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Introduction

We consider a one-parameter family of maps Fδ : U → R
2,

U ⊂ R
2 domain, such that

1. Fδ real analytic in the (x, y)-coordinates of U ,

2. detDFδ(x, y) = 1, for all (x, y) ∈ R
2 and for all δ ∈ R, (APMs)

3. Fδ has a fixed point E0 that will be assumed to be at the origin ∀δ ∈ R,

4. spec DF (E0) = {µ, µ̄}, µ = exp(2πiα), α = q/m+ δ, q,m ∈ Z.

→ We focus on a semi-global description of the phase space: we want to

describe the dynamics in the resonant chains emanating from (but relatively

far from) the elliptic fixed point E0.

→ We are interested in a topological/qualitative description but our goal is to

obtain quantitative information of the system: size of the chaotic zones,

distance to invariant curves, measure of the stability regions within the chaotic

zones, transport properties,...
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Hénon map

Through the presentation the Hénon map will be used as a paradigm of APM

Hα(x, y) = R2πα(x, y − x2), α ∈ (0, 1/2)

• It has two fixed points:

the origin is an elliptic fixed point E0,

the point Ph = (2 tan(πα), 2 tan2(πα)) is a hyperbolic fixed point.

• Reversible with respect to y = x2/2 and y = tan(πα)x.
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PART I

A Hamiltonian model describing the dynamics in resonant islands:

BNF around the elliptic point

Interpolation of the BNF

Localisation around the resonant strip
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BNF

Fδ one-parameter δ-family of APMs with F (E0) = E0 elliptic fixed point.

Spec DF (E0) = {µ, µ̄}, µ = e2πiα, α = q/m+ δ, δ small enough.

(x, y)-cartesian coord., (z, z̄)-complex coord. (z = x+ iy, z̄ = x− iy).

The Birkhoff NF to order m around E0 can be expressed as

BNFm(F )(z) = R2π q
m

(

e2πiγ(r)z
︸ ︷︷ ︸

unavoidable res.

+ iz̄m−1
︸ ︷︷ ︸

m-order res.

)

+Rm+1(z, z̄),

where

γ(r) = δ + b1r
2 + b2r

4 + ...+ bsr
2s, r = |z|,

being

s = [(m− 1)/2],

bi ∈ R are the so-called Birkhoff coefficients,
Rm+1(z, z̄) denotes the remainder which is of O(m+ 1).
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Interpolating flow of the BNF

(I, ϕ)-Poincaré variables (z =
√
2I exp(iϕ)).

Hnr(I) = π

s∑

n=0

bn
n+ 1

(2I)n+1 and Hr(I, ϕ) =
1

m
(2I)

m
2 cos(mϕ).

Let r∗ such that γ(r∗) = 0, that is r∗ ≈ (−b0/b1)1/2, b0 = δ.

→ The flow φ generated by the Hamiltonian

H(I, ϕ) = Hnr(I) +Hr(I, ϕ)

interpolates K with an error of order m+ 1 with respect to the

(z, z̄)-coordinates, that is,

K(I, ϕ) = φt=1(I, ϕ) +O
(

I
m+1

2

)

.

If we assume b1 6= 0 this approximation holds in an annulus centred in the

resonance radius r∗ of width r1+ν
∗
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Description of resonances

Generic case: α = q/m+ δ, m > 5, δ sufficiently small, b1 6= 0.

• If b1δ < 0 then F has a resonant island of order m.

• The resonant zone is determined by two periodic orbits of period m

located near two concentric circumferences (in the BNF variables). The

closest orbit to the external circumference is elliptic while the one located

close to the inner circumference is hyperbolic.

• The width of the resonant island is O(I
m/4
∗ ), I∗ = −δ/2b1.
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Illustration (Hénon map)
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A model around a generic resonance

For a generic APM such that α = q/m+ δ, δ < 0, b1 > 0, b2 6= 0, the

dynamics around an island of the m-resonance strip (m ≥ 5) can be

modelled, after suitable scaling (J ∼ δ−m/4(I − I∗)), by the time one map of the

flow generated by Hamiltonian

H(J, ψ) =
1

2
J2 +

c

3
J3 − (1 + dJ) cos(ψ),

where

c ≈ sign(b1b2)|b2|√
mπ |b1|

6+m
4

|δ|m4 , d ≈
√
m

2
√
π |b1|

m−2

4

|δ|m4 −1.

In an annulus domain centred at the radius I∗ of width O(I
m/4
∗ ) (width of the

resonant zone, which is O(1) in J ) the above approximation gives an error
O(Iσ

∗
), σ = (m+ 2)/4.
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PART II

Inner and outer splitting of separatrices
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Basic Idea

According to our previous results the Hamiltonian

H(J, ψ) = 1
2
J2 + c

3
J3 − (1 + dJ) cos(ψ) approximates the dynamics in

the resonant islands.

→ The idea is to used it as a “limit” Hamiltonian to apply Fontich-Simó

theorem on exponential small bound of the splitting of separatrices.

That is:

Let σ− (σ+) be the inner (outer) separatrices of XH . We try to compute the

location of the singularities of σ±. Hence, we will determine the exponentially

small part of the splitting.

Remark: We will see that F-S Thm cannot be applied directly...
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Singularities of H(J, ψ)

Let h the energy level of the separatrices σ± then

H(J, ψ) = P (J)−Q(J) cos(ψ) = h implies J̇ =
√

Q2 − (P − h)2. In

our case P (J) = J2/2 + cJ3/3, Q(J) = 1 + dJ and, hence,

τ =

∫

γ

dJ
√

p6(J)
, γ path to ∞ for J ∈ C.

We know 4 zeros trivially ofQ2− (P −h)2: Jh (double), JM and Jm. Hence,

τ =

∫

γ

dJ

(J − Jh)
√

p4(J)
→ Elliptic Integral

The other 2 zeros are located far. We choose the real path of J and we obtain:

Im τ+ = π
2
− d+ ... Im τ− = π

2
+ d+ ... and Re τ± = O(δm/4) (one of

them is 0, depending on the sign of c, recall that d = O(δm/4−1)).
As a consequence, one expects σ+ >> σ− for δ small enough (F-S).
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Remarks and difficulties

• Complex extension of the variables: cartesian or Poincaré vbles?

The map is given in cartesian but the NF in Poincaré vbles. The extensions

to complex are not equivalent, but we are interested in real phenomenon .

• The Hamiltonian H(J, ψ) is not enough for our purposes.

We need approximation in a very large domain in the complex (J, ψ) vbles

to compare the separatrices.

• We want to reduce the analytic strip not by a constant finite amount η but

by a quantity small compared with d = O(δm/4−1).

⇒ We have to change the Hamiltonian. This means changing the singularities.
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New Hamiltonian

• We consider the Hamiltonian before the localisation. In (J, ψ) vbles.

Hnew(J, ψ) =
1

2
J2 +

c̃3
3
J3 +

c̃4
4
J4 + . . .− (1 + d̃J)m cosψ.

• Is good enough?

◮ It is enough to consider |J | ∼ O(δ1−m/4−µ), µ > 0.

◮ In this domain the error of the approximation (both from NF and

interpolation) of the above Hamiltonian and the map is below δm/4

provided µ < 1/(m+ 2).

◮ We check that the integrals to compute the singularities with the “new”

and the “old” Hamiltonians are close enough (<< δm/4).

Then, we have the following...
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Main result: comments on the hypothesis

• A1. b1(δ) is non-zero for δ = 0.

• A2. W u=G(W s), G periodic (between homo p and F (p)),

s scaled variable s.t. G(s)=
∞∑

k=−∞

ck exp(ik 2πs)

We assume: c1, c−1 are bounded away from zero, close to the singularity,

when the small parameter in the family of maps tends to zero.

• A3. There exists a fixed α > 0 s.t.

σ± = exp

(

−2π Re τ± − η±
log(λ(ǫ))

)(

cos

(
2π Im τ±
log(λ(ǫ))

− φ±

)

+ o(1)

)

,

where |η±| < log(λ(ǫ))1−α for ǫ sufficiently small.

• A4. F maybe meromorphic but the singularity remains at a finite distance

when δ goes to 0.
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Main result

Theorem. Let F be an APM. Assume that it has an m-order resonance strip,

m > 4, located at an average distance I = I∗ = O(δ) from the elliptic fixed

point and δ is sufficiently small. Under the assumptions A1, A2, A3 and A4,

the following conclusions hold.

a) The outer splitting is larger than the inner one being the difference between

the position of the corresponding nearest singularities O(δm/4−1).

b) Neither the inner nor the outer splittings oscillate. a

a The details of the proof (singularities, suitable Hamiltonian,...) can be found in:

Resonant zones, inner and outer splittings in generic and low order resonances of area preserving maps.

Nonlinearity 22, 5:1191–1245, 2009.
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Hénon map
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Dynamical consequences I

Generic resonances close to the origin. Assume b1δ < 0 and that the

hypothesis of the theorem concerning the difference of the inner and outer

splittings hold. Then,

• The width of the outer chaotic zone is larger than the width of the inner

chaotic one if, and only if, sign b1 · sign b2 < 0.

• Both amplitudes of the stochastic layer are of the order of magnitude of the

outer splitting (the largest one).

Basic ideas: Distance to invariant curves from the separatrix: dc ∼ |b|/k∗
(SM is approximated by STM, k∗ ≈ 0.97/(2π) Greene value).

When coming back to the original variables: Dc ∼ σℓ/(2πk∗ log(λ)),
An “interpolating” Hamiltonian takes into account the re-injection of the dynam-
ics on the distance to curves from the inner and outer parts. a

aThe following results can be found in:

Dynamics in chaotic zones of area preserving maps: close to separatrix and global instability zones.

Submitted to Physica D.
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Dynamical consequences II

The same idea applies to resonances far from the origin as well as for strong

resonances but, for each case, a suitable interpolating Hamiltonian must be

considered.

-1.2

-1.1

-1

-0.9

-0.8

-0.7

 0.2  0.3  0.4  0.5  0.6  0.7  0.8

c = 1.015,

σ+=O(10−54), σ−=O(10−1).

Experimentally, f ≈ −5. Using in-

terp. Ham. up to order δ ≈ c − 1

we obtain f ≈ −5.64.

But δ = 0.015 is too large. For δ

small we obtain better results (even
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Part III

Final comments:

Far from the elliptic point.

Strong resonances (m ≤ 4).
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Far from the elliptic point

2:11 Hénon
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Strong resonances (I)

The description of the resonant structure by means of the interpolating

Hamiltonian does not hold if m ≤ 4.

1:3 resonance: H(I, ϕ) = ǫI + I2 + I
3

2 cos(3ϕ)

ǫ < 0 ǫ = 0 ǫ > 0

• Hyperbolic points at a distance O(ǫ2). Elliptic points at a finite distance.

• Outer splitting non-perturbative since the separatrices remain at a finite

distance.

• Inner splitting behaves as described in the generic case m > 4.
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Strong resonances (II)

1:4 resonance: H(I, ϕ) = ǫI + I2 + ξI2 cos(4ϕ), ξ < 0.

ǫ < 0, ξ < −1 left,

−1 < ξ < 0 right

ǫ > 0, ξ < −1 left,

−1 < ξ < 0 right

• Elliptic and hyperbolic points located at a distance O(ǫ).

• Cases with ξ < −1: The splitting oscillates and behaves as expected in

magnitude in the generic case.

• Case ǫ < 0, ξ > −1: The splittings behave as expected in the generic

case.
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Strong resonances of the Hénon map (I)

1:3 resonance:
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Strong resonances of the Hénon map (II)

1:4 resonance: Non-generic!!
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• It corresponds to the case ξ = −1 in the Hamiltonian above.

• The elliptic point goes to a distance O(ǫ1/2) instead O(ǫ).

• H(I, ϕ) = ǫI + I2(1− cos(ψ)) + I3(a+ b cos(ψ) + c sin(ψ)).

• Hénon corresponds to ǫ < 0, a+ b > 0. The inner splitting oscillates and

the outer does not. There is a big difference inner-outer splitting magnitude

(outer singularity at a distance O((ǫ(a+ b))1/4), inner singularity real
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Strong resonances of the Hénon map (III)
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The End

Thank you!
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