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Goal

We consider the Chirikov standard map Mk : S1 × R→ S
1 × R as a

paradigm of twist area-preserving maps (twist APM) of the cylinder. It is
given by

Mk :

(

x

y

)

7→
(

x̄

ȳ

)

=

(

x + ȳ

y + k
2π sin(2πx)

)

, (1)

We study escape rates across the golden Cantorus, that is, through the
remnant Cantor set after the breakdown of the rotational invariant circle
(RIC) with golden rotation number ω = (

√
5− 1)/2.

In other words:

we investigate the transport properties for values of the parameter k larger
than but close to Greene’s constant kG ≈ 0.971635406.
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Summary on renormalization for invariant curves I
The finer self-similar structure near the Cantorus is revealed by
investigating the Greene-MacKay renormalization operator R:

Consider a twist APM F having a RIC with rotation number
ρ ∈ [0, 1). Denote by F̄ its lift to the plane.

Consider the sequence {pn/qn}n of best approximants of ρ.
For ρ = golden these are quotients of successive Fibonacci numbers.

Then, one considers a sequence of maps of the form ΛF̄ qnRpnΛ−1,
where R(x , y) = (x − 1, y) and Λ is a change of variables that zoom
in regions of the phase space chosen according to the relative
positions of periodic orbits whose periods correspond to two
consecutive best approximants of ρ (further details later).

To guarantee the renormalized map to be defined on the cylinder, R
is defined on commuting pairs (U,T ) of orientation preserving
diffeomorphisms of the plane.

MacKay, R.S., A renormalisation approach to invariant circles in area-preserving maps, Phys. D 7(1-3), 283–300, 1983.

Order in chaos (Los Alamos, N.M., 1982).
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Summary on renormalization for invariant curves II
That is, for m ∈ Z one defines

Rm(U,T ) = Λ(T ,TmU)Λ−1

where Λ(A,B)Λ′ = (ΛAΛ′,ΛBΛ′) for arbitrary scalings (Λ,Λ′).

Then, to investigate the phase space structure near the RIC one
considers the commuting pair (U,T ) = (R , F̄ ) and perform iterates
under a suitable sequence of renormalisation operators Rm.

The choice of m’s depends on arithmetic properties of ρ ∈ [0, 1). If

ρ = [l0, l1, l2, . . .] =
1

l0 +
1

l1+...

the best approximants of ρ are pk/qk where p0 = 0, q0 = p1 = 1,
q1 = l0 and pk = lk−1pk−1 + pk−2, qk = lk−1qk−1 + qk−2, for k ≥ 2.
It follows from properties of continued fraction expansions that

Rlj · · · Rl0(R , F̄ ) = Λj+1(F̄
qjRpj , F̄ qj+1Rpj+1)Λ−1

j+1,

where Λj+1 is the composition of successive shifted scalings.
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Dynamics of R1: known facts

It follows that to study the phase space structure close to golden Cantorus
one is reduced to consider iterates of Mk under R1. The most relevant
part of the phase space of R1 is characterised by the existence of two fixed
points:

The trivial fixed point RT which is an integrable linear shear

RT (x , y) = (x + (ω + 1)y + ω, y). ← Atracting fixed point

All the periodic orbits in the phase space of RT are parabolic (τ = 2).

The critical fixed point RC : a map having a critical golden RIC.
It is a saddle fixed point with a single unstable eigenvalue
δ ≈ 1.62795. All elliptic “approximant” orbits of RC have the same
trace, τ = τ⋆ ≈ 0.999644.

5 / 20



“Local picture” of the skeleton of R1 and the orbit of Mk

Partially conjectured

Mk

kG

W u(RC )

W u,+(RC )

W u,−(RC )

W s(RC )

RT

RC

δ

δ′

RT trivial fixed point
(attracting)

RC critical fixed point
(saddle)

Unstable eigenvalue:
δ ≈ 1.62795

Dominant attracting rate
in W s(RC ):

δ′ ≈ −0.610830

Arioli G. and Koch H., The critical renormalization fixed point for commuting pairs of area-preserving maps, Comm. Math.
Phys. 295(2), 415–429, 2010.

Koch, H., On hyperbolicity in the renormalization of near-critical area-preserving maps, Discrete Contin. Dyn. Syst. 36(12),
7029–7056, 2016.
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Computing iterates of Mk under R1

1 Compute the following orbits and points:

P j
e – Elliptic (or reflection-hyperbolic) pj/qj -point on {x = 1/2}.

Q j
e – If j is odd/even, iterate of P j

e closest to the right/left of it.
P j+1
e – Analogous to P j

e with pj+1/qj+1 as rotation number.

L
j
h, R

j
h – The left/right pj/qj -hyperbolic points closest to P j

e .

2 Let p(j)(ξ) = s
(j)
1 ξ + s

(j)
2 ξ2 + s

(j)
3 ξ3 be the cubic interpolating

polynomial of the 4 points Ljh,P
j
e ,R

j
h,Q

j
e , after moving their abscissas

−0.5, that is, in such a way that the x-coordinate of P j
e is 0.

3 Let d
(j)
x = max

(

|π1(P j
e − L

j
h)|, |π1(P

j
e − R

j
h)|

)

, and

d
(j)
y = |π2(P j

e − P
j+1
e )|, where π1 and π2 are the projections onto the

first and second variable.

Then, we use the scaling (we remove j dependences):

Λj :

(

ξ
η

)

7→
(

dxξ + 1/2
dyη + π2(P

j
e) + s1dxξ + s2(dxξ)

2 + s3(dxξ)
3

)

=

(

x

y

)

7 / 20



Renormalization iterates Rit
1 (Mk), k = 0.9716 < kG
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Renormalization iterates Rit
1 (Mk), k = 0.98 > kG
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In the plots of this and of the previous slide, we considered an equispaced

512× 512 grid and we indicate in light grey those pixels whose center is

considered regular by approximating the maximal Lyapunov exponent. In black,

we show the positions of the 0/1, 1/2 and 2/3-periodic orbits of Rj
1[Mk ].
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Estimate of kG : trace sequences

For a given trace τ ∈ [−2, 2] and for a given j , we compute the parameter
k = kj (τ) for which trace(DM

qj
k (P j

e)) = τ .
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We represent, as a function of τ ∈ [−2, 2), kj (τ) for j = 1, . . . , 17 (left)
and k̃(τ) = logδ(kj(τ)− kG ) for j = 4, . . . , 17 (right).

In the plot, τ− = τ3,4 and τ+ = τ2,3 where, for 1 ≤ j < l , we denote as τj ,l
the value of the trace such that kj (τj ,l) = kl (τj ,l).
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Estimate of kG : trace sequences conjecture

Numerically supported conjecture:

For all τ ∈ [−2, 2), the sequence {kj (τ)}j converges to kG geometrically.
For τ = τ⋆ the rate of convergence is δ′, and δ otherwise. Furthermore,

1 If τ ∈ [−2, τ−) the sequence {kj (τ)}j is strictly decreasing,

2 If τ ∈ (τ+, 2) the sequence {kj (τ)}j is strictly increasing,

3 For τ ∈ [τ−, τ+] \ {τ⋆}, if τ < τ⋆ the sequence {kj (τ)}j is eventually
decreasing and, if τ > τ⋆, it is eventually increasing.

4 For τ = τ⋆ the sequence {kj (τ)}j alternates around kG . Moreover the
sequence of pairs of points

{(τj−1,j , kj (τj−1,j)), (τj ,j+1, kj(τj ,j+1))}j ,

defines domains around the limit point (τ⋆, kG ) that scale as 1/δ′ in τ
and as δ/δ′ in k .

−→ It leads to the following method to estimate kG ...
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Estimate of kG : fast convergence sequences

To estimate kG we compute (alternatively) the sequences

{τj−1,j}j≥2
δ′−→ τ⋆ and {kj (τj−1,j)}j≥2

δ′/δ−→ kG

Remark: The right sequence converges faster than the sequence {kj (τ)}j
for fixed τ .

We compute the pairs (τj ,j+1, kj (τj ,j+1)) for 1 ≤ j ≤ 35. We perform
computations with 50 decimal digits arithmetics. Using the Aitken’s
acceleration method we get the first 21 digits of kG and the first 12 digits
of τ⋆, that is, we obtain the approximations

τ⋆ = 0.999644540920 . . . and kG = 0.971635406047502179389 . . .

The estimates of the inverses of the rates of convergence of the sequences
are −0.610830 (≈ δ′) and −2.6651429 (≈ δ′/δ), respectively.
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The “approximant” islands
Islands with rotation number = best approximant of the golden frequency.
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Illustrations for the value kG obtained. In black the “critical RIC”. Last plot: red

and blue islands with ρ = ρ46 (period= 2971215073) and ρ = ρ47
(period= 4807526976) resp., black points with ρ−golden ≈ −0.123E − 19.

x

y× 10−22

Mk expressed in

(x, y) ∈ [0, 2π]2

We display

x−π and

y−p3(x),

where p3(x)

is a cubic

polynomial

fit of the

approximate

golden RIC
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The size of the “aproximating” islands
For k > kG we consider npts = 800 × 800 equispaced points
(ξ, η) ∈ Q = [−1, 1] × [−0.6, 0.6]. A point is considered to be “in the
island” if it stays in Q for, at least, 105 iterates of Mk .
Let µj = #{points “in the island”}/npts.
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3/58/1334/55

233/377 p3
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We display µ̃j = µj/(d
(j)
x d

(j)
y ), that is, the scaled areas of “approximant” islands,

for j = 3, . . . , 13, as a function of k̃ = logδ(k − kG ) for j = 3, . . . , 13.

The jumps pi related to the breakdown of the invariant curve surrounding the

islands of period i inside the “approximant” islands.
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Evolution of the “approximant” islands

89/144 55/89 34/55 21/34 13/21

-9.250

-9.500

-9.750

-10.000

Shape of the “approximant” islands with ρ = 13/21, 21/34, 34/55, 55/89 and

89/144 in the interval k̃ ∈ [−10,−9).
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The Mather’s ∆W for the “approximant” islands
The gaps of a Cantorus allow orbits to leak across it, but the time to cross them

can be very large, specially for parameters just after the breakdown.

Transport properties accross the Cantorus (for k > kG ) are related to
Mather’s ∆Wj , that is, to the flux (the area per iterate that crosses a
turnstile defined by the jth approximant pair of periodic orbits).
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We display ∆W̃j (left), ∆W̃ nc
j (center) and ∆W̃ c

j (right) as a function of

k̃ . The left and center plots display the curves for 3 ≤ j ≤ 14 but the
curve for j = 14 is not shown in the right plot.

We use the same grid of initial conditions as for the computation of µ̃j before.
Subscript c/nc means confined/not confined in the island.
We display scaled quantities: ∆W̃j = ∆Wj/(d

(j)
x d

(j)
y ).
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Escape rates: renormalization theory
Given (x0, y0) ∈ S

1 × (0, 1) denote by (xn, yn) = Mn
k (x0, y0). Let

n = n(x0, y0) be the number of iterates for which either yn > y (u) or
yn < y (l) for the first time (we take y (l) = 0 and y (u) = 1 in the
computations). If n = n(x0, y0) <∞ we say that (x0, y0) escapes across
one of the golden Cantori in n iterates. Denote by 〈Nk〉 the mean escape
rate for a given k .

For any irrational rotational number ω, Mather’s ∆Wω is obtained as the
limit of ∆Wj . It follows from renormalisation theory that

∆Wω(kG +∆k/δ) ≈ ∆Wω(kG +∆k)/(αβ), α, β limit domain scalings

Hence, there exists a 1-periodic universal function U(x) = U(x + 1) s.t.

∆Wω(kG +∆k) ≈ A(∆k)BU(logδ(∆k)), where B = logδ(αβ).

As a consequence, we expect the mean escape rate 〈Nk〉 to behave as

〈Nk〉 = A(∆k)B

Mather, J.N., A criterion for the nonexistence of invariant circles, IHES Publ. Math 63, 153–204, 1986.
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Escape rates: numerical results
To compute 〈Nk〉 for k̃ = −12(−0.01)− 5.99, we consider 105 – 107 (depending

on k̃) initial conditions in W u
loc(0.5, 0.5) to guarantee they escape.
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Top left: 〈Nk〉 × 10−9 as a function of k . Top right: logδ 〈Nk〉 as a function of k̃ .

Bottom left: 〈Nk〉 × (k − kG )
−B , with B = B〈Nk〉 and B = BMac as a function of

k̃. Bottom right: Detail of bottom left plot. BMac=− logδ(αβ)≈−3.0117218914
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Final comments

We approached the breakdown by δ−14 ≈ 0.00109 and obtain
|BMac − B〈Nk̃〉| = O(10

−2).

→ still far from the limit,
→ but computations for k̃ < −14 are still far from practical.
Closer to the limit, as k̃ → −∞, the oscillations of the escape rates
should take place around a horizontal line.

It needs to be clarified which are the objects responsible for the actual
transport probabilities. One expects the oscillations to be strongly
related to the area of the heteroclinic lobes of intersecting invariant
manifolds of hyperbolic periodic orbits and the turnstile areas of
“approximant” orbits. Our computations show that, as k varies, the
area in the phase space that is accessible to orbits that can escape
changes as the islands of stability do, and not in a monotone way in
k̃ , but if we conveniently scale the phase space, the area occupied by
evolving islands varies in a periodic way.
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Open questions/future work
What can be said about the probability law of escape rates?
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Numerically computed histogram (pdf) of the number of iterates needed to

escape, Nk , for different values of k̃ Left: Nk in the original scale of time.

Right: Same as left plot but in decimal scale in time.

Behaviour of the parameterization of the golden RIC as k ր kG?
Olvera, A. and Petrov, N.P. Regularity Properties of Critical Invariant Circles of Twist Maps, and Their Universality.

SIAM J.Appl.Dyn.Syst. 7, 2008.

Our numerics indicate that the transport properties near the Cantorus
might be described by a nearest neighbour Markov process with
different states (as many as relevant islands near the Cantorus). How?

Thanks for your attention!
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