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The system

In this presentation we consider the system

H(Ilvaj%ylay%t) — HO(xlax%ylayQ) - EHl(xlaanayhyQat)?

where

riAw YAy (L Yt
2 2 2 ’

Hy = 21y2 — 2211 +V(

and

y5
le L (9:’7t—|—5

(d —w1)(c —cos(6))’

1. We fix concrete values of ¢, d, v and €.
2. v > (0 is a perturbative parameter.

3. The parameter 5 € |0, 27) is the initial time phase. b2
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Why this (2+1/2)-dof Hamiltonian system?



2-dof Hamiltonian Hopf (HH): Sokolskii NF

2-dof HH codim 1: Consider a 1-param. family of 2-dof Hamiltonians H
undergoing a HH bifurcation (at the origin).
Concretely: for 0 > 0 elliptic-elliptic, d < 0 complex-saddle.

Analysis of the HH bifurcation — Reduction to Sokolskii NF:

1. Taylor expansion at 0: Hs = >, ., Zj>0 5=7Hk7j, where H, ; € Py
homogeneous polynomial of order k.

2. Williamson NF (double purely imaginary eigenvalues £iw):

Hyo = —w(zoy1 — 21Yy2) + %(m% + 23).

3. Use Lie series to order-by-order simplify f5 ;,7 >1 and Hy, ;,k>2,7>0.
But: non-semisimple linear part!
Then, at each order (k, 7), one looks for G € Py sit.
Hy ; +ady,(G) € Keradzb.
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2-dof HH: Sokolskii NF

4. Introducing the Sokolskii coordinates (dzi Adyi +dze Adys =dRAdr+dO Adb)
y1=rcos(f), yo=rsin(0), R=(z1y1 + x242) /7, O =22y1 — 212,

one has H) = —wO + 3% and
NF(Hs) = w1+ Ta+ »  apy; T D567, < forma
k1,320
k+1>2
where

Fl — T1Y2 — T2VYq, FQ = (37% -+ 33%)/2 and Fg = (y% -+ y%)/Q

I, is a (formal) first integral, hence W%/¢(0) = {I'; = 0} N {NF(Hj) =
O} — {FQ -+ 5&071’1F3 -+ a/O,Q,OFg + 0(52F3, 5F§, Fg) — O}
Wu/5(0) real < dag 11 < 0. Moreover,

® If ag2o > 0 they bound a finite domain of size I’y = O(6%),'s = O(9).

e If ag 20 < 0 they are unbounded. o612



The unperturbed model

We consider the bounded case.
ing ) = —1/2 - C— 125, =i i =1.92
Introducing 0 = —v“, and rescaling r; = v°x;, Wwy; = Vy;, 1 = 1,2,

wtl = T, one has (skipping ~ from the new variables)

NF(H5) = Fl —|— 1% (FQ —|— CLFg —|— UF?}) —|— O(VQ)

where a = —ag 11/w? and n = ag20/w*.

Taking a = —1, 7 = 1, and truncating ~~» the unperturbed system.

Geometry of W*/$(0): In polar coord a1 +izs = Rie'¥1, yy +iys = Rae'¥2 the
restriction to (R1, R2)-components is a Duffing Hamiltonian system. On
JWU/5(0) one has v, = s — , 12 = t + b, and they are are foliated by
homoclinic orbits

w1 (1) +iz2(t)=—Ri(t)e™”, 1 (1) + iya(t) = Ra(t)e',
being v =t + 1o, R1(t) = v/2sech(vt) tanh(vt), and R2(t) = /2 sech(vt).
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The effect of a periodic forcing on H



Periodic forcing

We add to Hy the periodic perturbation e H; = €g(y1) f(0) where

9(y1) :y?(d_yl)_la f(0) = (C—Cos(vt+5))_1-

Remarks:
1. Restricted to the unperturbed 1W*/*(0), y; becomes 1-periodic in t.

2. f(0) periodic in t with frequency 7.
= If v € IR then quasi-periodic!

For simulations we choose ¢ = 5,d = 7,and v = (v/5 — 1) /2.

Recall that:

(8, 10) are initial conditions on a fundamental domain (torus 7") of W’“/S(O)_

v is a small parameter (in Hy).
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The splitting
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Remarks on the previous computations

1. We propagate a set {¥o x, 8o}, 0 < k,j < 512, of initial points in T
(i.e. a total number of 21 initial conditions) up to reach the Poincaré
section ..

2. The numerical integration is performed using an ad-hoc implemented
Taylor time-stepper scheme with quadruple precision.

3. The propagation of 7 up to X gives a 2D torus Tx;. The invariant manifolds
W¥/5(0) in R* are defined by the G and the G'>-graphs over 7.

4. To compute the difference (i.e. the splitting) between W *(0) and 1/ *(0)
we need to compare them at the same points of 7s:. Hence, we select a
mesh of angles 7 and (3 within Tx;, and refine the initial conditions in T
using a Newton method.
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Nodal lines: bifurcations

(1,1), (1,0) — (1,1), (1,1)

2,3), (1,2) — (2,3), (2,3)
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Change of dominant harmonics

—log, 5 | —log, 11 | Change of the dom harm of the G, G'2-splittings
2.443 2.444 (1,0), (1,0) — (1,1), (1,0)
2.676 2.677 (1,1), (1,0) — (1,1), (1,1)
4.112 4.113 (1,1, (1,1) — (1,2), (1,1)
4.300 4.301 (1,2), (1,1) — (1,2), (1,2)
5.133 5.134 (1,2), (1,2) — (2,3),(1,2)
5.428 5.429 (2,3), (1,2) — (2,3), (2,3)
6.234 6.235 (2,3), (2,3) —> (3,5), (2,3)

Table 1: Changes in the dominant harmonic of the (z; splitting function and the GG splitting

function. The bifurcation takes place for v € (v, V).
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Theoretical/symbolical results



The Melnikov integral

For simplicity, we discuss on the (71-splitting (similar for the GG5-splitting).
Recall that H; = g(y1) f (@) where

g(y1) = ?J?(d — 1)~ foyg (1) = Zk>0 dky4+k,
() = (c—cos(f)) = = D 0 Cjcos(j0).

Then, at first order in €, the variational equation is given by

dGi1 _ A4k
7 = e{G1, H1} = ey ;dky f(0)

Melnikov: The distance G¥ (v, 8) — G; (v, B) = eAG1 + O(€?), is given by
V2F+1 dy (cos(t + wo))4+k

(cosh(vt))5+F

AG) = 4e /_oo sin(t + o) f(yt + 8) dt,

k>0

Recall that on the unperturbed separatrices 1) =t 4o, 0 =~vt+ 0, (o, B) €T.
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Comparison numerics/symbolic evaluation

After some algebra one obtains

AGi=eY ¢,y 2% 4,

> barks Yy Disin((k4+5—2i)o+1jB),

i>0 k>0 0<2i<4+k I==+1

where

Il = Il(k—|—5— 2’l:—|—lj’7, V,k—|—5), Il(s,u, n) Z/ (
R

cos(st)

dt
cosh(vt))»

m—+1 ‘
> (1) ( i ) (m+1—21)

We represent log(AG,; /€)+/v, for i = 1 (bottom)

and ¢ =2 (top), as a function of log, (V).
Red: Direct numerical computations.

Blue: Sum of the significant terms of the Melnikov

1 series.

-10 -8 -6 -4 -2
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The main result

For the system H = Hy + €H; under consideration, consider:

1.e>0,c>1,d>V2 v <y << 1 small enough,
> 5,p/q € Q).

Denote by m / Mo a best approximant of 7y, and assume that it corresponds to

2. v € R\ Q a quadratic number (3C' > 0,

_p
v q

the dominant harmonic in AG (resp. AG») for v € (v, 1), Vo, V1 < V.
Let c; € R be the constant such that

1

CsThy

|m1 - Wm2| =

There exists a “universal” function 11 (L) (resp. ¥2(L)) depending on
L = Vm%cs (but not depending on ¢, and 1 explicitly!) such that, for

v € (v, 1),
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Changes of the dominant harmonic
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Left: v = (v/5 — 1)/2, ¢ = 10~*. We represent log(AG1 /€)+/V as a function of log, (/). The
dots correspond to the values v; where changes the dominant harmonic (from mi = F; — Fj1,
where { F; }; denotes the Fibonacci sequence). The rightmost change corresponds to

mi1 = 5d — mi1 = 89, while the leftmostto m1 = 196418 — m; = 317811.

Right: One has v 11 ~ v°v;, then v; ~ v*? K. We represent v;y~>7, we see that K ~ 0.0850 for

7 large enough.
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The function v( L)

We have obtained an explicit expression for the function 1)(L). Denote by L = L /cs. For
v = (v/5 —1)/20ne has cs ~ v/5(1 + 7).

-2.55 T T T -2.555

-2.5551 |

-2.6

-2.5552 |

-2.5553 |

-2.7 L L : -2.5554 . :
0.04 0.06 0.08 0.1 0.12 0.071 0.072 0.073 0.074

Left: Five leftmost picks of the previous fig. as a function of L (in red). w(i) in blue. Right: Magnification

of the central zone of the left plot. The picks tend to w(i) as v decreases (and m increases).

26] 1 Qp(i) as a function of log(fl)-
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Other frequencies
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log(AG1)/e\/v as afunction of log, (). Topleft: v = (v/5 — 1)/2 = [1,1,1,1,1,...].
Top right: v = [10x1,1,10,1,1,10,1,1,10, 1, ...] ~ 0.6180512268192526496794.
Bottom left : v = [10x 1,1, 10, 1,10, 1,10, 1, 10...] ~ 0.6180513744611582707944.

Bottom right: v = [10x 1,2, 3,4, 5,6,7, 8,9, 10, ...] ~ 0.6180206632934375446297.

5
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Conclusions and future work

We have studied...

1. the splitting of the invariant manifolds after a Hamiltonian-Hopf bifurcation
when a periodic forcing is acting on the system. The role of the internal and
forcing frequencies has been clarified: they lead to a quasi-periodic effect.

2. the asymptotic behavior of the splitting. In particular, we have determined
the changes of dominant harmonic in the asymptotic behavior. All the
quotients of the continuous fraction of ~y play a role: they determine which
frequencies are observed in the exponent of the splitting behavior.

Future work:

1. Construct a 4D (adapted) separatrix map (passage time close to the
complex-saddle point!).

2. Geometry of the phase space (resonance web) and diffusive properties.

3. Analogous 4D symplectic map case (rational/irrational Krein collision).
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