for your attention!!

33/33


	Introduction: general framework
	Introduction: fixed point types
	Introduction: frequency space
	Introduction: phase space structure
	List of contents
	{
ed Takens NF}
	Interpolating Hamiltonian
	{
ed Minimal generators of $Gamma $: primary resonances}
	Classification by primary resonances
	Doubly strong resonances $alpha _1 
eq alpha _2$
	{
ed Weak double resonances: a truncated model}
	Localizing around the double resonance
	{
ed Analysis of the truncated model}
	The NHIM
	The perturbed NHIM
	Transversality properties
	Dynamics on the NHIM and transversality 
	Dynamics on the NHIM and transversality (II)
	{
ed Non-analyticity of $Pi _{epsilon }$: a numerical experiment}
	Basic idea
	Proof of the basic observations
	How to proceed
	Example
	A posteriori check: $Pi _{epsilon }^{0}$ is $C^4$ but not $C^5$
	{
ed Beyond NF: a 4D map}
	The homoclinic trajectories
	Splitting of the invariant manifolds
	{magenta Background from 2D maps}
	Asymptotic behaviour of $V$ in $Sigma _{R_1}$ 
	Asymptotic behaviour of $V$ in $Sigma _{R_2}$ and $Sigma _{R_3}$ 
	
ed Future directions
	

