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Motivation: A paradigmatic Froeschlé-like map

Consider the map 1" : (Y1, %2, J1, Ja2) = (Y1, 44, J1, J2) given by

Y1 = U1+ 0(J) + agJs), o = Yy + 0(azJy + azdy),
jl = J1—|—5Sin<¢1), jg — J2+5€Sin(¢2).

e ' is related to the time-0 map of the flow associated to the Hamiltonian

J? J2
H (11,49, J1, Jo) = 71 + cos 1 + agJyJy + a372 + € cos(1s),

e 4 fixed points: Fored > 0,d = a3z — a3, |e|] < 1land 6 < 2

p1=1(0,0,0,0) HH, po=(m,0,0,0)EH, p3=(0,7,0,0)HE, ps=(m, 7, 0,0)EE.

— I" models the dynamics at a double resonance, it was derived from BNF around an EE point of a
symplectic map in V. Gelfreich, C. Sim6 & AV, Dynamics of 4D symplectic maps near a double

resonance, Phys D 243(1), 2013. 2126



Motivation: Transition to complex unstable

— If d > 0 (definite case) the EE point remains EE for all € and 9.
— If d < 0 (non-definite case) the point p, suffers a Krein collision at

¢ = (—(2a3 —4d) £ 1/ (2as — 4d)? - 4a§> /(242),

and becomes a complex-unstable point (Hamiltonian-Hopf bifurcation ).

Eigenvalues of DT’ (p4) for
0=0.5,a2=0.5,a3=—0.75 (hence d=—1)

05 r

and € from —0.01 (squares) to —20. The (first) Krein

05 | collision takes place at €, = —4/9 at a collision angle

0o =arctan(y/23/11) e R\ Q.

@ )
- \E, D../ i

-1 -0.5 0 0.5 1

— The CS point has 2D stable/unstable invariant manifolds. — Next plots show their role!
— The previous considerations also hold for : the eigenvalues collide at the imaginary axis and the
2-dof analogous Hamiltonian-Hopf bifurcation takes place. Later: differences discrete/continuous cases

in the splitting of the 2D inv. manifolds. 3126



Motivation: Dynamical conseguences

Lyapunov exp. MEGNO, i.c. on 91 =12 =0: white — regular, green — mild chaos, black — chaos.
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Left: e=—0.4. Right: top ¢ =—0.44, bottom: ¢ =—0.45. (Rec: e.=—4/9.)

— Lyapunov inv. curves families, local character of the bifurcation, evolution to global connection,... 46



Goal of this work

We want...
1. Analysis of the Hamiltonian-Hopf bifurcation for 4D maps.

2. Geometry of the 2D invariant manifolds: behaviour of the splitting for the
4D map.

— But, previously, we review the 2-d.o.f. analogous Hamiltonian-Hopf case.

1. Sokolskii NF.

2. Splitting of the invariant manifolds: Reduction to a 2D near-the identity
area-preserving map.

— Important. How are both cases related?

1. Main idea: Takens NF + interpolating Hamiltonian

2. Differences in the behaviour of the splitting: energy function
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2-dof Hamiltonian Hopf (HH): Sokolskii NF

2-dof HH codim 1: Consider a 1-param. family of 2-dof Hamiltonians H,
undergoing a HH bifurcation (at the origin).

Concretely: for v > 0 elliptic-elliptic, ¥ < 0 complex-saddle.

Analysis of the HH bifurcation — Reduction to Sokolskii NF :

1. Taylor expansionat 0: H, = > |, -, Zj>0 v Hy, ;, where Hy, ; € Py
homogeneous of order k.

2. Williamson NF (double purely imaginary eigenvalues):

HQ,O = —w(nyl — mlyg) + %(x% + x%)

3. Use Lie series to order-by-order simplify f5 ;,7 >1 and Hy, ;,k>2,7>0.
But: non-semisimple linear part!
Then, at each order (k, j), one looks for G € P, s.t.
Hy.; + adp, (G) € Kerady, .
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2-dof HH: Sokolskili NF

4. Introducing the Sokolskii coordinates (dzi Ady: +dxa Adys =dRAdr+dO Adb)

y1=rcos(d), yo=rsin(f), R=(x1y1 + x2y2)/7, O =22y — 1Y,

one has H, = —wO + 2r? and
_ k1l
NF(H,) = —wli+ o+ Y apy; DF 507,
k1,520
k+1>2
where

Fl — TolY1 — L1Y2, Fz = (CI?% + CI?%)/Q and Fg = (y% -+ yg)/Z

5. Introducing v = —4§2, and rescaling z; = 0°%;, wy; = 0 4;, ¢ = 1, 2,

wt = f, one has

NF(Hs) = T, +0 (f2 +aly + nfg) 1+ O(82).

~

The I'; written in terms of the Sokolskii coordinates are given by

~ - 1 5 @2 _ 7,2
Flz@,F2:§<R +F>,andF3:E. -



2-dof HH: invariant manifolds

For v < 0 the origin has stable/unstable inv. manifolds 13/*/“(0). Note that
e 17/%(0) are contained in the zero energy level of NF( Hy).
o {I'},I',} = {I';,I's} = 0 =T} is aformal first integral of NF( H).
Hence I'; = 0 on W*/%(0).

Then, ignoring O(6?) terms, W*/%(0) are given by R? + ar? 4+ nr*/2 = 0,
which is the zero energy level of a Duffing Hamiltonian system

R

= W“/S(O)\(R,r)_p,ane form a figure-eight
(for a <0, n>0; unbounded otherwise!

but only > 0 has sense!).

The 2D WS/“(O) are rotated around the origin (on W*/“(0) one has © =0, § =1).

For the truncated NF (i.e. ignoring O(6%)-terms, p > 1) the 2D stable/unstable inv.
manifolds coincide. But: For the complete 2-dof Hamiltonian they split!

8/26



2-dof HH: splitting of inv. manifolds

The asymptotic expansion of this splitting has been obtained in
J.P.Gaivao, V.Gelfreich, Splitting of separatrices for the Hamiltonian-Hopf bifurcation with the
Swift-Hohenberg equation as an example, Nonlinearity 24(3), 2011.
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Main idea: The exponential part of this formula can be obtained by reducing to a near Id family of analytic

o ~ AdP exp ~ A|Re [P exp

APMs + Fontich-Sim6 thm. (upper bounds are generic!).

Consider > = {6 = 0} (but in Cartesian coord. to avoid singularities) and

Ts : > — > (Poincaré map of the full 2-dof Hamiltonian) ~> separatrices split,

T(g : 22 — 22 (Poincaré map of the truncated 2-dof Hamiltonian, ignoring (9(52)) ~> :El)grgocllnlc
Then, T§ (R, r, ©,0) = (¢2x, ©, 0 mod 27), being X the vector field
R=9¢ (ar + nr3), 7 = —0R, <— Duffing!
which has a homoclinic solution y(¢) with nearest singularity to the real axis 7 = i7w/2/—ad and

dominant eigenvalue pt = 2mw+/—ad (then rescale time by v/ —ad). But T(? = (T§)2, being TS close
to -Id = use p/2 instead of w in the exponential part of the upper bound C'exp (—27(Im 7—mn) /1),

1 small fixed quantity. 926



2-dof HH: the example

J? J?

H (11, 2bs, J1, Jo) = 71 + a1y + agf — cos(1)1) — € cos(1y)
Reversibility: (¢17¢27J17J2) S WU(O) then (_¢17_¢27<]17<]2) c WS(O)
This suggests to consider > = {1/, =0, 1)y =0} and to look for homoclinic
points in 2_.

T e

15=0.5, a5=—0.75, e=—0.5 (e.=—4/9) S by
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2-dof HH: Computing numerically the splitting

— One can represent W as a series Q(sl, 32), where s1, Sy are local
parameters in a fundamental domain (parameterisation method) and
propagate the manifolds (e.g. using Taylor integrator).

— Then, one can compute (s’f, 33) giving a homoclinic point p;, on 2. (at the

first intersection!). ~: The homoclinic orbit was shown in the last plot!

To measure the splitting angle «:
- 0 _ 9G (.h oh\,0
1. Compute a basis of T'xo(Wje.(0)) ~ vy = 52(s7, 85),0y
YISy

2. Transport the vectorsto > ~» v;”,v.¢ (integrating variational egs.)
These vectors form a basis of 1, (W*(0)).

3. Compute an orthogonal basis of T, (W*(0)) ~» uy,v%

4. Compute the splitting angle. By reversibility, from u; € T, (W*(0)) we
obtain a vector us € T, (W?*(0)). Then,

o = angle(uy, us)
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2-dof HH: Checking the behaviour of o

2 2
H (1,42, J1,J2) = 5> + a2 J1J2 + as— — cos(1p1) — e cos(1)2)
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Left: log(a) vs. € — €. Right: Re(\) log () vs. Re(\).

Recall: o ~ A(|Re M) exp (|R§A|),Where C' = —m|im A\l

For as = 0.5, ag = —0.75 one gets C' = —/27/3 + O(v) (Sokolskii NF).
Fitting function (right plot): f(x) = Ax + B x log(x) 4+ C.
~ It perfectly fits the behaviour!
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Up to this point: 2-dof Hamiltonian-Hopf bifurcation.

1. Everything was “more or less” well-known: Sokolskii NF, geometry of the
iInvariant manifolds, the splitting «,...

2. & behaves as expected for a near-the-identity family of 2D APM.

Guiding example: H = JT% + agJi1J2 + CL3J722 — cos(1) — ecos(p2).
Now: 4D discrete Hamiltonian-Hopf!

Guiding example: the 4D symplectic map 1’ given by

Y1 = U1+ 6(J) + agds), s Yy + 0(agJy + azdy),
jl = J1—|—5Sin(¢1), jg — Jz—l—(SESiIl(”QDQ).

The origin undergoes a HH bif. and 2D stable/unstable manifolds are born.

Question: Behaviour of the splitting of the 2D inv. manifolds?
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Planning:

First: Numerical exploration of 7.
— Computation of the invariant manifolds.
— Behaviour of the splitting.

— A naive justification of the behaviour observed.

After: General theoretical results on splitting of inv. manifolds for the 4D HH.

— Upper bounds from a suitable energy function.
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I": Splitting volume V

We compute the volume of a 4 parallelotope defined by two pairs of vectors
tangent to W* and WW?:

G (s1, S2) - the (local) parameterisation.
1. Consider the vectors (tangent to 11/“):
01 = (0G/0s1)(sh,52), Dy = (0G/0s5)(s", s).
2. Transport these vectors under 7' to p;, and consider, by the reversibility,

U5 = R(®™), 04 = R(&E").

~

3. Finally, normalize them v; = 05" /||}"]|, 7 = 1,...,4 and define

V' = det(vy, vg, U3, Uy)

Question: How does V' behaves as € — €.?
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1" Behaviour of VV/

T: 1 = P1+6(J1+axtz), P2 = P2+ 8(azi +asztz),
J1 = J1+dsin(yr), Jo = Ja+ desin(vh2).
Fixed a9, ag one has €, = €.(as, az). The (Krein) collision angle 6, depends
on 0.
a2=0.5,a3=—0.75~ e.=—4/9. §=0.5~ fg=arctan(y/23/11)/27 € R\Q.
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Left: log V' vs. €. Right: h|log(V)| vs. h (h = log(\)).
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Naive explanation of the behaviour of V/

Consider a (generic) symplectic map F'in R* undergoing a HH bif.
Discrete HH bif. ~» codim 2 bif ~» Let 9,,, €,, be the unfolding parameters.
5, Collision angle 8y = 2 (q/m + 8,,).
€,. Measures the relative distance to the critical parameter.

Different (naive) important aspects:

1. “Two” exp. small effects: one within the Hamiltonian itself (already

studied!), the other measures the “map-Hamiltonian distance”.
2. “Two” frequencies: “Duffing” and its 270-perturbation + “time” frequency

3. The Hamiltonian part is known = only necessary to measure the second
effect. But: We have a “privilegiated direction” (the time!) = we will use an
energy function to measure the splitting in that direction (instead of using
the splitting potential or the Melnikov vector which measures both effects

together).
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Towards a sharp upper bound of the splitting (I)

Idea: It is enough to measure the “Hamiltonian-map distance”.

Let F. be a family of symplectic maps s.t. at ¢ = 0 undergoes a HH
bifurcation. The inv. manifolds are given by u(c, t) and s(a, ),
(v, t) € [y, to+h) x St. This defines fundamental domains D%/*.

Main result: Assume that

(H1) There exists an energy function £/, i.e. such that £/ o F. = F/, defined in a
neighbourhood of the fundamental domain D? such that F/(s(a,t)) = 0.

Moreover we assume that £/ and s(«, t) can be analytically extended to a
neighbourhood of TW*(0) within D (by iteration of F.1).

We define the splitting function:

P(a,t) = E(u(a, 1))
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Towards a sharp upper bound (I1)

(H2) There is a (limit) vector field
i= f(x), xR

such that f is analytic, it possesses a hyperbolic saddle fixed point and a
homoclinic orbit o (%) associated to it, and satisfies that compact pieces of
the real invariant manifolds of £, are e-close to an embedding of

S x {o(t), t € R} for e > 0 small enough.

(H3) F, can be extended analytically to a neighbourhood of
{a e C/27Z,|Ima| < p} x {o(t),ReteR, |Imt| < 7}

forsome 0 < 7 < 719and 0 < p < pg.
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Towards a sharp upper bound (Result)

Under (H1), (H2) and (H3)...

(i) Rational Krein collision. Let 8y = p/q, with (p, g) = 1. Then, there

exists €g > 0 s.t. for € < ¢

(o, t)| < Kexp(—C/h), C,K > 0.

(ii) Irrational Krein collision.  Let 8y € R \ Q. Then, 1 is bounded by a
function that is exponentially small in a parameter v, s.t. v \, 0 when i \, 0.

Moreover, the dominant harmonic k(h) of 1) changes infinitely many times as
h — Q.

Idea: Bounding the Fourier coefficients of 7/, one gets

Yo t)| <K > exp(—2m|n — bok|7/h — |k|p).

2
(k,n) €22 Y

Then we look for k = k. (h) > 0 s.t. the dominant coefficient B, in the exponential bound is minimum

(different cases according to the properties of 6). e



Map 1" fit of the volume V" (1)

T: w_l =

J_1 = J1 +5Sin(¢1),

a2=0.5,a3=—0.75~ €.=—4/9.

We look for the dominant coefficients [3j,5). They depend on 0y and

h =1log(A\) = O(y/|e — €.|). We fix 6y = arctan(
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Left: first five dominant exponents ;. as a function of h. Right: values of &,
corresponding to the minimum exponent ;.. Both in log — log scale.
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Map 1 fit of the volume V' (Il)

e We have k, = 1, 15,46, 107,703, 2002, 9307, 25919, ... as h — 0.
e The values of k, are related to the approximants of 6y=~0.06543462308:
1/15, 3/46, 4/61, 7/107, 39/596, 46/703, 85/1299, 131/2002, ...

e Not all the approximants produce a change of k,(h) as h — 0, only those
that are smaller than 6 play a role (except the first one 1/15 > 6).

e The lenght of the interval in h where k., (h) dominates depends on the
CFE(6y) = [15, 3, 1, 1, 5, 1, 1, 3, 1, 2,...], butalso on the
constants in front of the exponential terms of V' (terms with larger ;. can
dominate for finite A > 0N)

Conclusion: The numerical fit data show that the different slopes observed

are related to the different values k. (h) obtained ~» OK!!!
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Final comments |

1. Other aspects related to the HH bifurcation for 4D maps have been also
Investigated (preprint).
For example:
(a) Structure of the Lyapunov families of invariant curves (analytic results
on: the detachment of the Lyapunov families, analysis of the rational and

irrational collision angle 6, cases, stability of the inv. curves, ...).

il

Detachment of the Lyapunov families of invariant curves for 1"

e = —0.1, —0.4 and —0.5 (e, = —4/9).

24126



Final comments I

(b) Possible diffusive patterns through and around
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the double resonance.

-12

Left: Positive definite case (§ = € = a> = 0.5 and a3 = 1.25).
Centre/Right: Non-definite case (§ = € = az = 0.5 and a3 = —0.75).

...but this will be explained in future talks...

2. Many open questions: Theorem of splitting for a family of 4D maps?

Separatrix return map? Diffusive properties (qQuantitative data)?

...but this Is left for future works... 25126



Thanks for your attention!!
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