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Before starting...

Our philosophy:

We are interested in mathematical proofs but...

we do not want qualitative studies or abstract/theoretical

reasonings because ...

...we want our results to be useful in real applications.
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Contents

• Local (semi-local) study of APMs: Resonances ( including strong

resonances), inner/outer splittings of separatrices.

• Semi-global study: Dynamics in chaotic zones.

• Global study: Evolution of the domain of stability with respect parameters.

• Weakly dissipative maps: Coexistence of attractors and probability of

capture.

Along the presentation the Hénon map will be used as a paradigm of APM.

One of the formulations is

Hc :

(

x

y

)

7−→
(

c(1 − x2) + 2x+ y

−x

)
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Local (semi-local) study of APMs

→ We want:

• A description of the resonant structures (islands).

• To study the inner and the outer splittings of separatrices.

• To study the strong resonances.

→ Steps to follow:

1) Consider BNF (local study).

2) Construct a suitable model from BNF (an interpolating Hamiltonian flow).

3) Localise the model around the resonance strip we want to study

(semi-local study).

4) Use this model to study the properties we want.

splitting APMs – p.4/39



BNF + Interpolating Hamiltonian

Fδ one-parameter δ-family of APMs with F (E0) = E0 elliptic fixed point.

Spec DF (E0) = {µ, µ̄}, µ = e2πiα, α = q/m+ δ, δ small enough.

(x, y)-Cartesian coord., (z, z̄)-complex coord. (z = x+ iy, z̄ = x− iy).

(I, ϕ)-Poincaré variables (z =
√

2I exp(iϕ)).

→ Consider the Birkhoff NF of Fδ(x, y) to order m around E0

(say BNFm(Fδ)(z, z̄)) and let K(z, z̄) = BNFm
m(Fδ)(z, z̄) (near Id).

→ Define

Hnr(I) = π
∑s

n=0

bn

n+1
(2I)n+1 and Hr(I, ϕ) = 1

m
(2I)

m
2 cos(mϕ).

The time-1 map generated by the flow defined by the Hamiltonian

H(I, ϕ) = Hnr(I) + Hr(I, ϕ)

interpolates K with an error of order m + 1 with respect to the (z, z̄)-
coordinates, in a suitable annulus containing the resonant m-island.

splitting APMs – p.5/39



Description of resonances

Generic case: α = q/m+ δ, m > 5, δ sufficiently small, b1 6= 0.

• If b1δ < 0 then F has a resonant island of order m.

• The resonant zone is determined by two periodic orbits of period m

located near two concentric circumferences (in the BNF variables). The

closest orbit to the external circumference is elliptic while the one located

close to the inner circumference is hyperbolic.

• The width of the resonant island is O(I
m/4
∗ ), I∗ = −δ/2b1.

∆ I Η

δp

∆ IΕ

H

E

H

q

I*

δq

p

splitting APMs – p.6/39



A model around a generic resonance

For a generic APM such that δ < 0, b1 > 0, b2 6= 0, the dynamics around an

island of the m-resonance strip (m ≥ 5) can be modeled, after suitable

scaling (J ∼ δ−m/4(I − I∗)), by the time-log(λ) map of the flow generated by

H(J, ψ) =
1

2
J2 +

c

3
J3 − (1 + dJ) cos(ψ),

where c = O(δ
m
4 ), d = O(δ

m
4
−1). Bounding the errors it is shown that it

gives a “good” enough approximation of the dynamics in an annulus containing

the m-islands.

→ Then, we have the following... a

a The details of the proof (singularities, suitable Hamiltonian,...) can be found in:

Resonant zones, inner and outer splittings in generic and low order resonances of area preserving maps.

Nonlinearity 22, 5:1191–1245, 2009.
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Main result: comments on the hypothesis

• A1. b1(δ) is non-zero for δ = 0.

• A2. W u =G(W s), G periodic (between homo p and F (p)),

s scaled variable s.t. G(s)=
∞
∑

k=−∞

ck exp(ik 2πs).

We assume: The maximum of the norms of the functions c±1 exp(±i2πs)
is bounded away from zero, when δ tends to zero, on suitable lines whose

imaginary part tend to τ± when δ → 0.

• A3. There exists a fixed α > 0 s.t.

σ± = exp

(

−2π Im τ± − η±
log(λ(ǫ))

)(

cos

(

2π Re τ±
log(λ(ǫ))

− φ±

)

+ o(1)

)

,

where |η±| < log(λ(ǫ))1−α for ǫ sufficiently small.

• A4. F maybe meromorphic but the singularity remains at a finite distance
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Main result

Theorem. Let F be an APM. Assume that it has an m-order resonance strip,

m > 4, located at an average distance I = I∗ = O(δ) from the elliptic fixed

point and δ is sufficiently small. Under the assumptions A1, A2, A3 and A4,

the following conclusions hold.

a) The outer splitting is larger than the inner one being the difference between

the position of the corresponding nearest singularities O(δm/4−1).

b) Neither the inner nor the outer splittings oscillate.

→ Question: Consequences in the width of the chaotic zones of this fact?

Before some comments...
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Some comments: Far from the elliptic point

2:11 Hénon
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Some comments: Strong resonances

• The description of the resonant structure by means of the interpolating

Hamiltonian does not hold if m ≤ 4.

• We have studied in detail the generic cases for the resonances (1:3) and

(1:4), computing the Hamiltonian and the singularities, and also some

non-generic cases:

Hénon map 1:4 resonance Non-generic!!
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Semi-global study of APMs: Chaotic regions

We focus now on the chaotic regions created by the invariant manifolds

emanating from a fixed/hyperbolic point h. We do not assume the region of

interest to be close to the origin but we require the system to be not too far

from integrable in the selected domain to be studied.

→ We want:

• To study the resonant islands far from the elliptic point

• To study the dynamics in the chaotic zones

→ How?:

Using suitable return maps.
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Chaotic regions considered

For each of the following cases we use a concrete return map model to study

the dynamics.

• Open case (fish like) Separatrix map

• Figure eight case (pendulum like) Double separatrix map

• Large regions of instability (e.g. Birkhoff z.i.) Biseparatrix map

→ We look for quantitative information on the dynamics within the chaotic
zones. However, the biseparatrix model only gives us a topological description
of the dynamical behaviour. a

aThe following results can be found in:

Dynamics in chaotic zones of area preserving maps: close to separatrix and global instability zones.

Submitted to Physica D.
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Open case

HE

SM :

(

x

y

)

7−→
(

x′

y′

)

=

(

x+ a+ b log |y′|
y + sin(2πx)

)

where b = 1/ log(λ), λ the dominant eigenvalue of DF (h) and a is a “shift”.

The y-vble. is scaled by the amplitude of the splitting.
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Open case: results

• Distance to invariant curves from the separatrix: dc ∼ |b|/k∗ (SM is

approximated by STM, k∗ ≈ 0.97/(2π) Greene value).

◮ When coming back to the original variables: Dc ∼ σℓ/(2πk∗ log(λ)),

◮ If measured from the hyperbolic point, assuming the map close to the

time-ǫ flow of H(x, y) = y2/2 − αx3 − βx2, one has:

Dh
c ≈ (3LDc/2)1/2, where L is the distance between the hyperbolic

and the elliptic point inside the “fish”. This result can be improved using

higher order interpolating Hamiltonians.

• Distance to islands from the separatrix: di ∼ |b|/k̃, k̃ = 2/π.

• Expected number of “central” islands before the r.i.c.

#{islands} ≈ 1.415 × b.
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Hénon map Hα(x, y) = R2πα(x, y − x2)
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α = 0.1

Experimental values: (DH
c )e ≈ 2.94×10−3, (DH

i )e ≈ 2.08×10−3

“Fish” interpolating Hamiltonian: DH
c ≈ 2.47×10−3, DH

i ≈ 1.85×10−3

5-order interp. Hamiltonian: DH
c ≈ 2.731×10−3, DH

i ≈ 2.050×10−3
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Figure eight case

H HE

H

E

H

DSM :









x

y

s









7−→









x̄

ȳ

s̄









=









x + as̄ + b log |ȳ| (mod 1)

y + νs̄ sin 2πx

sign(y) s









,

where ν is such that ν1 = 1 and ν−1 = A−1/A1, being A1 and A−1 the

amplitudes of the outer and inner splittings, respectively, of the resonant island.

Comments:
• It is defined on a domain W = U ∪ D (upper and lower domains around

the outer and inner separatrices of the resonance).
• y > 0 means we are outside the stable manifold (either in U or D).
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Figure eight: results

Generic resonances close to the origin. Assume b1δ < 0 and that the

hypothesis of the theorem concerning the difference of the inner and outer

splittings hold. Then,

• The width of the outer chaotic zone is larger than the width of the inner

chaotic one if, and only if, sign b1 · sign b2 < 0.

• Both amplitudes of the stochastic layer are of the order of magnitude of the

outer splitting (the largest one).
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Pendulum-like islands: comments

The idea is to construct an interpolating Hamiltonian of the map (in a domain

containing the resonance) and to use preservation of energy to see how the

distance to the rotational invariant curves changes when measuring from the

upper U and the lower D domains. This can be done computing the ratio

f = ∇H(JM)/∇H(Jm)

where JM and Jm are the maximum (minimum) of the outer (inner) separatrix

of the Hamiltonian. For close to the origin resonances f = 1 + O(δm/4).
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Pendulum-like islands: comments II

The same idea applies to resonances far from the origin as well as for strong

resonances but, for each case, a suitable interpolating Hamiltonian must be

considered. In these cases the chaotic zone width measured in both domains

can be of different order of magnitude:
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c = 1.015,

σ+ =O(10−54), σ−=O(10−1).

Experimentally, f ≈ −5. Using in-

terp. Ham. up to order δ ≈ c − 1

we obtain f ≈ −5.64.

But δ = 0.015 is too large. For δ

small we obtain better results (even

we can predict # tiny islands).
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Large regions of stability

Due to the interaction of resonances large chaotic zones of instability appear.

These are regions without rotational invariant curves (e.g. Birkhoff zones of

instability). We have considered the biseparatrix model and we have studied

different situations (twist and non-twist case). On the other hand, it helps to

study the phenomena taking place at the border of the stability domain.

Geometrical situation:

H1

H2

D

D

W
s(H2)

W
u(H2)

W
u(H1)

W
s(H1)

H1

H2
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The biseparatrix model

Between two concentric chains of islands, the simplest qualitative model on

the domain 0 < v < d is given by
(

u

v

)

7−→
(

u′

v′

)

=

(

u+ α+ β1 log(v′) − β2 log(d− v′)

v + sin(2πu)

)

.

where β1 = 1/ log(λ), β2 = 1/ log(µ), λ being the eigenvalue of modulus

greater than one of the hyperbolic point of the bottom separatrix and µ the

corresponding one of the top separatrix.

• For this model it is theoretically expected to have rotational invariant curves

provided d > (
√
b1 +

√
b2)

2/k∗ (k∗ = Greene’s value).

• Changing - for + in the 1st. row it is a model for non-twist Birkhoff zones.

• It remains to generalise it to different order for the top/bottom resonances

and to make it quantitative.
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Global study of APMs.

We consider the full domain of stability around the elliptic fixed point.

→ We want: To describe the evolution of the domain of stability when

changing parameters.

→ How?

• We perform numerical simulations.

• We try to explain what is observed in computations by using different

theoretical frameworks.

No “new” theoretical results!!

Just a description of what is observed in simulations!!

Useful to understand/predict for a large variety of APM.
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The domain of stability (DS)

DS for APMs are related with elliptic fixed/periodic points (locally KAM thm.

assures the existence of rotational inv. curves under some conditions).

For a given map F : U → R
n, U ⊂ R

n, and given a compact set K ⊂ U ,

the stability domain of F relative to K is the largest F -invariant subset of K

(a chaotic orbit can be stable, in the sense that it does not escape)
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Drastic changes in the stability domain
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The evolution of the size of the stability domain
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Weakly dissipative maps

We study the effect of dissipation on the family of maps.

Interest in: a

• Describe the geometrical structures and how they arise from the

conservative case

• Study the probability of capture

aPlanar Radial Weakly-Dissipative Diffeomorphisms. Work in progress.
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The type of dissipative perturbation considered

We consider a radially dissipative perturbation:

Fδ(x, y) – the family of APMs s.t. Fδ(0) = 0 is an elliptic fixed point

ǫ – the dissipation parameter

→ the dissipative perturbation is of the form:

Fδ,ǫ(x, y) = (1 − ǫ)Fδ(x, y)

Note that with this dissipation most of the orbits will end up at the origin (which

becomes a focus under dissipation). In particular, there are no rotational

invariant curves. Nevertheless, different periodic attractors can coexist if the

dissipation is small enough.

Main question: How the geometry of the conservative islands changes when

adding a radial dissipative perturbation and how this changes can be related

with the probability of capture into resonances?
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Dissipation effect on the conservative islands

We recall that generically it is expected, for conservative resonant islands

close to the origin, to have the outer splitting larger than the inner one. The

effect of the dissipation gives rise to the following structures:

1.

E
H+

H−

2.

E
H+

H−

3.

E
H−

H+

4.

E
H-H+
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The 1st. critical radius

From BNF of the conservative map, adding the dissipation, it is obtained the

following model describing the dynamics around the origin (for values of

ǫ = O(δm/2−1))

İ = (2I)
m
2 sin(mϕ) − 2ǫI,

ϕ̇ = 2π
s
∑

n=0

bn(2I)n + (2I)
m
2
−1 cos(mϕ).

In particular, from this model, it is observed that for ǫ large enough (depending

on δ, m and bi) the dissipation will destroy the m-resonance.
Then, for a fixed ǫ the m-resonance is destroyed if δ is small enough. Con-
sequently, there is a first critical radius rc (depending on ǫ and on the twist
properties of the map) such that all the conservative resonances inside the disk
of radius rc around the origin are destroyed by the dissipation.
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1st. critical radius: illustration

log10(ǫ) Res. destroyed

-6 Inside B0(0.27)

-4.569 (2:19)
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-0.5  0  0.5  1

Resonances: (1:7), (1:8), (2:17), (1:9), (2:19) and (1:10) (α = 0.15).
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The 2nd. critical radius

Beyond the first critical radius one expects to have resonances. But there must

be an annulus where all the resonances are of flow type.

The condition of having homoclinics in the resonant dissipative structure

defines a second critical radius rcc.

• For all the resonances in the annulus rc < r < rcc, the dynamics of the

map can be well-approximated by a flow.

• This also holds for many of the small dissipative islands surviving with

r > rcc but not for the main ones, where a different model (an adapted

return map) should be considered to analyse the dynamics.
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Manifolds of different dissipative resonances

No invariant rotational curves if dissipation ⇒ the manifolds of different

resonances interact. Easiest case: both resonances of flow type (without

homoclinics).
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Probability of capture into resonances

We try to compute the probability of capture in resonances. In particular, our

interest is on the limit probability of capture when the map approaches to the

conservative case.
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→ According to the previous considerations, the flow type resonances and the
resonances having homoclinics must be analysed in a different way.
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Flow type resonances: a suitable model

For a radially dissipative planar diffeomorphism the dynamics of the m-order

resonance, m ≥ 5, can be approximated (up to order 2 in ǫ) by the time

γ = λ̂(1 + O(δ)) map related to the flow generated by the vector field

Xǫ̂ :

{

J̇ = −(1 + dJ) sinψ − ǫ̂− kδ
m
4
−1ǫ̂J,

ψ̇ = J + cJ2 − d cosψ,

where c = O(δ
m
4 ), d = O(δ

m
4
−1), k = O(1), and ǫ̂ = O(δ1−

m
2 ǫ).

( The constants c, d, k, and ǫ̂ are related to the Birkhoff coefficients of the BNF → known quantities )

Hamiltonian part: Hǫ̂(J, ψ) = 1

2
J2 + c

3
J3 − (1 + dJ) cosψ + ǫ̂ψ
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Flow type resonances: probability of capture

Assume that no homoclinic points appear as ǫց 0 in the m-order resonance.

Then, the probability of capture by the perturbed elliptic point (stable focus) of

an island of the m-order resonance behaves, when ǫ goes to zero, as

Pcapture =
16|b1|

2−m
4

mπ
√
π

|δ|m
4
−1 + O(δ1−

m
2 ǫ, δ

m
4 ).

W+
s

W_
s

W+
s

Wu
_

W_
s

W+
u

E
H-H+

s12s
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Resonances with homoclinics: a suitable model

A “dissipative” version of the separatrix map:








t

J

s









7−→









t̄

J̄

s̄









=









t + ω + β log |J | (mod 1)

J + νs̄ sin 2πt̄ + B̃s̄

sign(J) s









,

where

νs̄ = As̄/A1, Ai amplitude of the splitting

ω = β log(C1A1/x̄
∗

1), β = −1/ log(λ) and B̃s̄ = Bs̄/A1.

Note that ν1 = 1.

Constant C1 can be determined from the variational equations along a

suitable interpolating flow (the pendulum flow).

Constant x̄∗1 depends on the properties of the map and it deals with the local

radius around the hyperbolic point of the resonance where the BNF holds.
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Res. with homoclinics: probability of capture

Under suitable assumptions, dealing with the uniform distribution of the points

under iterates of the “dissipative” double separatrix model, the following holds:

• The probability of capture Pcapt in the m-resonance strip verifies

lim
ǫ→0

Pcapt = K(δ).

• If furthermore the m-order resonance is located close enough to the origin

E0, then the constant K(δ) behaves as

K(δ) ∼ δ
m
4
−1.

→ The splitting plays no relevant role when computing a “first” approximation

of the probability of capture.
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The end...

We are working in 4D symplectic maps trying to generalise these studies. a

Thank you for your attention!!

aSome (numerical) preliminary results can be found in

Some properties of the global behaviour of conservative low dimensional systems, in Foundations of Computational

Mathematics: Hong Kong 2008, F. Cucker et al., editors, London Math. Soc. Lecture Notes Series 363, Cambridge

Univ. Press, 2009.
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