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Motivation: A paradigmatic Froeschlé-like map

Consider the map 1" : (Y1, %2, J1, Ja2) = (Y1, 44, J1, J2) given by

Y1 = U1+ 0(J) + agJs), o = Yy + 0(azJy + azdy),
jl = J1—|—5Sin<¢1), jg — J2+5€Sin(¢2).

e ' is related to the time-0 map of the flow associated to the Hamiltonian

J? J2
H (11,49, J1, Jo) = 71 + cos 1 + agJyJy + a372 + € cos(1s),

e 4 fixed points: Fored > 0,d = a3z — a3, |e|] < 1land 6 < 2

p1=1(0,0,0,0) HH, po=(m,0,0,0)EH, p3=(0,7,0,0)HE, ps=(m, 7, 0,0)EE.

— I" models the dynamics at a double resonance, it was derived from BNF around an EE point of a
symplectic map in V. Gelfreich, C. Sim6 & AV, Dynamics of 4D symplectic maps near a double

resonance, Phys D 243(1), 2013. 2128



Motivation: Transition to complex unstable

— If d > 0 (definite case) the EE point remains EE for all € and 9.
— If d < 0 (non-definite case) the point p, suffers a Krein collision at

¢ = (—(2a3 —4d) £ 1/ (2as — 4d)? - 4a§> /(242),

and becomes a complex-unstable point (Hamiltonian-Hopf bifurcation ).

Eigenvalues of DT’ (p4) for
0=0.5,a2=0.5,a3=—0.75 (hence d=—1)
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and € from —0.01 (squares) to —20. The (first) Krein

05 | collision takes place at € = —4/9 at a collision angle

Ox = arctan(v/23/11).
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— The CS point has 2D stable/unstable invariant manifolds. — Next plots show their role!
— The previous considerations also hold for : the eigenvalues collide at the imaginary axis and the
2-dof analogous Hamiltonian-Hopf bifurcation takes place. Later: differences discrete/continuous cases

in the splitting of the 2D inv. manifolds. 3128



Motivation: Dynamical conseguences

Lyapunov exp. MEGNO, i.c. on 91 =12 =0: white — regular, green — mild chaos, black — chaos.
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Left: e=—0.4. Right: top ¢ =—0.44, bottom: € = —0.45. (Rec: e¢=—-4/9)

— Lyapunov inv. curves families, local character of the bifurcation, evolution to global connection,... 4o



Goal of this work

We want...
1. Analysis of the Hamiltonian-Hopf bifurcation for 4D maps.

2. Geometry of the 2D invariant manifolds: behaviour of the splitting for the
4D map.

— But, previously, we review the 2-d.o.f. analogous Hamiltonian-Hopf case.

1. Sokolskii NF.

2. Splitting of the invariant manifolds: Reduction to a 2D near-the identity
area-preserving map.

— Important. How are both cases related?

1. Main idea: Takens NF + interpolating Hamiltonian

2. Differences in the behaviour of the splitting: energy function
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2-dof Hamiltonian Hopf (HH): Sokolskii NF

2-dof HH codim 1: Consider a 1-param. family of 2-dof Hamiltonians H,
undergoing a HH bifurcation (at the origin).

Concretely: for v > 0 elliptic-elliptic, ¥ < 0 complex-saddle.

Analysis of the HH bifurcation — Reduction to Sokolskii NF :

1. Taylor expansionat 0: H, = > |, -, Zj>0 v Hy, ;, where Hy, ; € Py
homogeneous of order k.

2. Williamson NF (double purely imaginary eigenvalues):

HQ,O = —w(nyl — mlyg) + %(x% + x%)

3. Use Lie series to order-by-order simplify f5 ;,7 >1 and Hy, ;,k>2,7>0.
But: non-semisimple linear part!
Then, at each order (k, j), one looks for G € P, s.t.
Hy.; + adp, (G) € Kerady, .
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2-dof HH: Sokolskili NF

4. Introducing the Sokolskii coordinates (dzi Ady: +dxa Adys =dRAdr+dO Adb)

y1=rcos(d), yo=rsin(f), R=(x1y1 + x2y2)/7, O =22y — 1Y,

one has H, = —wO + 2r? and
_ k1l
NF(H,) = —wli+ o+ Y apy; DF 507,
k1,520
k+1>2
where

Fl — TolY1 — L1Y2, Fz = (CI?% + CI?S)/Q and Fg = (y% -+ yg)/Z

5. Introducing v = —42, and rescaling x; = 6°Z;, wy; = 0, U;, t = 1,2,

wt = f, one has

NF(Hj)) = —T1 + 6, (f2 + al's + nf’g) + O(5).

~

The I'; written in terms of the Sokolskii coordinates are given by

~ - 1 5 @2 _ T2
Flz@,F2:§<R +ﬁ>,andF3:§. -



2-dof HH: invariant manifolds

For v < 0 the origin has stable/unstable inv. manifolds 13/*/“(0). Note that
e 1/7%/%(0) are contained in the zero energy level of NF(H; ).
o {I'},I,} = {I';,T'5} = 0 =T} is aformal first integral of NF(H ).
Hence I'; = 0 on W*/%(0).

Then, ignoring O(52) terms, W*/%(0) are given by R? +ar? 4+ nr*/2 = 0,
which is the zero energy level of a Duffing Hamiltonian system

R

= W“/S(O)\(R,r)_p,ane form a figure-eight
(for a <0, n>0; unbounded otherwise!

but only > 0 has sense!).

The 2D WS/“(O) are rotated around the origin (on W*/“(0) one has © =0, § =1).

For the truncated NF (i.e. ignoring O(6%)-terms, p > 1) the 2D stable/unstable inv.
manifolds coincide. But: For the complete 2-dof Hamiltonian they split!
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2-dof HH: splitting of inv. manifolds

The asymptotic expansion of this splitting has been obtained in
J.P.Gaivao, V.Gelfreich, Splitting of separatrices for the Hamiltonian-Hopf bifurcation with the
Swift-Hohenberg equation as an example, Nonlinearity 24(3), 2011.

—7 |[Im |
IRe A

—T
v/ —ao,

Main idea: The exponential part of this formula can be obtanied by reducing to a near Id family of analytic

o ~ AdY exp ~ A|Re \|P exp

APMs + Fontich-Sim6 thm. (upper bounds are generic!).

Consider > = {6 = 0} (but in Cartesian coord. to avoid singularities) and

Ts, : 22 — > (Poincaré map of the full 2-dof Hamiltonian) ~> separatrices split,

Homoclinic

Tgy : >, — > (Poincaré map of the truncated 2-dof Hamiltonian, ignoring (’)(53)) ~ loop.

Then, T3, (R, 7,0,0) = (¢35, ©, 0 mod 27), being X the vector field

R=14, (ar + nr3), r=—0,R, <— Duffing
which has a homoclinic solution () with nearest singularity to the real axis T = 7 /2+/—ad, and dom-
inant eigenvalue 1 = QW\/T(S,, (then rescale time by \/——a(S,,). But Tg” = (Tg” )2, being Tg” close
to -ld = use p1/2 instead of i in the exponential part of the upper bound C'exp (—27(Im 7—n) /).
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2-dof HH: the example

J? J?

H (11, 2bs, J1, Jo) = 71 + a1y + agf — cos(1)1) — € cos(1y)
Reversibility: (¢17¢27J17J2) S WU(O) then (_¢17_¢27<]17<]2) c WS(O)
This suggests to consider > = {1/, =0, 1)y =0} and to look for homoclinic
points in 2_.

T e

15=0.5, a5=—0.75, e=—0.5 (“=—4/9) S by
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Methodology to get a homoclinic point in 2 (1)

One can locally represent 11/ as a series
_ i J
G(s1,9) = > ai 815,  a;; €R
i+75>0
where s1, so € R are (real) local parameters in a fundamental domain (an
annulus) ~ parameterisation method.
Then, one can propagate the local representation and get the invariant

manifolds (e.g. using Taylor integrator).
Main steps:

1. Compute the local parameterisation of I11/* (order by order).

2. Truncate it to order /N and look for 7, (radius in (s1, S2)) such that the
invariance equation is verified up to a given tolerance t 0l . The points on

the circle of radius r, can be parameterised by an angle 6.
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Methodology to get a homoclinic point in 22 (Il)

3. To compute 6 s.t. parameterises a point on > we proceed as follows:
(a) Discretize 0: {6; }i=1.....1000-
Each 6, gives an initial condition — integrate (Taylor method).

(b) Integrate each i.c. up to {¢)9 = 0}.
Problem: {15 = 0} is crossed many times before we arrive to 3!

We proceed as follows:

i. We fix a number mand we integrate up to the mcrossing with 1)y = 0.
Hence, for each ¢ we obtain a point on )2 = (0. Denote by 9; ; the
corresponding coordinate of this point.

ii. If for a concrete ¢ one has ¢1,7L¢1,z‘—1 < 0 then we look for
0 € (60; —1,6;) such that ¢; = 0in X (e.g. secant method).
Otherwise, if there is not 7 verifying this last condition, we increase m

—> We get a homoclinic point on > (first intersection!).

12/28



2-dof HH: Computing the splitting

Using the last methodology one obtains (S}f, 33) corresponding a homoclinic

point p;, on X (at the first intersection!). ~+ The homoclinic orbit was shown in the last plot!

To measure the splitting angle « at py,:

1. Compute a basis of T'xo (W, (0)) ~»v) = gg (5%, s0),00,

> E : (integrating variational egs.)

2. Transport the vectorsto > ~ v
These vectors form a basis of T}, (W“(O))

3. Compute an orthogonal basis of T}, (WW*(0)) ~» w102

4. Compute the splitting angle. By reversibility, from w, € T, (WW*(0))

we obtain a vector wy € T, (W*(0)). Then,

o = angle(wq, ws)

13/28



2-dof HH: Checking the behaviour of o

2 2
H (1,42, J1,J2) = 5> + a2 J1J2 + as— — cos(1p1) — e cos(1)2)
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Left: log(a) vs. € — €. Right: Re(\) log () vs. Re(\).

Recall: o ~ A(|Re M) exp (|R§A|),Where C' = —m|im A\l

For as = 0.5, ag = —0.75 one gets C =+/27/3 + O(v’) (Sokolskii NF).
Fitting function (right plot): f(x) = Ax + B x log(x) + C.
~ It perfectly fits the behaviour!
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Up to this point: 2-dof Hamiltonian-Hopf bifurcation.

1. Everything was “more or less” well-known: Sokolskii NF, geometry of the
iInvariant manifolds, the splitting «,...

2. & behaves as expected for a near-the-identity family of 2D APM.

Guiding example: H = JT% + agJi1J2 + CL3J722 — cos(1) — ecos(p2).
Now: 4D discrete Hamiltonian-Hopf!

Guiding example: the 4D symplectic map 1’ given by

Y1 = U1+ 6(J) + agds), s Yy + 0(agJy + azdy),
jl = J1—|—5Sin(¢1), jg — Jz—l—(SESiIl(”QDQ).

The origin undergoes a HH bif. and 2D stable/unstable manifolds are born.

Question: Behaviour of the splitting of the 2D inv. manifolds?
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Planning:

First: Numerical exploration of 7.
— Computation of the invariant manifolds.
— Behaviour of the splitting.

— A naive justification of the behaviour observed.

After: General theoretical results on splitting of inv. manifolds for the 4D HH.

— Upper bounds from a suitable energy function.
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I": Splitting volume V

We compute the volume of a 4 parallelotope defined by two pairs of vectors
tangent to W* and W* at p;, € X

G (s1, s2) - local parameterisation

(5%, s%) - local parameters s.t. TV (s, s%) = p,, N > 0.

1. Consider the vectors:
01 = (0G/0s1)(s",s0), Ty = (0G/Ds5)(s", 54) < tangentto W (0)
2. Transport these vectors under 1" to p;, and consider, by the reversibility,
v3 = R(0{"), ¥4 = R(03") < tangentto W*(0)

3. Finally, normalize them v; = 05" /||05"]|, 7 = 1,...,4 and define

V' = det(vq, vg, U3, Uy)

Question: How does V' behave as € — €°?
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1" Behaviour of VV/

T: 1 = P1+6(J1+axtz), P2 = P2+ 8(azi +asztz),
J1 = J1+dsin(yr), Jo = Ja+ desin(vh2).
Fixed a9, az one has €¢ = €¢“(as, az). The (Krein) collision angle Ox depends
on 0.
a2=0.5,a3=—0.75~ =—4/9. §=0.5~ g =arctan(~/23/11)/2m (“*c R\Q").

O T T T T T 1.5
14
-200 r 8
1.3
-400 . 1.2
_600 | 1.1 B
- 1 i -
-800 Exponentially o9 | ...different slopes
-1000 r small but... 0.8 1 asv — 0O
0.7 r
-1200 +
0.6 +
_1400 1 1 1 1 1 05 1 1 1 1 1 1 1
-0.5 -0.49 -0.48 -0.47 -0.46 -0.45 -0.44 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

Left: log V' vs. €. Right: h|log(V)| vs. h (h = log(\)).
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Naive explanation of the behaviour of V/

Consider a (generic) symplectic map F'in R* undergoing a HH bif.
Discrete HH bif. ~» codim 2 bif ~» Let d, €; be the unfolding parameters.

d¢: Collision angle Oy = 27 (q/m + d).
€;: Measures the relative distance to the critical parameter.

Different (naive) important aspects:

1. “Two” exp. small effects: one within the Hamiltonian itself (already

studied!), the other measures the “map-Hamiltonian distance”.
2. “Two” frequencies: “Duffing” and its 2w 6x-perturb. + “time” frequency

3. The Hamiltonian part is known = only necessary to measure the second
effect. But: We have a “privilegiated direction” (the time!) = we will use an
energy function to measure the splitting in that direction (instead of using
the splitting potential or the Melnikov vector which measures both effects

together).
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Towards a sharp upper bound of the splitting (I)

Idea: It is enough to measure the “Hamiltonian-map distance”.

Let [';, be a family of symplectic maps s.t. at ¢, = 0 undergoes a HH
bifurcation. The inv. manifolds 17/ (0) are given by u(c, t) and v(a, t)
resp., where (v, t) € [to, to+h) x S. This defines FD's D%/*.

Main result: Assume that

(H1) There exists an energy function F, i.e. such that /o I,, = E, defined in a
neighbourhood of the fundamental domain D? such that F/(v(a,t)) = 0.

Moreover we assume that £/ and v(«;, t) can be analytically extended to a
neighbourhood of W*(0) within D" (by iteration of F;l).

We define the splitting function:

P(a,t) = E(u(a, 1))
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Towards a sharp upper bound (I1)

(H2) There is a (limit) vector field
i= f(x), xR

such that f is analytic, it possesses a hyperbolic saddle fixed point and a
homoclinic orbit o (%) associated to it, and satisfies that compact pieces of
the real invariant manifolds of F,, are €;-close to an embedding of

S' x {o(t), t € R} for ¢, > 0 small enough.

(H3) I, can be extended analytically to a neighbourhood of
{a e C/27Z,|Ima| < p} x{o(t), [Imt] < 7}

forsome 0 < 7 < 719and 0 < p < pg.
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Towards a sharp upper bound (Result)

Under (H1), (H2) and (H3)...

(i) Rational Krein collision.  Let 6y = p/q, with (p, g) = 1. Then, there

exists €, > 0 s.t. for ¢, < €}

[W(a,t)| < Kexp(=C/h), C,K >0.

(ii) Irrational Krein collision.  Let fx € R \ Q. Then, % is bounded by a
function that is exponentially small in a parameter v, s.t. v \, 0 when i ~\, 0.

Moreover, the dominant harmonic k(h) of 1 changes infinitely many times as

h — 0.

Idea: Bounding the Fourier coefficients of 1), one gets

Wlant) <K S exp(=2m|n — Goklr/h — |k|p)

2
(k,n)EZ* B

Then we look for K = k. (h) > 0 s.t. the dominant coefficient B, in the exponential bound is minimum

(different cases according to the properties of ). 23/28



Map 1" fit of the volume V" (1)

T: w_l =

J_1 = J1 +5Sin(¢1),

a2=0.5,a3=—0.75~ €“=—4/9.

We look for the dominant coefficients [J3j,5). They depend on )k and

h =log(A\) = O(y/|e — €°|). We fix Ok = arctan(

18
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Left: first five dominant exponents ;. as a function of h. Right: values of &,
corresponding to the minimum exponent ;.. Both in log — log scale.
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Map 1 fit of the volume V' (Il)

e We have k, = 1,15,46,107, 703, 2002, 9307, 25919, ...as h — 0.

e The values of k, are related to the approximants of 6y ~0.06543462308:
1/15, 3/46, 4/61, 7/107, 39/596, 46/703, 85/1299, 131/2002, ...

e Not all the approximants produce a change of k,(h) as h — 0, only those
that are smaller than f play a role (except the first one 1/15 > 6).

e The lenght of the interval in h where k,(h) dominates depends on the
CFE(6x) = [15, 3, 1, 1, 5, 1, 1, 3, 1, 2,...], butalso on the
constants in front of the exponential terms of V' (terms with larger ;. can
dominate for finite A > 0!)

Conclusion: The numerical fit data show that the different slopes observed are
related to the different values k., (h) obtained ~» OK!!!
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Final comments |

1. Other aspects related to the HH bifurcation for 4D maps have been also
Investigated (preprint).
For example:
(a) Structure of the Lyapunov families of invariant curves (analytic results
on: the detachment of the Lyapunov families, analysis of the rational and

irrational collision angle 6 cases, stability of the inv. curves, ...).

il

Detachment of the Lyapunov families of invariant curves for 1"

e = —0.1, —0.4 and —0.5 (¢ = —4/9).
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Final comments I

(b) Possible diffusive patterns through and around

20 10 4
" 81 2
15 | AT 6 r
’% 0t
T ":-: * 4 r
10 | - s, R 2t 2
AV RM‘W N 0 4
N Ty,
5r¢ “*fg% % -2+ 6 L
"‘W‘Kw&-. ( \ -8 I
ol A e -6
w 8 | 0
5

8 6 -4 -2 0 2 4 6 8 10 12

KN
o
1]

the double resonance.

-12

Left: Positive definite case (§ = € = a> = 0.5 and a3 = 1.25).
Centre/Right: Non-definite case (§ = € = a2 = 0.5and a3z = —0.75).

2. Many open questions: Theorem of splitting for a family of 4D maps?

Separatrix return map? Diffusive properties (quantitative data)?

...but this is left for future works...
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Thanks for your attention!!
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