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Motivation of this work

p.2/36



Goal of this talk?

To develop and illustrate some tools to study the dynamics of quasi-integrable

analytic exact-symplectic maps of Rd × Td = Rd/Zd

Fε :

{

Ī = I + εa(I, ϕ),

ϕ̄ = ϕ+ ω(I) + εb(Ī , ϕ) (mod 1),

implicitly defined by the generating function

S(Ī , ϕ) = Ī ϕ+ h0(Ī) + εs(Ī , ϕ), h0 convex function, h′0(I) = ω(I),

through the relations I = ∂S/∂ϕ, ϕ̄ = ∂S/∂Ī .

We want to study the long term (Nekhoroshev) global stability properties of Fε
and perform a careful (local/global) exploration of the geometry of the phase

space and diffusive properties (numerical tools).
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Nekhoroshev estimates

Consider 0 < ε < ε0 and denote (Ik, ϕk) = F k
ε (I0, ϕ0), k ∈ Z.

For d = 1, the rotational invariant curves divide the 2D phase space and there

is no global diffusion if ε is small enough (e.g. Chirikov standard map).

For d ≥ 2, the complement of KAM d-dimensional discrete tori is connected

and trajectories might travel along phase space (Arnold diffusion).

a Nekhoroshev estimate: |Ik − I0| ≤ R(ε) when |k| ≤ T (ε), where

R(ε) ∼ εβ and T (ε) ∼ exp(c/εα) with α = β = 1/(2(d+ 1)).

Our main interest is not in the result itself (which is well-known) but in the

methodology: we shall recover this estimate from an explicit construction of

the slow variable directly from the iterates of the map (IVFs).

aS.Kuksin and J.Pöschel, On the inclusion of analytic symplectic maps in analytic Hamiltonian flows and its applica-

tions. Seminar on Dynamical Systems 12:96–116, 1994.

P.Lochak and A.I.Neishtadt, Estimates of stability time for nearly integrable systems with a quasiconvex Hamiltonian,

Chaos 2, 1992.
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Phase space geometry (d=2)

Diffusion along phase space takes place basically along single resonances but

multiple resonances play a key role in an explanation of the Arnold diffusion.

To illustrate this we consider the map Tδ defined by the generating function

S(ψ1, ψ2, J1, J2) = ψ1J̄1 + ψ2J̄2 + δH(ψ1, ψ2, J̄1, J̄2), where

H(ψ1, ψ2, J̄1, J̄2) =
J2
1

2
+ a2J1J2 + a3

J2
2

2
+ cos(ψ1) + ǫ cos(ψ2),

through the relations Ji = ∂S/∂ψi, ψ̄i = ∂S/∂J̄i, i = 1, 2:

Tδ :















ψ1

ψ2

J1

J2















7→















ψ̄1

ψ̄2

J̄1

J̄2















=















ψ1 + δ(J̄1 + a2J̄2)

ψ2 + δ(a2J̄1 + a3J̄2)

J1 − δ sin(ψ1)

J2 − δǫ sin(ψ2)















H resembles to a “two-pendulum” Hamiltonian and Tδ is δ-close to the Id.

Single resonance: NHIC ≈ ric of a pendulum system × saddle of the other

Double resonance: ≈ (ψ1, J1)-pendulum × (ψ2, J2)-pendulum p.5/36



Role of double resonances
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Lochak approach steps

The role of maximum (double if d = 2) resonances is emphasized in the

Lochak-Neishtadt approach to proof the Nekhoroshev estimates. The map Fǫ
is the isoenergetic Poincaré return map of a (d+ 1)-dof analytic Hamiltonian

Ĥ(Î , ψ̂, ǫ) = Ĥ0(Î) + ǫĤ1(I, φ̂, ǫ), where

Î = (I, I3), ψ̂ = (ψ, ψ3), ŵ(Î) = (w(I), 1), and Ĥ0(Î) = ω̂(Î) · Î .

1. Construct a covering of the action space by open neighbourhoods of a

finite number (depending on ǫ) of unperturbed tori bearing periodic motions

(maximum resonances).

2. Normalize the Hamiltonian around a periodic orbit: by successive changes

of variables (averaging procedure) the non-resonant terms of H can be

annihilated within an exponentially small error ❀ slow observable

3. Use convexity to guarantee exponential stability in the neighbourhood.

Indirect procedure: The evaluation of the local (in each domain of the covering)

slow observable (to measure diffusion) requires a transformation to NF. p.7/36



”Our Lochak-like approach”

Note that, for a map Fε = F0 +O(ε), F0(I, ϕ) = (I, ϕ+ ω(I)), if

nω(I∗) ∈ Zd for some n ∈ N and I∗ ∈ Rd then I = I∗ is a torus invariant

by F0 foliated by invariant n-periodic orbits. Note that near I∗ the map F n
ε

becomes close-to-the-identity.

Our proof of the Nekhoroshev theorem is based on a refinement of Neishtadt’s

averaging theorem of approximation of a close-to-Id map by an autonomous

Hamiltonian flow with an exponential small error.

Our construction of an approximating vector field is based on the discrete

averaging and interpolating vector fields (IVFs): it is explicit in terms of iterates

of the map, can be easily implemented numerically and avoids changes of

variables.

Next we study close-to-Id maps and IVFs. Later we will come back to the

stability problem for near-integrable maps.
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Close-to-identity maps and IVFs
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Interpolating vector fields (IVFs)

Let f : U 7→ Rs real analytic on U ⊂ Rs open domain. Let m ≥ 0 and

assume that there is U0 ⊂ U such that fk(U0) ⊂ U for 0 ≤ k ≤ m. Denote

xk = fk(x0), x0 ∈ U0. There is a unique polynomial Pm(t; x0) of order m

in t such that Pm(k; x0) = xk for 0 ≤ k ≤ m.

Definition. The interpolating vector field (IVF) Xm at x ∈ U0 is the velocity

vector of the interpolating curve at t = 0, that is, Xm(x0) = ∂tPm(0, x0).

1. Xm(x0) =
∑m

k=0 pmkf
k(x0) is a weighted average of the iterates with

pm0 the Harmonic number and for k > 1

pmk = (−1)k+1m+ 1− k

k(m+ 1)

(

m+ 1

k

)

.

2. Numerics: higher accuracy for symmetric interpolation nodes around x0.

(i.e. we consider p2m s.t. xk = p2m(tk; x0, ǫ), ∀tk = ǫk, |k| ≤ m.)
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IVF-embedding a near-Id map into a flow

Consider a smooth one-parameter near-Id family of maps

fǫ(x) = x+ ǫGǫ(x).

and interpolation nodes tk = εk.

1. Xm extends continuously to ǫ = 0 and Xm(x, 0) = G0(x) the limit v.f.

2. fǫ is close to the time-ǫ flow of the IVF: a If fǫ ∈ C2m+1 and U0 ⊂ U
compact, then the IVF X2m is uniformly bounded in U0 for |ǫ| < ǫ0 and

Fǫ(x) = Φǫ
X2m

(x) +O(|ǫ|2m+1).

Remark. This result was obtained by relating IVF with the “suspension+averaging” procedure (not

explicit!). If fǫ is analytic in a complex neighbourhood of U0 and we choose m ∼ ǫ−1
then the we

proved that the IVF interpolates fǫ with an exponentially small error.

aV.Gelfreich and AV, Interpolating vector fields for near identity maps and averaging, Nonlinearity 31(9), 4263–4289,

2018 p.11/36



Example: Chirikov standard map on S1 × R

Mǫ : (x, y) 7→ (x̄, ȳ) = (x+ ǫȳ, y − ǫ sin(x)), ǫ ∈ R.

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1  0  1  2  3
-3

-2

-1

 0

 1

 2

 3

-3 -2 -1  0  1  2  3

ǫ = 0.1, same 200 i.c. Left: 103

iterates of Mǫ. Right: RK78 integra-

tion of X10 up to t = 103 plotting

every ∆t = 0.1. No visual differences!
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Bottom: ǫ = 0.5, left plots for Mǫ and right plots for X10.
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IVF-exponential embedding of a near-Id map

Let f an exact symplectic map ǫ-close-to-Id in D = D0 + δ a complex

δ-neighbourhood of D0 ⊂ R2d. Assume it admits a generating function

G(P, q) = Pq + S(P, q) such that S can be analytically continued onto D

and denote by ǫ =
∥

∥∇S
∥

∥

D
. As before Xm is the IVF.

Theorem [GV23]. If m =

⌊

δ

6e ǫ
− d

⌋

≥ 1, then

‖ΦXm − f‖D0 ≤ 3 ed+2ǫ exp (−δ/(6e ǫ)) .

Moreover there is a Hamiltonian interpolating vector field X̂m such that

‖X̂m −Xm‖D1 ≤ 3 ed+1ǫ exp (−δ/(6e ǫ)) ,

where D1 is the
δ
2
-neighbourhood of D0, and

‖ΦX̂m
− f‖D0 ≤ 5 ed+2ǫ exp (−δ/(6e ǫ)) .
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Comments on the theorem

We need to explicitly control of the constants in front of ǫm. Indeed, under the

assumption of the theorem for every 1 ≤ m < δ/(6ǫ)− d the following

inequalities hold: ‖Xm‖D1 ≤ 2ǫ, ‖X̂m‖D1 ≤ 4ǫ,

‖ΦXm − f‖D0 ≤ 3Cm−1
m ǫm, ‖ΦX̂m

− f‖D0 ≤ 5Cm−1
m ǫm,

‖X̂m −Xm‖D1 ≤ 8Cm
mǫ

m+1

where Cm = 6(m+ d)/δ. The exponential bound is obtained by choosing

m to minimize the error bound: m ≈ δ/6eǫ.

D0 D1 D

Domains D=D1+δ/2=D0+δ
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Direct explicit proof! (sketch of ideas)

1. We embed f into a family of symplectic maps fµ (homotopy):

Gµ(P, q) = Pq + µS(P, q)

2. Choose |µ| < δ/(2ǫ(m+ d)) so that xj ∈ D, 0 ≤ j ≤ m, for all

x0 ∈ D1. This imply analyticity of Xm,µ.

3. The proof of the first inequality reduces to bound the IVF Xm,µ of fµ on

D1. If ξ = id and Tf (g) = g ◦ f , one has

Xm,µ = −∑m
k=1

1
k
(I − Tfµ)

kξ, and, since valµ((I − Tfµ)
kξ) ≥ k, we

use the MMP to bound Xm,µ (decreasing the analyticity strip in µ).

4. The IVF Xm,µ is not Hamiltonian but the m-jet in µ

X̂m,µ =
m
∑

k=1

1

k!
∂kµXm,µ

∣

∣

µ=0
µk

is a Hamiltonian vector field. p.15/36



Obtaining Nekhoroshev estimates
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Following Lochak-Neishtadt approach

We investigate iterates (Ik, ϕk) = F k
ε (I0, ϕ0) of an arbitrary initial condition.

If nω(I∗) ∈ Zd for some n ∈ N and I∗ ∈d, then the equation I = I∗
defines a torus filled with periodic orbits of the integrable map F0. In a

neighbourhood of I = I∗ we consider the lift of F n
ε given by

fnε : (I0, ϕ0) 7→ (In, ϕn − nω(I∗)).

Trajectories of F n
ε and fnε coincide when angles are considered modulo one.

Concretely, we study iterates of fnε in D0(I∗) = B(I∗, ρn)× Rd, where

ρn = ρε/n, ρε = γN−1/d
ε = γε1/2(d+1), Nε = ε−d/2(d+1).

The constant γ is independent of n and ε. If γ is sufficiently large these

domains completely cover the domain of the map Fε provided we consider all

fully resonant tori with n < Nε. This is a consequence of Dirichlet theorem on

simultaneous approximation and convexity of h′0(I) = ω(I).
p.17/36



Covering: frequency space

Dirichlet theorem: For any ω ∈ Rd and any N > 1 there is a vector ω∗ ∈ Qd

and n ∈ N such that 1 ≤ n < N , nω∗ ∈ Zd and |ω − ω∗| < 1
nN1/d .

⇒ the balls B(k/n, n−1N−1/d) with k ∈ Zd and 1 ≤ n < N cover the

whole frequency space Rd.
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Left: Resonant lines up to order 10. Center: We consider n up to N = 6 and

we plot a circle of radius
1

n
√
N

around. Right: Same for N = 10. As ǫ ց 0

larger N is needed. But to cover the resonances (1, 0) and (0, 1) we need

periods ≪ N . p.18/36



Interpolation near a fully resonant torus

In D(I∗) =
{

(I, ϕ) ∈ C2d : |I − I∗| < 2ρn, | Im(ϕ)| < r/2
}

, a

complex neighbourhood of D0(I∗), we introduce the scaled action

I = I∗ + ρnJ so that the lift fnε can be written as

f̂n
ε :



























J̄ = J + ρ−1
n ε

n−1
∑

k=0

a(Ik, ϕk),

ϕ̄ = ϕ+

n−1
∑

k=0

(ω(Ik)− ω(I∗)) + ε

n−1
∑

k=0

b(Ik, ϕk),

which is ǫn-close-to-Id in D(I∗), with

ǫn ≤ max
{

C1ρ
−1
n nε, C2nρn

}

≤ C3ε
1/2(d+1).

By the interpolation theorem: there is m = m(ǫ) ∼ ǫ−1
n such that the

time-one map of the Hamiltonian vector field X̂m verifies

∥

∥

∥f̂nε − ΦX̂m

∥

∥

∥

B(0,1)×Rd
≤ 5ed+2 exp

(

−γ0ε−1/2(d+1)
)

.
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Long term stability of actions (key points)

The Hamiltonian Hm corresponding to X̂m is used to bound the actions.

1. Since f̂nε is exact symplectic it derives from a generating function Sn.

One has Sn(J̄ , ϕ) = SL
n (J̄ , ϕ) + wn(J̄ , ϕ), where

SL
n (J̄ , ϕ) = nρ−1

n

(

h0(I∗ + ρnJ̄)− h0(I∗)− ρn〈h
′

0(I∗), J̄〉
)

If γ is large enough then ‖wn‖ ≤ νρǫ/9 where ν = convexity constant of h0. Relating Hm with

SL
n one can use convexity of h0, and adapt Lochak-Neishtadt reasoning for flows to this setting.

2. The energy change by iterate of f̂nε is exponentially small

∥

∥

∥Hm ◦ f̂n
ε −Hm

∥

∥

∥ =
∥

∥

∥Hm ◦ f̂n
ε −Hm ◦ ΦX̂m

∥

∥

∥ ≤ ‖H ′

m‖
∥

∥

∥f̂
n
ε − ΦX̂m

∥

∥

∥

= ‖X̂m‖
∥

∥

∥f̂
n
ε − ΦX̂m

∥

∥

∥ ≤ 20ǫne
d+2 exp

(

−γ0ε
−1/2(d+1)

)

.

❀ If |I0 − I∗| ≤
√
νρn/6‖w′‖, then |Ikn − I∗| ≤ ρn for 0 ≤ kn ≤ TNek,

where TNek ≥ nν
240ǫned+2 exp

(

γ0ε
−1/2(d+1)

)

=⇒ Nekhoroshev estimates.
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Exploring diffusion
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Diffusion - general picture

Consider Fε near-integrable 4D map, then:

1. Near a double resonance: Closer to a tori bearing periodic orbits of short

period n, the distance-to-Id of the lift fnε of the near-integrable map F n
ε

becomes smaller. Hence, hNm is well-preserved for a much larger number of

iterates. This prevents orbits from getting close to or escaping from a small

neighbourhood of the double resonance in a moderate number of iterates.

2. Single resonances: For double resonances of different enough order,

hence with large n, hnm is badly preserved since fnε is far-from-Id. This is

responsible of the fast drift along single resonances typically observed.
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Computation of an adiabatic invariant

Numerically we do not compute the Hamiltonian from X̂m. Instead we directly

compute an adiabatic invariant hm s.t. J∇hm ≈ Xm = (X i
m)i=1,...,2d as

follows. Consider a near-Id map fǫ such that f ∗
ǫ (ω) = ω where

ω =
∑d

i=1 dxi ∧ dxi+d standard symplectic form. Let

νm = ω(Xm, ·) =
∑

1≤i≤d
(

X i
mdxi+d −X i+d

m dxi
)

. Given p0 ∈ D0

define for every x ∈ D0

hǫm(x; p0) =

∫

γ(p0,x)

νm , along a path γ(p0, x) from p0 to x.

Lemma[GV23]. If fǫ is defined on T2 × R2 and hm is computed along a

piecewise path with straight segments parallel to the (ordered) axes, then

there is a constant c1 and a periodic function c2 s.t.

h̃ǫm(x; p0) = hǫm(x; p0)− c1(x
0 − p00)− c2(x

0)(x1 − p10),

is globally well-defined on T2 × R2. p.23/36



Correction of hm to be periodic

Lemma [GV18]. For any compact D̃0 ⊂ D0 and ∀x ∈ D̃0, one has

hm(fǫ(x), ǫ)− hm(x, ǫ) = O(ǫm),

i.e. hm is approximately preserved for ǫ−m iterates.

Remark: h̃m is an exponentially small in ǫ correction of hm:
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We consider Tδ for δ = 0.2.

Left: h20 and h̃20 of points (ψ1, ψ2, 0, 0) with base point p0 = (π, π, 0, 0). Right: Their difference.

Remark: The behaviour is independent of the choice of p0.
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IVFs- “Poincaré” sections to visualize dynamics

Let g : Rm → R smooth s.t. Σ = {x ∈ Rm : g(x) = 0} is a smooth

hyper-surface of codimension one. Take x0 ∈ D0 and iterate xk+1 = fǫ(xk).

Assume that g(xk)g(xk+1) ≤ 0 (crossing). If the limit vector field G0 is

(locally) transversal to Σ then, for ǫ small enough, there is a unique tk ∈ [0, ǫ]

such that g(Φtk
Xn

(xk)) = 0.

−→ Plot yk = Φtk
Xn

(xk) instead of (any other projection of) xk.

Visualizing 4D near-Id dynamics: For a map like Tδ, obtained as a

discretization of H = J2
1/2 + a2J1J2 + a3J

2
2/2 + V (ψ), Σ = {ψ1 = ψ2}

is a transversal section (if |δ| small enough). On a moderate time scale the

iterates of x0 ∈ T2 × R2 remain close to the “energy” surface

Mm
E = {x : hm(x, p0) = E}, where E = hm(x0, p0). At each crossing,

we project onto Σ along the IVF Xn to get ykj ∈ Σ.

For E large enough, one has Mn
E
∼= T

3
. Then ψ = ψ1 = ψ2, φ = arg(J1 + iJ2) are convenient

coordinates on Σ ∩Mn
E
∼= T

2
.
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Tδ, δ=0.35, 400 i.c. on Σ∩{h10 = 4}, 500 it
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Turning at a resonant crossing
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Tδ, δ = 0.4. Left: IC (3, 3, 2.136447,−3.904401) near J1 + a2J2 ≈ 0.

We perform around 108 (resp. 1010) iterates and show in blue (resp. red)

iterates on Σ = {ψ1 = ψ2} with |ψ1 − π| < 0.35. Similar for most orbits.

Right: Energy levels (s1 and s2 above the level of the crossing observed).
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“Poincaré” sections & last “RIC”

s1 s2 s3
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1.625 5.209 N

1.5 4.439 N s3

Approaching the HH-point (with h = 0) of

the double resonance the projection “Poin-

caré” maps become more chaotic. The

last “rotational invariant curve” is at h ≈
h(π, π, J1,−a2J1) ≈ 5.209. It corres-

ponds to J1 ≈ 1.625. Numerical simula-

tions detect passages for 1.37 . J1 . 1.5.
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Diffusion around double resonances

Different patterns depending on the different time-scales (i.e. depending on ǫ,

the order of the resonance n and the structure of fnε ):

tori

tori

reflection

No turning

passage

not 
observable
passage 

tori

tori

Dh

both passages 
are allowed, they 
take place at similar
values of the 
    "energy" h

Reflection Turning shorter angle Turning around

(single resonance)

Inside red circle:

hnm ∼ ctant

longer time-scale

Inside blue circle:

hnm evolves on a

medium time-scale -10

-5

 0

 5

 10

-10 -5  0  5  10
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Different crossings

We use a 4D map with a potential V (ψ) = cos(ψ1)+ǫ cos(ψ2)
3(cos(ψ1)+ǫ cos(ψ2)+3)

, hence with

all harmonics, an look at different resonances. Illustrations for δ = 0.2.
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Different crossings
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(res 1:2, J = 8.4) and hn=5

(res 2:5, J = 6.6)

Movie
p.31/36



IVFs - quantitative information on diffusion

Local diffusive properties: oscillations of hm along a single resonance.
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Final comments and conclusions
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IVF - other settings: near-conservative dynamics

Example: Dissipative standard map a

Mǫ,δ : (x, y) 7→ (x̄, ȳ) = (x+ δȳ, (1− ǫ)y − δ sin(2πx) + c), ǫ ∈ R.

We consider δ ≈ 3.57× 10−1
, ω ≈ 6.18× 10−1

and ǫ = 10−2
(left), 10−3

(center/right).
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The origin is an attracting focus. Preliminary numerical exploration indicate that the probability of capture

by the focus can be defined as the ratio between the entrance/exit strips (one can avoid homoclinics).

aOngoing work with R.Calleja
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IVF - other settings: discrete Lorenz attractors

Lorenz map: x̄ = x+ δ(σ(y− x)), ȳ = y+ δ(x̄(ρ− z)− y), z̄ = z+ δ(x̄y− 8z/3). a
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For δ small, we use IVF to compute kneading diagram, (ρ, σ)-parameter space (top right δ = 0.001,

top left δ = 0.06), reduce dynamics to 1D-“Poincaré maps” (bottom left, δ = 0.001), and compute the

region with pseudohyperbolic discrete Lorenz-like attractors (bottom right, δ = 0.01).

aA.Kazakov, A.Murillo, AV, K.Zaichikov, “Numerical study of discrete Lorenz-like attractors.” Submitted to RCD.
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Conclusions & future work

• IVFs – a numerical tool to study near-Id dynamics:

We have used IVFs to investigate the key role of double resonances in the diffusion process. They

allow to compute the slowest variable hm at any point of the phase (useful for

visualizations/quantitative simulations of diffusion) from simulations in original system variables.

• IVFs – analytical tool to study near-Id dynamics:

The relation of IVFs with discrete averaging allow to obtain optimal and explicit theoretical results:

exponential embedding of a symplectic near-Id map into a Hamiltonian flow and Nekhoroshev

estimates for near-integrable maps.

• What’s next? Many Arnold diffusion questions...

◮ Determine ε-ranges for which the different regimes near a double resonance are observed. “last

invariant torus”?

◮ The stochastic limit needs to be clarified, and convergence to a local Gaussian process justified.

Role of high order resonances?

◮ Can we construct the “effective graph” of diffusion for a given IC (and for a given simulation

time)? This require to adapt covering to the IC.

Thanks for your attention!!
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