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Motivation: A paradigmatic Froeschlé-like map

Consider the map T : (ψ1, ψ2, J1, J2) 7→ (ψ̄1, ψ̄2, J̄1, J̄2) given by

ψ̄1 = ψ1 + δ(J̄1 + a2J̄2), ψ̄2 = ψ2 + δ(a2J̄1 + a3J̄2),

J̄1 = J1 + δ sin(ψ1), J̄2 = J2 + δǫ sin(ψ2).

• T is related to the time-δ map of the flow associated to the Hamiltonian

H(ψ1, ψ2, J1, J2) =
J2
1

2
+ cosψ1 + a2J1J2 + a3

J2
2

2
+ ǫ cos(ψ2),

• 4 fixed points: For ǫd > 0, d = a3 − a22, |ǫ| ≪ 1 and δ . 2

p1=(0, 0, 0, 0) HH, p2=(π, 0, 0, 0) EH, p3=(0, π, 0, 0) HE, p4=(π, π, 0, 0) EE.

→ T models the dynamics at a double resonance, it was derived from BNF around an EE point of a

symplectic map in V. Gelfreich, C. Simó & AV, Dynamics of 4D symplectic maps near a double

resonance, Phys D 243(1), 2013. 2/26



Motivation: Transition to complex unstable

→ If d > 0 (definite case) the EE point remains EE for all ǫ and δ.
→ If d < 0 (non-definite case) the point p4 suffers a Krein collision at

ǫ =

(

−(2a3 − 4d)±
√

(2a3 − 4d)2 − 4a23

)

/(2a23),

and becomes a complex-unstable point (Hamiltonian-Hopf bifurcation ).
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Eigenvalues of DT (p4) for

δ=0.5, a2=0.5, a3=−0.75 (hence d=−1)

and ǫ from −0.01 (squares) to −20. The (first) Krein

collision takes place at ǫc = −4/9 at a collision angle

θ̂0=arctan(
√
23/11)∈R\Q.

→ The CS point has 2D stable/unstable invariant manifolds.→ Next plots show their role!

→ The previous considerations also hold for H : the eigenvalues collide at the imaginary axis and the

2-dof analogous Hamiltonian-Hopf bifurcation takes place. Later: differences discrete/continuous cases

in the splitting of the 2D inv. manifolds. 3/26



Motivation: Dynamical consequences

Lyapunov exp. MEGNO, i.c. on ψ1=ψ2=0: white→ regular, green→ mild chaos, black→ chaos.
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Left: ǫ=−0.4. Right: top ǫ=−0.44, bottom: ǫ=−0.45. (Rec: ǫc=−4/9.)

→ Lyapunov inv. curves families, local character of the bifurcation, evolution to global connection,... 4/26



Goal of this work

We want...

1. Analysis of the Hamiltonian-Hopf bifurcation for 4D maps.

2. Geometry of the 2D invariant manifolds: behaviour of the splitting for the

4D map.

→ But, previously, we review the 2-d.o.f. analogous Hamiltonian-Hopf case.

1. Sokolskii NF.

2. Splitting of the invariant manifolds: Reduction to a 2D near-the identity

area-preserving map.

→ Important: How are both cases related?

1. Main idea: Takens NF + interpolating Hamiltonian

2. Differences in the behaviour of the splitting: energy function
5/26



2-dof Hamiltonian Hopf (HH): Sokolskii NF

2-dof HH codim 1: Consider a 1-param. family of 2-dof Hamiltonians Hν

undergoing a HH bifurcation (at the origin).

Concretely: for ν > 0 elliptic-elliptic, ν < 0 complex-saddle.

Analysis of the HH bifurcation → Reduction to Sokolskii NF :

1. Taylor expansion at 0: Hν =
∑

k≥2

∑

j≥0 ν
jHk,j, where Hk,j ∈ Pk

homogeneous of order k.

2. Williamson NF (double purely imaginary eigenvalues):

H2,0 = −ω(x2y1 − x1y2) +
1
2
(x21 + x22).

3. Use Lie series to order-by-order simplify H2,j ,j>1 and Hk,j ,k>2,j>0.

But: non-semisimple linear part!

Then, at each order (k, j), one looks for G ∈ Pk s.t.

Hk,j + adH2(G) ∈ Ker ad⊤H2
.
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2-dof HH: Sokolskii NF

4. Introducing the Sokolskii coordinates (dx1∧dy1+dx2∧dy2=dR∧dr+dΘ∧dθ)

y1=r cos(θ), y2=r sin(θ), R=(x1y1 + x2y2)/r, Θ=x2y1 − x1y2,

one has H⊤
2 = −ωΘ+ 1

2
r2 and

NF(Hν) = −ωΓ1 + Γ2 +
∑

k,l,j≥0
k+l≥2

ak,l,j Γ
k
1 Γ

l
3 ν

j.

where
Γ1 = x2y1 − x1y2, Γ2 = (x21 + x22)/2 and Γ3 = (y21 + y22)/2.

5. Introducing ν = −δ2, and rescaling xi = δ2x̃i, ωyi = δ ỹi, i = 1, 2,

ωt = t̃, one has

NF(H̃δt) = −Γ̃1 + δ
(

Γ̃2 + aΓ̃3 + ηΓ̃2
3

)

+O(δ2).

The Γ̃i written in terms of the Sokolskii coordinates are given by

Γ̃1 = Θ, Γ̃2 =
1

2

(

R2 +
Θ2

r2

)

, and Γ̃3 =
r2

2
.
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2-dof HH: invariant manifolds

For ν < 0 the origin has stable/unstable inv. manifolds W s/u(0). Note that

• W s/u(0) are contained in the zero energy level of NF(H̃δ).

• {Γ̃1, Γ̃2} = {Γ̃1, Γ̃3} = 0⇒ Γ̃1 is a formal first integral of NF(H̃δ).

Hence Γ̃1 = 0 on W s/u(0).

Then, ignoring O(δ2) terms, W s/u(0) are given byR2+ ar2+ ηr4/2 = 0,

which is the zero energy level of a Duffing Hamiltonian system .

⇒ W u/s(0)|(R,r)-plane form a figure-eight

(for a<0, η>0; unbounded otherwise!

but only r>0 has sense!).

r

R

The 2D W s/u(0) are rotated around the origin (on W s/u(0) one has Θ=0, θ̇=1).

For the truncated NF (i.e. ignoring O(δp)-terms, p > 1) the 2D stable/unstable inv.
manifolds coincide. But: For the complete 2-dof Hamiltonian they split!
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2-dof HH: splitting of inv. manifolds

The asymptotic expansion of this splitting has been obtained in

J.P.Gaivao, V.Gelfreich, Splitting of separatrices for the Hamiltonian-Hopf bifurcation with the

Swift-Hohenberg equation as an example, Nonlinearity 24(3), 2011.

α ∼ AδB exp

( −π√
−aδ

)

∼ A|Re λ|B exp

(−π |Im λ|
|Re λ|

)

Main idea: The exponential part of this formula can be obtained by reducing to a near Id family of analytic

APMs + Fontich-Simó thm. (upper bounds are generic!).

Consider Σ = {θ = 0} (but in Cartesian coord. to avoid singularities) and

Tδ : Σ→ Σ (Poincaré map of the full 2-dof Hamiltonian) ❀ separatrices split,

T 0
δ : Σ→ Σ (Poincaré map of the truncated 2-dof Hamiltonian, ignoringO(δ2)) ❀ Homoclinic

loop.

Then, T 0
δ (R, r,Θ, θ) = (φX

2π,Θ, θ mod 2π), being X the vector field

Ṙ = δ
(
ar + ηr3

)
, ṙ = −δR, ←− Duffing!

which has a homoclinic solution γ(t) with nearest singularity to the real axis τ = iπ/2
√
−aδ and

dominant eigenvalue µ = 2π
√
−aδ (then rescale time by

√
−aδ). But T 0

δ = (T̂ 0
δ )

2, being T̂ 0
δ close

to -Id⇒ use µ/2 instead of µ in the exponential part of the upper bound Cexp (−2π(Im τ−η)/µ),
η small fixed quantity. 9/26



2-dof HH: the example

H(ψ1, ψ2, J1, J2) =
J2
1

2
+ a2J1J2 + a3

J2
2

2
− cos(ψ1)− ǫ cos(ψ2)

Reversibility: (ψ1,ψ2,J1,J2)∈W u(0) then (−ψ1,−ψ2,J1,J2)∈W s(0).

This suggests to consider Σ={ψ1=0, ψ2=0} and to look for homoclinic

points in Σ.
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2-dof HH: Computing numerically the splitting

→ One can represent W u as a series G(s1, s2), where s1, s2 are local

parameters in a fundamental domain (parameterisation method) and

propagate the manifolds (e.g. using Taylor integrator).

→ Then, one can compute (sh1 , s
h
2) giving a homoclinic point ph on Σ (at the

first intersection!). ❀ The homoclinic orbit was shown in the last plot!

To measure the splitting angle α:

1. Compute a basis of TX0
h
(W u

loc(0)) ❀ v0t = ∂G
∂s1

(sh1 , s
h
2),v

0
vf

2. Transport the vectors to Σ❀ vΣt ,vΣ
vf

(integrating variational eqs.)

These vectors form a basis of Tph(W
u(0)).

3. Compute an orthogonal basis of Tph(W
u(0))❀ u1,vΣ

vf

4. Compute the splitting angle. By reversibility, from u1 ∈ Tph(W
u(0)) we

obtain a vector u2 ∈ Tph(W
s(0)). Then,

α = angle(u1, u2)
11/26



2-dof HH: Checking the behaviour of α

H(ψ1, ψ2, J1, J2) =
J2
1

2
+ a2J1J2 + a3

J2
2

2
− cos(ψ1)− ǫ cos(ψ2)
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Left: log(α) vs. ǫ− ǫc. Right: Re(λ) log(α) vs. Re(λ).

Recall: α ∼ Ã(|Re λ|)B exp
(

C
|Re λ|

)

, where C = −π |Im λ|.

For a2 = 0.5, a3 = −0.75 one gets C =−
√
2π/3 +O(ν) (Sokolskii NF).

Fitting function (right plot): f(x) = Ax+ B x log(x) + C .
❀ It perfectly fits the behaviour!
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Up to this point: 2-dof Hamiltonian-Hopf bifurcation.

1. Everything was “more or less” well-known: Sokolskii NF, geometry of the

invariant manifolds, the splitting α,...

2. α behaves as expected for a near-the-identity family of 2D APM.

Guiding example: H =
J2

1

2
+ a2J1J2 + a3

J2

2

2
− cos(ψ1)− ǫ cos(ψ2).

Now: 4D discrete Hamiltonian-Hopf!

Guiding example: the 4D symplectic map T given by

ψ̄1 = ψ1 + δ(J̄1 + a2J̄2), ψ̄2 = ψ2 + δ(a2J̄1 + a3J̄2),

J̄1 = J1 + δ sin(ψ1), J̄2 = J2 + δǫ sin(ψ2).

The origin undergoes a HH bif. and 2D stable/unstable manifolds are born.

Question: Behaviour of the splitting of the 2D inv. manifolds?
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Planning:

First: Numerical exploration of T .

→ Computation of the invariant manifolds.

→ Behaviour of the splitting.

→ A naive justification of the behaviour observed.

After: General theoretical results on splitting of inv. manifolds for the 4D HH.

→ Upper bounds from a suitable energy function.
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T : Invariant manifolds

One can compute W u/s(0) and ph ∈ Σ = {ψ1 = ψ2 = 0} (similarly to the

2-dof case).
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T : Splitting volume V

We compute the volume of a 4D parallelotope defined by two pairs of vectors

tangent to W u and W s:

G(s1, s2) - the (local) parameterisation.

1. Consider the vectors (tangent to W u):

ṽ1 = (∂G/∂s1)(s
h
1 , s

h
2), ṽ2 = (∂G/∂s2)(s

h
1 , s

h
2).

2. Transport these vectors under T to ph and consider, by the reversibility,

ṽ3 = R(ṽph1 ), ṽ4 = R(ṽph2 ).

3. Finally, normalize them vj = ṽphj /‖ṽphj ‖, j = 1, . . . , 4 and define

V = det(v1, v2, v3, v4)

Question: How does V behaves as ǫ→ ǫc?
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T : Behaviour of V

T : ψ̄1 = ψ1 + δ(J̄1 + a2J̄2), ψ̄2 = ψ2 + δ(a2J̄1 + a3J̄2),

J̄1 = J1 + δ sin(ψ1), J̄2 = J2 + δǫ sin(ψ2).

Fixed a2, a3 one has ǫc = ǫc(a2, a3). The (Krein) collision angle θ0 depends

on δ.

a2=0.5, a3=−0.75❀ ǫc=−4/9. δ=0.5❀ θ0=arctan(
√
23/11)/2π ∈ R\Q.
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Exponentially

small but...

...different slopes

as ν → 0 !!!
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Naive explanation of the behaviour of V

Consider a (generic) symplectic map F in R4 undergoing a HH bif.

Discrete HH bif. ❀ codim 2 bif ❀ Let δu, ǫu be the unfolding parameters.

δu: Collision angle θ̂0 = 2π(q/m+ δu).

ǫu: Measures the relative distance to the critical parameter.

Different (naive) important aspects:

1. “Two” exp. small effects: one within the Hamiltonian itself (already

studied!), the other measures the “map-Hamiltonian distance”.

2. “Two” frequencies: “Duffing” and its 2πθ-perturbation + “time” frequency .

3. The Hamiltonian part is known ⇒ only necessary to measure the second

effect. But: We have a “privilegiated direction” (the time!) ⇒ we will use an

energy function to measure the splitting in that direction (instead of using

the splitting potential or the Melnikov vector which measures both effects

together).
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Towards a sharp upper bound of the splitting (I)

Idea: It is enough to measure the “Hamiltonian-map distance”.

Let Fǫ be a family of symplectic maps s.t. at ǫ = 0 undergoes a HH

bifurcation. The inv. manifolds are given by u(α, t) and s(α, t),

(α, t)∈ [t0, t0+h)×S1. This defines fundamental domains Du/s.

Main result: Assume that

(H1) There exists an energy function E, i.e. such that E ◦ Fǫ = E, defined in a

neighbourhood of the fundamental domain Ds such that E(s(α, t)) = 0.

Moreover we assume that E and s(α, t) can be analytically extended to a

neighbourhood of W u(0) within Du (by iteration of F−1
ǫ ).

We define the splitting function:

ψ(α, t) = E(u(α, t))
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Towards a sharp upper bound (II)

(H2) There is a (limit) vector field

ẋ = f(x), x ∈ R2,

such that f is analytic, it possesses a hyperbolic saddle fixed point and a

homoclinic orbit σ(t) associated to it, and satisfies that compact pieces of

the real invariant manifolds of Fǫ are ǫ-close to an embedding of

S1 × {σ(t), t ∈ R} for ǫ > 0 small enough.

(H3) Fǫ can be extended analytically to a neighbourhood of

{α ∈ C/2πZ, |Im α| < ρ} × {σ(t),Re t∈R, |Im t| < τ}

for some 0 < τ < τ0 and 0 < ρ < ρ0.
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Towards a sharp upper bound (Result)

Under (H1), (H2) and (H3)...

(i) Rational Krein collision. Let θ0 = p/q, with (p, q) = 1. Then, there

exists ǫ0 > 0 s.t. for ǫ < ǫ0

|ψ(α, t)| ≤ K exp(−C/h), C,K > 0.

(ii) Irrational Krein collision. Let θ0 ∈ R \Q. Then, ψ is bounded by a

function that is exponentially small in a parameter γ, s.t. γ ց 0 when hց 0.

Moreover, the dominant harmonic k(h) of ψ changes infinitely many times as

h→ 0.

Idea: Bounding the Fourier coefficients of ψ, one gets

|ψ(α, t)| < K
∑

(k,n)∈Z2
∗

exp(−2π|n− θ0k|τ/h− |k|ρ
︸ ︷︷ ︸

βk

).

Then we look for k = k∗(h) > 0 s.t. the dominant coefficient βk∗
in the exponential bound is minimum

(different cases according to the properties of θ0).
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Map T : fit of the volume V (I)

T : ψ̄1 = ψ1 + δ(J̄1 + a2J̄2), ψ̄2 = ψ2 + δ(a2J̄1 + a3J̄2),

J̄1 = J1 + δ sin(ψ1), J̄2 = J2 + δǫ sin(ψ2).

a2=0.5, a3=−0.75❀ ǫc=−4/9.

We look for the dominant coefficients βk(h). They depend on θ0 and

h = log(λ) = O(
√

|ǫ− ǫc|). We fix θ0 = arctan(
√
23/11)/2π.
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Map T : fit of the volume V (II)

• We have k∗ = 1, 15, 46, 107, 703, 2002, 9307, 25919, ... as h→ 0.

• The values of k∗ are related to the approximants of θ0≈0.06543462308:

1/15, 3/46, 4/61, 7/107, 39/596, 46/703, 85/1299, 131/2002, . . .

• Not all the approximants produce a change of k∗(h) as h→ 0, only those

that are smaller than θ0 play a role (except the first one 1/15 > θ0).

• The lenght of the interval in h where k∗(h) dominates depends on the

CFE(θ0) = [15, 3, 1, 1, 5, 1, 1, 3, 1, 2, . . . ], but also on the

constants in front of the exponential terms of V (terms with larger βk can

dominate for finite h > 0!!!)

Conclusion: The numerical fit data show that the different slopes observed

are related to the different values k∗(h) obtained ❀ OK!!!
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Final comments I

1. Other aspects related to the HH bifurcation for 4D maps have been also

investigated (preprint).

For example:

(a) Structure of the Lyapunov families of invariant curves (analytic results

on: the detachment of the Lyapunov families, analysis of the rational and

irrational collision angle θ0 cases, stability of the inv. curves, ...).
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Final comments II

(b) Possible diffusive patterns through and around the double resonance.
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...but this will be explained in future talks...

2. Many open questions: Theorem of splitting for a family of 4D maps?

Separatrix return map? Diffusive properties (quantitative data)?

...but this is left for future works... 25/26



Thanks for your attention!!
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