The dynamics of the QR-flow
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QR-iteration

One of the numerical linear algebra basic problems:
computation of eigenvalues (and eigenvectors) of a matrix Xy € R™*".

A common algorithm is the QR-iteration. Basic idea:
Xo = QolRo, X1 := RoQo = Q1 Ry, Xo:= R1Q1 = Q2Rs, . ..

i.e. Xp = QrBy, Xpi1 = RpQr,
where ()1, € O (orthogonal), R, € T (upper triangular).
1. This defines a sequence X, of orthogonally similar matrices.
2. It preserves the upper Hessenberg form (3Q € O s.t. Q' X,Q € H).
3. Flops QR-factorization: O (n?) (full matrix), but O(n?) for X, € H.
4. Under suitable conditions X}, “converges” (e.g. to X, € T)~» DONE!

Q: Relation with dynamical systems? and with flows?
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A historical example: the Toda lattice

The Toda lattice is a 1D crystal describing the motion of a chain of n particles
with nearest neighbor interaction. It is an integrable system with soliton
solutions. It is a Hamiltonian model:

n n—1
1
H(x,y) = 5 Zyz + Zexp(a:k — Tpa1),
i=1 i=1

x.-displacement of the kth particle from equilibrium,  1-momentum.

Equations:

Tp = Yk, Yk = eXp(xk—1 — ﬂfk) — eXp(ﬂik — $k+1)-
In Flaschka variables  ax, = —yr/2, bp = exp((xx — Tr11)/2)/2,

dk — 2([)2 — bz_l), bk — bk(akﬂ — ak).
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The Toda lattice: a QR-flow

a1 b1

Consider a (Jacobi) symmetric tridiagonal matrix X = by b, 1

bn—l Uy,

The Toda equations (Flaschka coordinates) can be rewritten in Lax form

X = [X, k(X)] = XK(X) — k(X)X,

where k(X)=X"— (X7)", X~ is the strictly lower triangular part of X
and k(X ) is the skew-symmetric projection of X .

1. Isospectral flow: the eigenvalues of X are first integrals (Flaschka 1974).
2. The solution X (¢) converges to a diagonal matrix (Moser 1975).

3. The (unshifted) QR-iteration applied to Z = exp(XO) is the evaluation at
integer times of the flow (Symes 1981, Deift, Nanda and Tomei 1983).
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Goal of this work

To analyse the dynamics of the QR-flow on non-symmetric matrices. We shall
reduce to upper Hessenberg matrices.

In particular, to classify the equilibrium matrices, to analyse the (parabolic and
partially hyperbolic) attracting sets, to determine the possible w-limits, to
describe the convergence properties, to understand the subspace foliations,
etc.

We can use classical ODE techniques: bifurcation analysis, variational
equations (jet transport), validation, etc.

For numerical illustrations we use a Taylor-adapted time-stepper integrator.
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QR-flow and restriction to Hessenberg matrices

For X, Xy € R™*", let X (t) the solution of the IVP

X=[XkX)], k(X)=X"—(X)", X(0)=X,.

Theorem (Chu 2008) Let Q(t) and R(%) be the solutions of the IVPs
Q =Qk(X(), Q0)=1I, and R =k.(X(t))R, R(0)=1I,
where k.(X) = X — k(X). Then, forallt € R,

e J(t) € O,, R(t) € T,

o X(1)=Q(t) XoQ(t)=R(t) XoR(t)™",
o 0 = Q) R(2),
o !X = R(HQ(1).
o If Xo € H= X(t) € H. < Upper Hessenberg reduction

}% The time one map give the QR-iterates of e*°.
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Equations of the QR-flow

X' =[X,k(X)],Q =QkK(X), X € H,, given by

y

/I 2
Ty = T12T21 + Ty q,

2

L214i,2,

X1,j41T541,5 — T1,j-1Tj5-1 T T21T2 5,
—T1n-1Tpn—1 T 21L2 p,

LiiLlii—1 — Lii—1Li—1,4—1,

2<1<n,

Tijr1Ti41,5 — Tij—1T55-1 — Tii—1Ti—1,5 T Ti+1iTit1,5,

2<1<n—1,1<73<n—-1,

—Tin—1Tnn—1 — Tii—1Ti—1n T Tit1,iTit1n,
_xn,n—l — Ipn—1Ln—1.n,

1 <1 <n,

Ljt+1,59,541 — Ljj—1G55—1,

—qin—1Lnn—1,

1 <1< n.

2<1<n-—1,

(n? 4+ 3n —2)/2 egs

1<i<n, 2<j<n-—1,

n? eqs
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Equilibrium matrices

Denote by H the set of unreduced upper Hessenberg matrices (x; ;11 7 0)
Given X € H,,, we write it as

A1,1 Al,m
X = P € BUT

For A € R™*" B € R™ ™ we define the operator By g(Z)=AZ—7ZB.

Theorem. Let X € H,,, then
[X, ]{(X)] =0 < Ai,i — Oéi]ni + Hi, Hz < Skewnz M H;Z and
Br,.m,(Ai;) = 0foralli < j.

In particular, the sets T and {A = al+ B, B € Skew, a € R} are
equilibrium matrices. .8/24



Linear character of equilibria

Let X € H,, be an equilibrium matrix. Then,
X = (Az,])z,] where Ai,i — Cki]ni + Hz’, Hz < Skewm NH? .

Theorem.  The eigenvalues of DF(X) =
the eigenvalues of DF(A; ), for all ¢
the eigenvalues of B4, ;) x(4, ) fori > j
i1 —a;, 1<1<m-—1.

Moreover,

the eigenvalues of B4, ,) k4, ) and DF(A;;) are of the form iy, p € R.

(i.e. the hyperbolic directions are of node attracting/repellor type (no foci)).

Particular case: X € Skew, N H» = 1) all eigenvalues are simple and

pure imaginary, 2)dimKer DF(X) =n, and 3) the dimension of the

3n2—1J.

generalized eigenspace of eigenvalue zero is L
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Example

(02 0 0)
X = (2) g_g_g e H}; N Skew,.
\0 0 4 0/

One has,
1. Spec(X) = {:I:i \/(29 + 3\/@)/2} .

2. DF(X) € R¥*13 and

Spec (DF(X)) = {05, +3v/54, +v/131. j:\/58 + 6\/@7;} .

3. Ker (DF (X)) = (Iy) ® (Skew, N Hy), hence dim = 4.

4. DF(X) has a generalized eigenvector of eigenvalue 0 (Jordan block).
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Asymptotic behaviour of QR-flow orbits

Theorem. Let X, € H,, (not an equilibrium) and Y € w(X).
Define d := #eigenvalues of X with non-vanishing imaginary part.
Then,

e O(Y) is a (multi-)periodic function defined on a torus of dimension d /2.

le,l ) le,m
v _ Spec(Y; ;) ={AeSpec(Xy),Re A=},
® p— ] . ,
' 1 > Qg >+ > Oy -
Ym,m
e The blocks Y/; ; are of the form *
Ok (resp. EK) has simple eigenvalues Y = T o
A € Spec(Xp) with Re A=q;
0)

and odd (resp. even) multiplicity >k.

e w(Xy) contains either regular or equilibrium matrices only.
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Convergence results for the QR-flow

Let Xy € H,,. Denote by { X} } >0 its QR-iterates.

QR-iteration (known)

QR-flow (new)

Wilkinson
tend to T'?

If Xy has eigenvalues of
different modulus then

(esential convergence)

If X has real eigenvalues
then

X(t)—=T, TeT.

(convergence!)

Parlett (practical)
Tjt1,jT5,5-1 — 07

If, and only if,

# eigenvalues of X of
equal modulus with even
(resp. odd) multiplicity is
< 2

If, and only if,

# eigenvalues of X of
equal real part with even
(resp. odd) multiplicity is
< 2
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Two-dimensional case

Consider X € R?*?. The QR-flow has the following first integrals:

I = 211+ 299

, Iy =219 — 29, I3= (211 — @2)2 + (12 + $21)2-

The system is integrable. If [{ = dand [, = c,andz = 211,y = Z12 :

T=(y—c)2y—c), y=(y—c)(d—2x)

%

L

©),

| \\&é

3 2 1 0 1 2 3

Phase portrait
c=d=2.

o {y =2} C T (fixed points).
e (1,2)~» matrix with equal eigenvalues.
e (1,1)~ Id + skew-symmetric matrix.

e All the points of D((1,1), 1) ~» matrices
with eigenvalues A = a +if3, 8 € (0, 1].

e The periodic orbits have period 7 /[3.
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Example: 3 eigenvalues with same real part

0=x1 0 orthogonally conjugated equilibria.
Xex=100 %17, Q: homo/heteroclinic orbits?
00 O
1 —= 1o
" | - \\\
@\ &\ RN
& 0r & ol .
-l-l 0 1 11 0 .1
L1 L2

Note that Spec(X;) C R = w(Xj) € T3 (Wilkinson convergence). There
are 4 homoclinic and 4 heteroclinic orbits. They correspond to orbits of

Xi=Q Xy:+Q;€H,, Q;€0; 1<i<y,

for suitable ();. Homo (resp. hetero) orbits <+ unreduced (resp. reduced) X ;.
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Example (continuation): “unfolding”

L23

X4 1 are complete parabolic (117 8D, non-trivial dynamics in 2D subspace).
One has dim(Ker (DF (X, 1))) = 3, abasis is

10 -1 100 0 00
Ki=|l o010 |, Kb=|000]|, Ks=|[-100],
000 001 0 10

We consider X = X | + 11 K + m2K5. For n1, 12 > 0, the eigenvalues
of X are real and different. X  bifurcates into 6 equilibrium upper triangular

matrices (the same for X1 1 hence 24 equilibria).

0]
C\i\ 05
1001 | 213 231 =
Y Y
- -1 ' y ' '
1 L o~ 0.1 0.3 0.5 0.7 0.9
123 321 ,I‘LQ
0.999 | Qe
132 N
=
0.998 213 231
1 1.001 1.002 1.003 312
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Example: periodic orbit

Let X, be the upper Hessenberg reduction of B~*A_B, where

24+€¢ 0 0 659 Eigenvalues
A, = 0 —-91525|.B=1]8809 246 247
0 -8 13 510

If e = 0, QR-it (Parlett)v", QR-flow (Parlett) X, w(Xy) is a 27-periodic orbit.
For € = 0, QR-flow (Parlett) v/, w(Xy) is a 7-periodic orbit.

(2.1, 2.9, T3.2)-projection of
A w(X,) fore = —0.01 (green),
1oL e = 0 (blue), € = 0.01 (red).
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Example: slow convergence

Theory: The elements of the subdiagonal that separate blocks with different

real part tend to zero as exp(—nt), n = a; — ;41 > 0.

Multiple eigenvalues with same real part slow-down the convergence. One
expects a behaviour ~ 1/t of the elements that tend to zero in the
subdiagonal (only even multiplicities). For example,

/ 3/4 1/18 1/2 1/4 \ Eigenvalues
Ay = jg 11(/)12 1{4 _?)/8 , e with multiplicity 2,

\ 0 2/9 0 1 ) Hzarctan(\/ﬁ/n).

We consider X the reduction of A to upper Hessenberg. Both QR-iteration
and QR-flow converge (Parlett). The convergence is slow: x3 5 ~ 10~7 for

t =10 and 235 ~ 107 for t = 10°.
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Example (continuation): Krein collision scenario

We consider A, = Ay + Aiv, A| = w - ey,
where e; = (0,1,0,0) ", w = (—1/8,3/16,0,—1/2) ".
Let X, the reduction to upper Hessenberg of A,.

X, has a Krein collision: two pairs of eigenvalues =1, e*%2 for v < (), they
collide for v = 0 and leave the unit circle for v > 0.

QR-iteratonv < 0X v >0V QR-flow v for all v.

In general, we can obtain the dependence, up to order p, of the w-limit wrt v/
by numerical integration of the QR-flow together with the variational equations
up to order < p (jet transport).

However, the eigenvalues of X, depend on \/Z instead (e.g. \ = e +
(0.089 4 0.2087)+/v, v > 0). Singular: the first variational solution tends to
00. IfRe A\ < Re Ay forv < Othen Re Ay > Re A\ for v > 0.
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Towards a combined numerical method

The geometry of the phase space may help to develop strategies to detect
convergence/non-convergence when doing numerical computation of
eigenvalues of X.

The (Parlett) convergence of QR-iteration requires different conditions than the
QR-flow. The structure of the w-limit of Xy € H* in each case is also
different:

e QR-iteration: separates into blocks with eigenvalues having the same
modulus.

e QR-flow: separates into blocks with eigenvalues having the same real part.

Main idea: Combining both methods one can get convergence in more situa-
tions. Also one can improve convergence velocity. Work in progress...
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Combining QR-it and QR-flow: example

/ 2.099 3.864 —3.017 2.137 —0.062 0.397 0.382 \
—1.191 2,498 —0.565 &8.541 4.368 —7.839 3.190
5.079 —2.464 12.175 5576 —7.963 3.898

0 —0.220 0.524 0.132 2.709 —0.997

o
2

0
0
0
0
0

0 0 —2.215-0.332 —3.030 0.477
0 0 0 0273 —0.206 0.397
\ 0 0 0 0 —2.299 1.773

Eigenvalues ~ 1 £+ 7, e’ eii\/i, 1. Then:

QR-iteration X  <— 5 eigenvalues with same modulus.
QR-flow X <+ 3 eigenvalues with same real part.

QR-it + QR-flow: After 50 QR-iterates a 2 X 2 diagonal block “separates”
(£32=0(107")). We integrate the QR-flow starting with the 5 x 5 remaining
block up to t = 50 and we get (Parlett) convergence to T5

— Note that a QR-flow + QR-it strategy will also work. p20724



Final remarks

1. We have not considered shift strategies in the QR-iteration.

2. In the case of the QR-flow, a single shift does not change the real part of
the eigenvalues, hence does not improved convergence speed.

3. However, we can adapt the time step when integrating the QR-flow. Indeed
steps larger than 1 are achieved (meaning that we perform more than one
step of the QR-iteration per unit of time).

4. Combining QR-flow + QR-iteration (without shift) we can guarantee
(Parlett) convergence.
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Future work

1. Analysis of the bifurcations in the QR-flow (of high codimension!).

2. Matrices depending on parameters. Variational equations. Application to
analysis of bifurcations.

3. Effective criteria for numerical methods: stopping criteria, strategies
combining the two methods,. ...

4. Consider the special cases of Hamiltonian matrices

0 I
T AT . n

5. Other algorithms that can be seen as isospectral flows (e.g. SVD).

6. The case of infinite dimensional linear operators (!?).
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Thanks for your attention!!
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