
Abundance of stable periodic orbits inside
homoclinic lobes

Conference on Computational Methods in Dynamics

Trieste, 5 July, 2011
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Splitting of separatrices + chaotic zone

Consider an APM F with a hyperbolic fixed point H . Generically, the

separatrices of H split and create a chaotic zone (CZ) which extends up to the

“outermost” invariant curve.
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The dynamics within the chaotic zone...

... is not ergodic : “rel. far” from the separatrices there are islands inside CZ.

Hα(x, y) = R2πα(x, y − x2), α = 0.1.

Experimental values: DH
c ≈ 2.94×10−3 DH

i ≈ 2.08×10−3

“Fish” interp. Hamiltonian: DH
c ≈ 2.47×10−3 DH

i ≈ 1.85×10−3

5-order interp. Hamiltonian: DH
c ≈ 2.731×10−3 DH

i ≈ 2.050×10−3

Main idea: SM (and STM aprox.) + Interp. Ham. a

a Simó-V. Dynamics in chaotic zones of area preserving maps: close to separatrix and global instability zones.

Physica D, 240(8), 2011.
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Dynamics within the homoclinic lobes

Apparently chaotic...
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...but, inside the homoclinic lobes, one finds tiny islands of stability: a
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aSimó-Treschev, Stability islands in the vicinity of separatrices of near-integrable symplectic maps, Disc. Cont. Dyn.

Sys. B, 10(2,3), 2008
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Goal of this work I

Instead of a single APM F , we consider a one-parameter family of APMs Fǫ.

−→ ǫ – distance-to-integrable parameter

We are interested in the elliptic periodic orbits visiting homoclinic lobes

(EPL) of the lowest possible period (“dominant”) of Fǫ for ǫ << 1.

For analytical results: we assume “central symmetry” of Fǫ and use the

separatrix map (SM) to... (concrete details later...)

• ... study the abundance of EPL (i.e. the relative measure of the set Eǫ of

ǫ-parameters for which Fǫ has EPL).

• ... describe the pattern of creation/destruction/bifurcation of these EPL in

terms of the parameter ǫ.

• ... obtain an (explicit!) accurate estimate of the m(Eǫ).

→ “maybe nice theory”... but, moreover,...
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Goal of this work II

... we want to compare the theoretical results with “real” situations .

To this end, we perform accurate numerical computations to obtain

estimates of m(Eǫ). The numerical experiments we will consider as Fǫ the

standard map (STM) and the Hénon map.

→ Note that a “real” situation does not necessarily fit within “our” theoretical
framework (typically, one simplifies the model, use a perturbative approach,...).
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Non-symmetric figure-eight

The figure-eight loops maybe non-symmetric!

Example of interest: resonant islands emanating from a fixed elliptic point.

Let Fδ be a one-parameter family of APMs, Fδ(E0) = E0 elliptic f.p.,

dynamics around the (q :m)-resonance, m ≥ 5, (1 ≤ q < m, (q,m) = 1).

Spec(DFδ)(E0) = {λ, λ
−1}, λ = exp(2πiα), α = q/m+ δ, δ ∈ R.
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“Outer splitting ↔ p”

“Inner splitting ↔ q”

Thm. Under generic assumptions: outer splitting > inner splitting. a

aSimó-V. Resonant zones, inner and outer splittings in generic and low order resonances of area preserving maps.

Nonlinearity 22, 5:1191–1245, 2009.
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Double separatrix map (figure-eight)
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




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
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



x+ as,s̄ + b log |ȳ| (mod 1)

y + νs̄ sin 2πx

sign(y) s









,

• Defined on a domainW = U ∪ D (around the outer/inner separatrices).

• as,s̄ suitable “shifts” (reinjection toW ).

• b = 1/ log(λ), λ dominant eigenvalue of H .

• y-variable rescaled: ν1 = 1 and ν−1 = A−1/A1, where A1 (resp. A−1)

is the amplitude of the outer (resp. inner) splitting.

APMs – p.10/29



A priori stable/unstable cases

Recall that we want to study EPL of Fǫ, ǫ dist-to-integr. param., F0 integrable.

A priori unstable: F0 has a non-degenerated hyperbolic fixed point H0 s.t.

λ(0) > 1. Then λ(ǫ) = λ(0) +O(ǫr), r > 0. The separatrices of H form

an integrable figure-eight.

H

A priori stable: F0 has a degenerated fixed point (e.g. we encounter a line of

fixed points for ǫ = 0). Then λ(ǫ) = 1 +O(ǫr), r > 0.

Remark: Islands emanating from a fixed elliptic point→ a priori stable case.
All the examples we deal with fit within the a priori stable framework!
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A priori stable/unstable differences

• Size (width) of the homoclinic lobes.

(i) a priori unstable: Aǫ = O(ǫ
r), r > 0

(ii) a priori stable: Aǫ = O(exp(−c/ǫ
r)), with r, c > 0 ctants.

• Relation Fǫ ←→ SMa,b.

(i) a priori unstable: a = O(− log ǫ) , b = O(1),

(ii) a priori stable: a = O(1/ǫ2r) , b = O(1/ǫr),

Remarks:

• Case (i): a, b change “independently” (a changes with ǫ).

• Case (ii): Both a and b depend on ǫ. But b′(a) ≈ ǫr → 0 as ǫ→ 0 (i.e. a

changes faster with respect to small variations of ǫ).
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Simó-Treschev result

Fǫ – a priori unstable family of APMs

Eǫ, ǫ < ǫ0 << 1 – set of ǫ-parameters for which Fǫ has EPL

Thm. m(Eǫ), when ǫ0 → 0, remains greater than a constant K > 0

independent of ǫ. a

Comments:

• It does not provide any approximation of m(Eǫ).

• It is enough to proof the existence of one EPL for some concrete a and b

values of the DSM. Then, using a specific scaling of the SM, one obtains

an EPL for values ǫ→ 0.

• This scaling holds because b is indep. of ǫ (a priori unstable)

scaling idea: ǫ2 = ǫ1/λ
1/r ⇒ a(ǫ2) ≈ a(ǫ1) (mod 1)

aSimó-Treschev, Stability islands in the vicinity of separatrices of near-integrable symplectic maps, Disc. Cont. Dyn.

Sys. B, 10(2,3), 2008 APMs – p.13/29
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Central symmetry

We assume that Fǫ commutes with the central symmetry with respect to Hǫ.

This implies:

1. The figure-eight loops are symmetric.

2. The lowest possible period for an EPL is p̂ = 4.

p0p1

p2

p0p1

p2 p3

Non-symmetric p̂ = 3 EPL Symmetric p̂ = 4 (p = 2) EPL
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DSM−→ “symmetric SM”

We can then identify both domains of definition of the DSM and consider a

simple model

SMa,b :

(

x

y

)

7→

(

x1

y1

)

=

(

x+ a+ b log |y1|

y + sin(2πx)

)

Motivation: For generic (non-strong) res. islands emanating from an elliptic

fixed point, the “lack of symmetry” is detected in a “second order”

approximation of the dynamics, which can be described by the Hamiltonian:

H(J, ψ) =
1

2
J2 +

c

3
J3− (1 + dJ) cos(ψ), c = O(δ

m
4 ), d = O(δ

m
4
−1).

Rec: If the multiplier of the elliptic point is α = q/m+ δ, the m-resonant islands are located at

I∗ = O(δ) and have a width O(δm/4). Then J, ψ are adapted coordinates around the m-island.
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Main result

Assume Fǫ a priori stable + central symmetry

⇒ we use SMa,b to describe dynamics within the homoclinic lobes.

Idea: For a fixed b we look for the measure of the set of maps (depending on

a ∈ [0, 1)) having EPL of period p = 2 (p̂ = 4).

Thm. For a fixed b, let
∑

∆a denote the sum of the lengths of the intervals

∆a = (a−, a+) such that for a ∈ ∆a the separatrix map SMa,b has a p = 2

EPL. Then,

lim
b→+∞

∑

∆a =
1

2π2
≈ 0.05066.

Rec: a = a(ǫ) and b = b(ǫ), but a changes quickly!
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Transversality: EPL strips & (a, b)-curve of Fǫ

b
0

0 1 a

b

C

• b large enough (integrable limit, b = O(1/ǫ)).

• Each p = 2 EPL strip is related to different periodic P trajectory of Fǫ.

• Fǫ defines a curve C which intersects transversally the EPL strips.
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Overlapping

Each periodic P trajectory of Fǫ gives two a-intervals of EPL.

For P rel. small, elementary overlaps between these a-intervals occur.

Skipping these overlaps: lim
b→+∞

∑

∆a =
1

2π2
(1/2 + log(3/2)) ≈ 0.04587.

Numerical check: x-axis: − log(b), y-axis:
∑

∆a.
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APMs – p.19/29



Contents

I. Introduction.

What we want to study?

II. Preliminary background.

The separatrix map (SM). The Simó-Treschev result (2008).
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Standard map & p = 2 EPL

STMǫ : (x, y)→ (x̄, ȳ = (x+ ǫȳ, y + ǫ sin(x))

It commutes with the central symmetry (the figure-eight loops are symmetric).

To obtain EPL intervals we continue w.r.t. ǫ periodic trajectories of the form:
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Standard map: ǫ-intervals of EPL

We consider ǫ ∈ (0.7256, 1.18303) and we...

1. scan for initial conditions inside the homoclinic lobe (the central symmetry helps!),

2. refine them (Newton method) to obtain a periodic (tipically highly

hyperbolic!) trajectories,

3. continue them to obtain different EPL intervals.

−→ 223 different ǫ-intervals.
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Standard map: a-intervals of EPL

Using a = a(ǫ) ≈ logA(ǫ)
log λ(ǫ)

(we ignore O(1/ǫ) terms!) we obtain the a-intervals.
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a-interval mL(Eb(ǫ))

[2.5, 3.3] 0.06619105

[3.3, 4.1] 0.07210729

[4.1, 4.9] 0.06797864

[4.9, 5.7] 0.07159551

[5.7, 6.5] 0.08013797

[6.5, 7.3] 0.07146606

Figure: x-axis: a (without mod 1), y-axis: ǫ, each point corresponds to an EPL

a-interval.
Table:

∑

∆a for each fundamental interval.
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Hénon map

Hc : (x, y) 7→ (c(1− x2) + 2x+ y,−x)

• We focus on the (1 :4) resonant islands arising for c > 1 (strong resonance!).

• Completely non-symmetric! : e.g. for c = 1.015 the inner splitting

O(10−54) and the outerO(10−1).
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Hénon map: EPL type

Dominant EPL are p̂ = 3 EPL (non-symmetric, do not visit all hom. lobes).

Hc is reversible w.r.t R : y = −x and Q1 : y = c(x2 − 1)/2− x.
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Example: m = 93 (i.e. P = 4m = 742), we represent iterates of H4
c .
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Hénon map: c-intervals

• For c = 1.02, we scan for p.o. of the previous type with P < 1200

• We found 274896 p.o.

• We continue those with Tr(DHP
c ) < 108 (2367 initial conditions).

• Numerically observed: each i.c. gives at most two c-intervals.

• We found a total amount of 1989 different c-intervals of stability.

• Sum of the lengths≈ 7.216× 10−8.

• One pair of c-intervals overlap. Length of the overlapping≈ 7.82× 10−12.

• Length of the largest (shortest) c-interval obtained≈ 0.82× 10−9

(≈ 2.1× 10−20).

−→ Qualitative agreement but not quantitative (far from 5% of the set of

parameters).
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Hénon map: continuation pattern

General observed pattern: period-doubling bifurcations (non-symmetric!).

Tiny islands (the largest islands, of size 10−9, with shortest period P = 678).
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P = 742 periodic orbit (shown before).
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Final comments

Possible explanations for the “non-completely” quantitative agreement in the

examples:

• SMa,b only considers first harmonic of the oscillation between W u/W s.

• Slope of the EPL strips for the range of parameters considered.

• Approximated relation of a with the parameter of the family (STM example).

• Non-symmetric case: proper model DSM.

• Specific type of EPL considered in the Hénon map example.
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Thanks for your attention!!
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