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The system

In this presentation we consider the system

H(x1, x2, y1, y2, t) = H0(x1, x2, y1, y2) + ǫH1(x1, x2, y1, y2, t),

where

H0 = x1y2 − x2y1 + ν

(

x21 + x22
2

+
y21 + y22

2

(

−1 + y21 + y22
2

))

,

and

H1 =
y51

(d− y1)(c− cos(θ))
, θ = γt+ β.

1. We fix concrete values of c, d, γ and ǫ.

2. ν > 0 is a perturbative parameter.

3. The parameter β ∈ [0, 2π) is the initial time phase. p.2/22
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Why this (2+1/2)-dof Hamiltonian system?
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2-dof Hamiltonian Hopf (HH): Sokolskii NF

2-dof HH codim 1: Consider a 1-param. family of 2-dof Hamiltonians Hδ

undergoing a HH bifurcation (at the origin).

Concretely: for δ > 0 elliptic-elliptic, δ < 0 complex-saddle.

Analysis of the HH bifurcation→ Reduction to Sokolskii NF:

1. Taylor expansion at 0: Hδ =
∑

k≥2

∑

j≥0
δjHk,j, where Hk,j ∈ Pk

homogeneous polynomial of order k.

2. Williamson NF (double purely imaginary eigenvalues±iω):

H2,0 = −ω(x2y1 − x1y2) + 1

2
(x21 + x22).

3. Use Lie series to order-by-order simplify H2,j ,j>1 and Hk,j ,k>2,j>0.

But: non-semisimple linear part!

Then, at each order (k, j), one looks for G ∈ Pk s.t.

Hk,j + adH2(G) ∈ Ker ad
⊤
H2
.
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2-dof HH: Sokolskii NF

4. Introducing the Sokolskii coordinates (dx1∧dy1+dx2∧dy2=dR∧dr+dΘ∧dθ)

y1=r cos(θ), y2=r sin(θ), R=(x1y1 + x2y2)/r, Θ=x2y1 − x1y2,

one has H⊤
2 = −ωΘ+ 1

2
r2 and

NF(Hδ) = ωΓ1 + Γ2 +
∑

k,l,j≥0

k+l≥2

ak,l,j Γ
k
1 Γ

l
3 δ

j, ← formal

where

Γ1 = x1y2 − x2y1, Γ2 = (x21 + x22)/2 and Γ3 = (y21 + y22)/2.

Γ1 is a (formal) first integral, hence W u/s(0) = {Γ1 = 0} ∩ {NF(Hδ) =

0} = {Γ2 + δ a0,1,1Γ3 + a0,2,0Γ
2
3 +O(δ2Γ3, δΓ

2
3,Γ

3
3) = 0}.

W u/s(0) real⇔ δa0,1,1 < 0. Moreover,

• If a0,2,0 > 0 they bound a finite domain of size Γ2 = O(δ2),Γ3 = O(δ).
• If a0,2,0 < 0 they are unbounded. p.6/22



The unperturbed model

We consider the bounded case.

Introducing δ = −ν2, and rescaling xi = ν2x̃i, ωyi = ν ỹi, i = 1, 2,

ωt = t̃, one has (skipping ˜ from the new variables)

NF(Hδ) = Γ1 + ν
(

Γ2 + aΓ3 + ηΓ2

3

)

+O(ν2)
where a = −a0,1,1/ω2 and η = a0,2,0/ω

4.

Taking a = −1, η = 1, and truncating ❀ the unperturbed system.

Geometry of W u/s(0): In polar coord x1+ ix2=R1e
iψ1 , y1+ i y2=R2e

iψ2 the

restriction to (R1, R2)-components is a Duffing Hamiltonian system. On

W u/s(0) one has ψ1 = ψ2 − π, ψ2 = t+ ψ0, and they are are foliated by

homoclinic orbits

x1(t) + ix2(t)=−R1(t)e
iψ, y1(t) + i y2(t)=R2(t)e

iψ,

being ψ = t+ ψ0, R1(t) =
√
2 sech(νt) tanh(νt), and R2(t) =

√
2 sech(νt).
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The effect of a periodic forcing on H0
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Periodic forcing

We add to H0 the periodic perturbation ǫH1 = ǫg(y1)f(θ) where

g(y1) = y51(d− y1)−1, f(θ) = (c− cos(γt+ β))−1.

Remarks:

1. Restricted to the unperturbed W u/s(0), y1 becomes 1-periodic in t.

2. f(θ) periodic in t with frequency γ.

⇒ If γ ∈ R then quasi-periodic!

For simulations we choose c = 5, d = 7, and γ = (
√
5− 1)/2.

Recall that:

(β, ψ0) are initial conditions on a fundamental domain (torus T ) of W u/s(0).

ν is a small parameter (in H0).
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The invariant manifolds

We express H = G1 + νG2, G1=Γ1, G2=Γ2−Γ3+Γ2
3,

and we consider the Poincaré section

Σ = max(R2)

R2

DuffingR1
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The splitting
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Remarks on the previous computations

1. We propagate a set {ψ0,k, β0,j}, 0 ≤ k, j ≤ 512, of initial points in T
(i.e. a total number of 218 initial conditions) up to reach the Poincaré

section Σ.

2. The numerical integration is performed using an ad-hoc implemented

Taylor time-stepper scheme with quadruple precision.

3. The propagation of T up to Σ gives a 2D torus TΣ. The invariant manifolds

W u/s(0) in R4 are defined by the G1 and the G2-graphs over TΣ.

4. To compute the difference (i.e. the splitting) between W u(0) and W s(0)

we need to compare them at the same points of TΣ. Hence, we select a

mesh of angles ψ and β within TΣ, and refine the initial conditions in T
using a Newton method.
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Nodal lines: bifurcations
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Change of dominant harmonics

− log2 ν2 − log2 ν1 Change of the dom harm of the G1, G2-splittings

2.443 2.444 (1,0), (1,0)−→ (1,1), (1,0)

2.676 2.677 (1,1), (1,0)−→ (1,1), (1,1)

4.112 4.113 (1,1), (1,1)−→ (1,2), (1,1)

4.300 4.301 (1,2), (1,1)−→ (1,2), (1,2)

5.133 5.134 (1,2), (1,2)−→ (2,3),(1,2)

5.428 5.429 (2,3), (1,2)−→ (2,3), (2,3)

6.234 6.235 (2,3), (2,3)−→ (3,5), (2,3)

Table 1: Changes in the dominant harmonic of the G1 splitting function and the G2 splitting

function. The bifurcation takes place for ν ∈ (ν1, ν2).
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Theoretical/symbolical results

p.15/22



The Melnikov integral

For simplicity, we discuss on the G1-splitting (similar for the G2-splitting).

Recall that H1 = g(y1)f(θ) where

g(y1) = y51(d− y1)−1
❀ g′(y1) =

∑

k≥0
dky

4+k
1 ,

f(θ) = (c− cos(θ))−1 =
∑

j≥0
cj cos(jθ).

Then, at first order in ǫ, the variational equation is given by

dG1

dt
= ǫ{G1, H1} = ǫy2

∑

k≥0

dky
4+k
1 f(θ)

Melnikov: The distance Gu1 (ψ0, β)−Gs1(ψ0, β) = ǫ∆G1 +O(ǫ2), is given by

∆G1 = 4ǫ

∫ ∞

−∞
sin(t+ ψ0) f(γt+ β)

∑

k≥0

√
2k+1 dk (cos(t+ ψ0))

4+k

(cosh(νt))5+k
dt,

Recall that on the unperturbed separatrices ψ= t+ψ0, θ=γt+β, (ψ0, β)∈T .
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Comparison numerics/symbolic evaluation

After some algebra one obtains

∆G1=ǫ
∑

j≥0

cj
∑

k≥0

2
3+k

2 dk
∑

0≤2i≤4+k

b4+k,i
∑

l=±1

I1 sin((k+5−2i)ψ0+ljβ),

where
I1 = I1(k+5− 2i+ljγ, ν, k+5), I1(s, ν, n) =

∫

R

cos(st)

(cosh(νt))n
dt

bm,i =
1

2m(m+1)





m+1

i



 (m+1−2i)
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We represent log(∆Gi/ǫ)
√
ν, for i= 1 (bottom)

and i=2 (top), as a function of log2(ν).

Red: Direct numerical computations.

Blue: Sum of the significant terms of the Melnikov

series.
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The main result

For the system H = H0 + ǫH1 under consideration, consider:

1. ǫ > 0, c > 1, d >
√
2, ν < νM << 1 small enough,

2. γ ∈ R \Q a quadratic number (∃C > 0,
∣

∣

∣
γ − p

q

∣

∣

∣
≥ C

q2
, ∀p/q ∈ Q).

Denote bym1/m2 a best approximant of γ, and assume that it corresponds to

the dominant harmonic in ∆G1 (resp. ∆G2) for ν ∈ (ν0, ν1), ν0, ν1 < νM .

Let cs ∈ R be the constant such that

|m1 − γm2| =
1

csm1

.

There exists a “universal” function ψ1(L) (resp. ψ2(L)) depending on

L = νm2
1cs (but not depending on cs and ν explicitly!) such that, for

ν ∈ (ν0, ν1),

∆Gi ≈ e
−ψi(L)√

ν , i = 1, 2.
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Changes of the dominant harmonic
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The function ψ(L)

We have obtained an explicit expression for the function ψ(L). Denote by L̃ = L/cs. For

γ = (
√
5− 1)/2 one has cs ≈

√
5(1 + γ).
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Other frequencies
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Conclusions and future work

We have studied...

1. the splitting of the invariant manifolds after a Hamiltonian-Hopf bifurcation

when a periodic forcing is acting on the system. The role of the internal and

forcing frequencies has been clarified: they lead to a quasi-periodic effect.

2. the asymptotic behavior of the splitting. In particular, we have determined

the changes of dominant harmonic in the asymptotic behavior. All the

quotients of the continuous fraction of γ play a role: they determine which

frequencies are observed in the exponent of the splitting behavior.

Future work:

1. Construct a 4D (adapted) separatrix map (passage time close to the

complex-saddle point!).

2. Geometry of the phase space (resonance web) and diffusive properties.

3. Analogous 4D symplectic map case (rational/irrational Krein collision).
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