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Introduction: general framework

Let F}, be a one-parameter family of APMs
F,(Ey) = FEy elliptic fixed point,
Spec(DFE,)(Ey) = {\, A1} A = exp(2mia).

— Assume that we are interested in the dynamics close to the
(q:m)-resonance for g, m € N, with 1 < g < m, gcd(q, m) = 1. Then,
one can write & = ¢/m + ¢ with § € R (generically o’ () # 0) and we
denote the family as Fj (for arbitrary g and m).

— Fs : U — R? U C R? domain, is such that
1. Fj real analytic in the (x, y)-coordinates of I,
2. det DFs(x,y) = 1,forall (z,y) € R®andforalld € R, (APMs)

3. F5 has a fixed point £y that will be assumed to be at the origin Vo € R,
4. spec DF'(Ey) = {u, i}, p = exp(2mia), o = q¢/m + 9, q,m € Z.
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Hénon map

As an example consider the HEnon map
H,(z,y) = Rora(z,y — 2%), a € (0,1/2)

e |t has two fixed points:
the origin is an elliptic fixed point £y,
the point P, = (2 tan(wa), 2 tan®(w«)) is a hyperbolic fixed point.

e Reversible with respectto y = 2°/2 and y = tan(ra)z.

0.8

04 .22
7

04}

-0.8 1 1 1 1 1 1 1 1
0.8 0.4 0 04 0.8

APMs — p.3/26



|. The inner/outer splitting of separatrices
for a resonant island

e \We want to describe the dynamics in the resonant chains emanating from
(but relatively far from) the elliptic fixed point Ej.

e Special interest in quantitative information concerning the splitting of

separatrices and the chaotic zone.

Planning:
BNF — Interp. Hamiltonian — Simplified Model — Splitting of separatrices
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BNF

Fs one-parameter d-family of APMs with F'( Ey) = Ej elliptic fixed point.
Spec DF(Ey) = {u, ii}, p = €*™*, o = q/m + 0, § small enough.

(x,y)-Cartesian coord., (z, Z)-complex coord. (z = x + iy, Z = x — 1y).

The Birkhoff NF to order m around £/ can be expressed as

BNF,,,(F)(2) = Ror (62””(7’),2 + gzm ! ) + Rna1(2, 2),

unavoidable res. m-order res.
where
Y(r) =8+ byir? 4 bor* 4+ .+ br?, =2,
being

s=|(m—1)/2],
b, € R are the so-called Birkhoff coefficients,
R,,+1(z, Z) denotes the remainder which is of O(m + 1).
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Interpolating flow of the BNF

(I, )-Poincaré variables (z = v/21 exp(i)).

m
2

—~ by . 1
Hor(I) =7y —(2D) 1 oand H(I,p) = —(21)

n=0

Let 7, such that y(7,) = 0, thatis 7, ~ (—by/b;)'/2, by = 0.

cos(mey).

— The flow ¢ generated by the Hamiltonian
H(L,p) = Hor(I) + Hi (L, )

interpolates /& with an error of order m + 1 with respect to the

(2, Z)-coordinates, that is,

K(la@:@:l([,g&)—k(’)(l%ﬂ).

If we assume b; # 0 this approximation holds in an annulus centred in the

resonance radius 7, of width ri*”, forv > 0.
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Description of resonances

Generic case: &« = ¢/m —+ 9§, m > b, J sufficiently small, by £ 0.

e If b0 < 0 then F has a resonant island of order m.

e The resonant zone is determined by two periodic orbits of period m
located near two concentric circumferences (in the BNF variables). The
closest orbit to the external circumference is elliptic while the one located

close to the inner circumference is hyperbolic.

0.8 T

e The width of the resonant island is O(LTM), I, = —4§/20b;.

“Outer splitting <> p~

“Inner splitting <> q”
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A model around a generic resonance

For a generic APM such that 0 < 0, by > 0, by # 0, the dynamics around an
island of the m-resonance strip (m > 5) can be modelled, after suitable
scaling (J ~ 6~™/*(I — I..)), by the time-log(\) map of the flow generated by

H(J, ) = %JQ - §J3 — (1 4+ dJ)cos(v),

where c = O(641), d = O(65+ ). Bounding the errors, it is shown that it
gives a “good” enough approximation of the dynamics in an annulus containing

the m-islands.

— Then, we have the following... *

2 The details of the proof (singularities, suitable Hamiltonian,...) can be found in:
Resonant zones, inner and outer splittings in generic and low order resonances of area preserving maps.
Nonlinearity 22, 5:1191-1245, 2009.
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Main result: the hypothesis

e Al. by(6) is non-zero for § = 0.

e A2. F' maybe meromorphic but the possible singularities remain at a finite
distance as |0| N\ 0.

e A3. I’/ —hyperbolic m-periodic point on a resonant zone close to L,
v(t) — separatrix of the interp. Hamiltonian flow ¢,
Assume that the closest singularities of y(¢) to R have |Im(t)| = 7.
Represent W, and Wp, as functions of ¢, close to 7(¢).
E(t) - distance W, (t) — Wp. () (periodic in ¢).
G(t) —restrictionof £(t) to t + i(7 — O(0?)), t € R, ¢ > 0.
We require that there exist constants ky, k9 >0 and j5 < 91 such that for
all 9, 0 < 6 < dg, one has k107 < |G| < k9072 and that the first harmonic
¢y of the Fourier expansion of G(t) verifies |c1| > a|G|, witha > 0 a
constant independent of 0.
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Main result

Theorem. Let F’ be an APM. Assume that it has an m-order resonance strip,
m > 4, located at an average distance I = I, = O(¢) from the elliptic fixed
point and 9 is sufficiently small. Under the assumptions A1, A2 and A3,

a) The outer splitting o Is larger than the inner one o_. The difference

between the position of the corresp. nearest singularities is O(5m/4_1).

b) Neither the inner nor the outer splittings oscillate.

e It should be adapted to strong resonances (e.g. 1:4 res. of HEnon map).
e It does not apply if too far from the origin (e.g. the 2:11 res. of HEnon map).

e 7{(J, 1) plays the role of a “limit” Hamiltonian in Fontich-Sim6 thm. on

exp. small upper bounds of the splitting — singularities 7 — % +d—+ ...

o 0. —exp (—2mrns ) (cos (R — 0x ) +o(1))

APMs — p.10/26



Il. A heuristic justification of why upper bounds are expected to
be generic

The theorem states that, under assumptions Al, A2 and A3, 0, > o_.
Note that:

e Al is a generic assumption.

e Concerning A2, a suitable scaling to study the resonance zone moves the
possible singularities of £ to a distance O(§~"/4).

e A3 guarantees that the splitting of separatrices behaves exponentially
small w.r.t. d (as Fontich-Simo upper bound).

— Question: How to proceed to check assumption A3?
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Numerical check of A3

For a fixed o:

1. Compute the parametrisation g,, of W"(P,) (resp. g, for W*(Py)):
F(z(s),y(s)) = (z(rs), y(As)), s € C.
2. Introduce t = log(s), then g, (t + h) = g,(t), h = log(\).

3. Using BNF around P, define an energy F/(x, ) and transport it along the
manifolds.

4. Measure the difference between W*( P;,) and W#(P,) in a fundamental

domain. This gives a periodic function £(t).

5. Restrict £(t) to a suitable line t,. + io, with a suitable o < 7. This gives a

periodic function G (t).

6. Carry out the Fourier analysis to check A3.

Repeat the process for different 0 values (0 < 0 < 0g). Ok but Expensive!!.
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Comments

To check A3 directly is difficult (for a general map).

However, if F' is given by a closed-form expression, we can check directly the

exponentially small behaviour w.r.t. 0 in a simple way.

Remark. Any finite order jet of F' is useful to analyse beyond-all-orders

phenomena: the ignored terms become relevant close to a singularity.

— We show how to proceed in a concrete example which also “justifies” why
we expect that the behaviour of the inner/outer splittings of a resonant island is

(generically!) given by the exponentially small upper bound. @

2 Some of the details can be found in the appendix of

Dynamics in chaotic zones of area preserving maps: close to separatrix and global instability zones.
Physica D, 240(8), 2011. APMs — p.13/26



An improved model around a resonant island

m-resonance
H(q,p) = p*/2 — (1 +dp) cos(q), d = O(6™/*71).
902{27, v = log(\) = O(6™/*), approx. the dynamics around the m-res.

An approximation of @Ziv IS given by

MSTM:<q)H<q><q+v<pdcos<q>> )
p p (p — sin(q))/(1 + ~dsin(q))

6 =0.65m=28d=§"*1 H=m/1
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The limit (inner or semi) map

Singularities: i7/2 & d + O(d?). Introducing ¢ = i (A + u), p = B v, with
A = log(—2i/vd) and B = i/~ we get the limit map (for v — 0):

U U uw+ v+ e
— — indep. of parameters
(U) ( ) (U/(H@“))
Fixed points: v = 0, Reu = —oo (Imu arbitrary). Introduce w = e, then
w W w exp(w + v)
— =
v v v/ (14 w)

Fixed points: w = 0. The f.p. (0, 0) is parabolic with inv. manifolds v = g(w)
with slopes 0, —2 (in C?).

~d

— Itis enough to show that the inv. manifolds of the limit map do not coincide.
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The Inv. manifolds distance

We look for the distance between the inv. manifolds in the complex domain C2.

— The inv. manifold with slope 0 corresponds to v = 0: On it w +— we"

and (locally!) w = 0 is foliated by homoclinic invariant curves.

— For the inv. manifold v = —2w + ... the W* /WV/* branches do not
coincide.

We use a graph repr. v = g(w) of W* /W ? around w = 0 (locally) and we
compute the distance between W* and W® on Re(w) = 0.
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Right: Considering a fundamental domain we observe that there are not homo-
clinic points (for 0 < Im(w) < 0.16).

APMs — p.16/26



Some remarks, work in progress...

e By continuity the MSTM map has an exponentially small splitting.

e There is a strong numerical evidence supporting the following facts:

1. The inv. manifold v = g(w) = >, a,w" has a Gevrey-1 character.

2. The radius of convergence of the (scaled) Borel transform

A©) =" Ak, Ay = Rk,

k>1

is 4. It has an essential singularity: A(i — &) ~ ™ /& for [€] << 1.

3. The coefficients A; behave as

k!

red, green, blue, magenta

)

k=0,1,2,3(mod 4)
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Ill. Dynamical consequences of the difference between the
Inner/outer splittings

e The splitting of separatrices creates a chaotic zone (C2).

e |In a resonant island both inner/outer splittings play a role.

—— Question: Can we estimate the size of the CZ?

Planning:
1. Size of CZ if only one splitting plays a role (open case)?

2. How to take into account the effect of both splittings (figure eight case)?

Main tool: return maps (SM + aprox. by STM)
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Open case

Y r + a+ blog |y/|
Y y + sin(27x)
where b = 1/1log(\), A the dominant eigenvalue of D F'(h) and a is a “shift”.

The y-vble. is scaled by the amplitude of the splitting.

We deal with an a priori stable case: log(A) = O(¢) and a = O(1/¢) =
A = O(exp(—ctant/€"). Here € is a “distance-to-integrable” parameter.
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Open case: results

e Distance to invariant curves from the separatrix: d. ~ |b|/k* (SM is
approximated by STM, k* &~ 0.97/(27) Greene value).

» When coming back to the original variables: D, ~ of/(2mk* log(\)),

» If measured from the hyperbolic point, assuming the map close to the
time-¢ flow of H(z,y) = y*/2 — ax® — B2°, one has:
D" ~ (3LD,/2)'/2, where L is the distance between the hyperbolic
and the elliptic point inside the “fish”. This result can be improved using
higher order interpolating Hamiltonians.

e Distance to islands from the separatrix: d; ~ |b|/k, k = 2/

e Expected number of “central” islands before the r.i.c.

#{islands} ~ 1.415 x b.

APMs — p.20/26



Hénon map H,(z,y) = Rora(7,y — 7°)

0.213} '

0.2125 |,
02121

0.2115 |Gy
~ \ <

0.211 |
0.2105 f, “
021 | o
0.2095 /ﬁ /’
0;647 0.648 | 0.649 0.65 0.651 0.652
a=0.1
Experimental values: (D), ~2.94x1072, (D), ~ 2.08x1073

“Fish” interpolating Hamiltonian: D! ~ 2.47x 1073, D! ~ 1.85x107?
5-order interp. Hamiltonian: D ~2.731x107%, D! ~ 2.050x 10~
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Figure eight case

8
8l

x + as + blog|y| (mod 1)
DSM Y —

N
I

Y + vssin 2wx ;

S

Vo)

sign(y) s
where v is suchthat; = landv_; = A_1/A;, being A; and A_; the
amplitudes of the outer/inner splittings resp. of the resonant island.

e It is defined on a domain VW = U U D (upper/lower domains around the
outer/inner separatrices of the resonance).

e y > () means we are outside the stable manifold (either in U/ or D).
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Main result on CZ

Theorem. @ Consider a generic resonance (1 > D) rel. close to the origin
(0 rel. small). Assume b;0 < 0 and that the hypothesis A1, A2 and A3 of the
theorem concerning the difference of the inner/outer splittings hold. Then,

e The width of the outer chaotic zone is larger than the width of the inner

chaotic one if, and only if, sign b; - sign by < 0.

e Both amplitudes of the stochastic layer are of the order of magnitude of the

outer splitting (the largest one).

4Details and also examples of non-generic situations (strong resonances), can be found in:
Dynamics in chaotic zones of area preserving maps: close to separatrix and global instability zones.
Physica D, 240(8), 2011.

APMs — p.23/26



Pendulum-like i1slands: comments

The idea is to construct an interpolating Hamiltonian of the map (in a domain
containing the resonance) and to use preservation of energy to see how the
distance to the rotational invariant curves changes when measuring from the

upper U and the lower D domains. This can be done computing the ratio
f=VH(Iu)/VH(Im)

where Jj; and J,,, are the maximum (minimum) of the outer (inner) separatrix

of the Hamiltonian. For close to the origin resonances f = 1 + (9(5m/4).

a = 0.21,
o_ = 0O(10719),
O'_|_ = 0(10_3)

0515 052 0525 053 0535 054 0545
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The 1:4 resonance of the HEnon map

® The same idea applies to resonances far from the origin as well as for

strong resonances.
e An adapted interpolating Hamiltonian must be considered in each case.

e The “inner/outer amplitudes” of CZ can be of different order of magnitude.

c = 1.015,
o,.=0(107Y), c_=0(1071).
Experimentally, f ~ —5. Using in-

terp. Ham. up to ordero ~ ¢ — 1
we obtain f ~ —5.64.
But 0 = 0.015 is too large. For ¢

small we obtain better results (even

we can predict # tiny islands).
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Thanks for your attention!!
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