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The problem: general setting

Let Hy(v) = Ho(v, x1, 22, Y1, y2) be a one-parameter v-family of 2-dof
Hamiltonian systems such that

1. the origin is a fixed point for all v,
2. at v = 0 the origin suffers a Hamiltonian-Hopf bifurcation, and

3. for v > 0 the invariant manifolds of the origin (complex unstable) form a

“*homoclinic 2-dimensional figure-eight”.

We consider
a periodic in time forcing H = Hy(v) + eH; (¢ small and fixed) on the family
(hence 2+1/2 dof Hamiltonian system).

Our goal is
to describe the asymptotic behaviour (when v — 0) of the splitting of the
invariant manifolds.
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The concrete system

Concretely, we consider the system

H (w1, 22,y1,Y2,t) = Ho(w1, T2, Y1, y2) + eH1(71, T2, Y1, Y2, 1),

where

332+I'2 2_|_2 2_|_2
1t y2<_1+¢h z&>>’

Hy, = —
0= T1Y2 x2y1+y< 5 5 5

and

y5
le 1 9:’7t+90

(d —y1)(c = cos(0))

1. We shall fix concrete values of ¢, d, v and e.
2. v > (is a perturbative parameter.
3. The parameter 0, € |0, 27) is the initial time phase.

4. Note that H; contains all powers y;, k > 4 and all harmonics in .



Why this concrete system? H?

Consider a 1-param. family of 2-dof Hamiltonians f 5 undergoing a
Hamiltonian-Hopf bifurcation (at the origin).
Assume: for 0 > 0 elliptic-elliptic, 0 < 0 complex-saddle.

The NF analysis of the HH bifurcation leads to the so-called Sokolskii NF:

NF(H5) =wl'y+ 19+ Z Q. Flf Fé 5‘7, <— formal

k,l,j=0
k+1>2

where
[y =2ys — 2oy1, L= (27 +23)/2 and T's = (y7 +v5)/2.
I, is a (formal) first integral, hence W%/¢(0)={I'; =0} N {NF(Hs)=0}.

® If ag2o > 0 they bound a finite domain of size I’y = O(6%),'s = O(9).

e If ap 20 < 0 they are unbounded. a2



The unperturbed model: H

We consider the bounded case.
Introducing = —1/%, and rescaling z; = %, wy; = v §;, & = 1, 2,

wt = T, one has (skipping ~ from the new variables)

NF(H5) = Fl + v (FQ —+ CLFg + 77F§> -+ O(V2)

where a = —ag 11 /w? andn = ag20/w*.

Taking a = —1, 7 = 1, and truncating we obtain the unperturbed integrable

system considered:

AT YAy (L Yt
2 2 2

=1 + vy — I3+ 173).

Hy =x1y2 — 22y1 + Vv (

Then, Gy =T'7and Gy, =19 — I'5 + I’% are independent first integrals.
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Geometry of the invariant manifolds for H

In polar coord x; +ixs — Rie!®1, y1+iys = Roe' 2 the restriction to
(R1, R2)-components is a Duffing Hamiltonian system.

R1 Duffing

R2

On W*/#(0) one has 1)1 = 15 £ 7, 1y = t + 1. The 2-dimensional
homoclinic surface is foliated by homoclinic orbits (x1(t), z2(¢), y1(t), y2(t)) given
by

T1(t) + izo(t) = =Ry (1)e™ D, yi(t) + iya(t) = Ro(t) eV,
being () =t + 1o, R1(t) = v/2sech(vt) tanh(vt), and Ra(t) = v/2sech(vt).
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Periodic forcing: € 4

We add to H|, the periodic perturbation e H; = €g(yy) f(0) where

gy1) =y d—wy)~",  f(0) = (c—cos(yt+ b))

Remarks:
1. Restricted to the unperturbed WW*/*(0), y; becomes 1-periodic in t.

2. f(0) periodic in t with frequency v = If v € R \ Q then quasi-periodic!

We consider for numerical simulationsc = 5, d = 7, and e = 1073,
Also v = v = (v/5 — 1)/2 (later other values of ).

Recall that (wo, 90) are initial conditions on a fundamental domain (torus 7)
of W“/S(O). Also recall that v is a small parameter (included in Hy).
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The invariant manifolds WW%/'3(()

R1 Duffing

We EXPress Hy =G + I/GQ, G4 =11, Glo :FQ_F3—|—F§,
and we consider the Poincaré section > = max(Rs). .
The values are represented as functions of (1, 0).
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The splitting of the invariant manifolds
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Remarks on the previous computations

1. We propagate a set {9, 0o}, 0 < k, 5 < 512, of initial points in the
fundamental torus 7 (i.e. a total number of 2'% initial conditions) up to
reach the Poincaré section ..

2. The numerical integration is performed using an ad-hoc implemented
Taylor time-stepper scheme with quadruple precision.

3. The propagation of 7 up to X gives a 2D torus 7Tx;. The invariant manifolds
W¥/5(0) in R* are defined by the G, and the G'o-graphs over 7.

4. To compute the difference (i.e. the splitting) between W*(0) and 17¢(0)
we need to compare them at the same points of 7s:. Hence, we select a
mesh of angles 7 and 0 within 75, and refine the initial conditions in 7
using a Newton method.

p.10/24



Nodal lines: changes of the dominant harmonic
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Change of dominant harmonics

—log, vy | —log, v_ | Change of the dom harm of the G, GG5-splittings
2.443 2.444 (1,0), (1,0) — (1,1), (1,0)
2.676 2.677 (1,1), (1,00 — (1,1), (1,1)
4112 4.113 (1,1, (1,1) — (1,2), (1,1)
4.300 4.301 (1,2), (1,1) — (1,2), (1,2)
5.133 5.134 (1,2), (1,2) — (2,3),(1,2)
5.428 5.429 (2,3), (1,2) — (2,3), (2,3)
5.971 5.972 (2,3),(2,3) — (3,5), (2,3)
6.234 6.235 (2,3), (2,3) —> (3,5), (2,3)

Table 1: Changes in the dominant harmonic of the (&7 splitting function and the GG splitting

function. The change takes place for v € (v_,v ). o12/24




The Melnikov integral

For simplicity, we discuss on the (71-splitting (similar for the (Go-splitting).
Recall that H; = g(y1) f (@) where

g(y1) = yi(d —y1)) "~ () = Xpso iy
f(0) = (c—cos(h))! = = D >0 Cjcos(j0).

The P-M function:
If V() is a solution of the system when ¢ = 0, then the distance

G (Yo, 00) — G5 (o, b0) = AG, + O(€?),

is given by
AG, = 6/ {G1,H }o("(s)ds + O(e)

= de /OO sin(¢ + o) f(7t + 0o) Z 2k+1(cé];s(fl(()ig)—l5_+f0)) - t.

o k>0

Recall that on the unperturbed separatrices 1) =t+1o, 0 =~vyt+60o, (1o, 00) €T. p.13/24



Comparison numerics/symbolic evaluation

After some algebra one obtains

AGi=eY ¢,y 27% 4,

> barks Yy Tisin((k+5—2i)o+1j60)

i>0 k>0 0<2i<4+k I==+1

— € Z Z C’,(ﬁi,,m sin(mlwo — mgeo), where

mi1>0moEZ

11211(k+5—27;—|-lj"}/,v,k—|—5>, Il(S,V,n):/(
R

cos(st) m+1—-2¢ [ m+1

cosh(vt))™ at,  bm.i= 2m(m+1)

We represent log(AG; /€)\/v, for i = 1 (bottom)

and 7 =2 (top), as a function of log, (V).
Red: Direct numerical computations.

Blue: Sum of the significant terms of the Melnikov

1 series.

-10 -8 -6 -4 -2
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Main theoretical result

For the system H = Hy + €H; under consideration, let us assume that
e>0, c>1, d>\/§, vyeER\Q and v<yy <1.

Let ml/mg be an approximant of v, and let ¢, € R be the constant such that

csmilmy —ymsa| = 1.

Thm. There exists a “universal” (almost independent of ) function ¢4 (L) s.t.
the contribution of the harmonic associated to 17 / Mo to the splitting satisfies

i(L)| sy & /G5 log |C) |, when v — 0,
where Wy(L) = Wy (L) — v/Llog L/m, W;(L) < Wy ~ —4.860298.

In particular, if m1 /ms corresponds to a dominant HBA of AG (resp. AG))

forv € (vy,11), Vo, 1 < 1, then

AG; = exp (Vi D) pmymze, /[VP), 1= 1,2,
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Changes of the dominant harmonic
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Forvy = (v/5 —1)/2, ¢ = 10~* we represent /v log \C’gl),m/d as a
function of log, (/). The points correspond to the values v/; where changes
the dominant harmonic. As expected, dominant harmonics are associated to
BA: from my = F; — F} 1, where { F}; }; denotes the Fibonacci sequence.
The rightmost change corresponds to m; = 55 — m; = 89, while the

leftmost to m; = 196418 — m; = 317&11.
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The function 11 (L)

We have an explicit expression of 11 (L). For v = (/5 — 1)/2 one has
¢s =~ v/5(1 + ). Denote by L = L/c,.

-2.55 ‘ ‘ ‘ -2.555 —

-2.5551
261t

-2.5552

Vi

-2.65
-2.5553

M
/.

2007 0.06 0.08 0.1 012 %% 071 0.072 0.073 0.074

Left: Five leftmost picks of the previous fig. as a function of L (in red).
The function 1 (L) is diplayed in blue.

Right: Magnification of the central zone of the left plot.
The red curves tend to 1)1 (L) as v decreases (and m increases).
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Other frequencies: BA and hidden BA (HBA)

= 0 » ’
T

:

We display /v (log(AG1)/€) as a function of log, (V).
Top left - vo= (5 —1)/2=1[0:1,1,1,1,1,...] ~ 0.618033988749894.

Topright : y1 = [0;10%1,1,10,1,1,10,1,1,10,1, ...] ~ 0.618051226819253.
Bottom left : v2 = [0;10x 1,1, 10, 1,10, 1,10, 1,10...] ~ 0.618051374461158.
Bottom right: s = [0;10% 1,2, 3,4, 5,6,7,8,9, 10, ...] ~ 0.618020663293438.
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Hidden HBA: questions and assumptions

As said it is reasonable to expect that BA are dominant. But...

1. 779 has some hidden BA harmonics (HBA) [Delshams-Gutierrez-Gonchenko 2014]
Q: Why some BA never dominate for any ? Which conditions satisfy?

2. all frequencies v;, © = 0, 1, 2, 3, shown before are rather “special”.
Q: What is expected for “typical” (full measure set) frequency ~.

Let us assume that (our system satisfies these assumptions):

e The perturbation is the product of two functions f(x1, 2, y1, Y2 ) and
g(60), denote by P (t, 1)) and P5(6) their contribution to the P-M integral.

e The homoclinic conections tend to zero when t — 400 as sech (/).

e Py (t,1)is of the form Y | A;(t) sin(jv), ¥ = t + 1)y, where A, depend
on powers of sech(t) and || A;|| ~ exp(—37p1), p1 > 0,

o Py(f)isof theform B ) .-, exp(—jpz) cos(j0), 6§ = vt + by, p2 > 0.
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Contribution of HBA

Under previous assumptions, one has that minus the logarithm of the
contribution of the harmonic related to the BA Ny / Dy, to the P-M function is

T(VaDk)%Dk—i_Sk/Va

where s, = | Ny — vDy| and where we have approximated
Ny =~vDy + O(D,f). The role of CFE appears as

3];1:Dk (CZ + 1/012) ; CZ:[%H;C]H% ) =l -1y - @l

We are interested in minimizing T'(v, Dy,) for a given v. The optimal D,
depends on the arithmetic properties of 7.

Remark:

The frequencies y;, 1 = 0, 1, 2, verify [p — qv;| > ¢/q", 7> 1, ¢ > 0, and
3 satisfies |p — qy3| > ¢/(qlogq)?, o > 1, ¢ > 0 (this explains why the
maxima in the plot increases like log v).
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Results on HBA for v small (D;. large)

When T'(v, Dy,) = T'(v, D;) a change of optimal from Ny / Dy, to N;/ Dy,
Sk —Si

| > k, is produced. This gives vy ; = DD

13

13 b~
12 ¢

11
12 |

10

9

1 1 1 11 1 1
-22 -20 -18 -16 -24 -23 -22 -21

We display log(T'(v, D;)), 7 = k,k+ 1, k + 2, as a function of log(v). The
k + 1-th BA is hidden. Left: v = 7. Right: v = 7 — 3.
Thm. 1. Two consecutive harmonics associated to BA cannot be hidden.

2. If the k 4+ 1-th hamonic associated to BA is hidden then g o = 1.
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"Typical” measure-theoretical properties

Properties related to the CFE that hold for numbers in a set of full measure:
e The geometric mean of CFE quotients tends to the Kinchin constant

KC ~ 2.685452.

e Let D,, the BA denominators. Then
lim,, oo log(D,)/n — LC = 72/(1210g(2)) Levy constant.

e The Gauss map z — 1/x — |1 /x| is ergodic and the probability of having

k as a quotient is given by the Gauss-Kuzmin law:
P(k) =log,(1+ 1/(k* + 2k)). For a “typical” number, its CFE is a
sequence of realizations of not independent iid random variables.

Numerical checks (based on the first = 5 x 107 first quotients) support that
vy=m—3, e, eﬂ—4, 6\/5—5,6\/5—9, ande\ﬁ—lél,

verify the previous “typical” properties. o



A conjecture on the distribution of HBA

Conjecture: Under the assumptions on the homoclinic and the perturbation
stated, for a set of ratios of two frequencies (1, ) of full measure, the
distribution of HBA follows a normal law.

Numerical results for the system considered (we show results for v = m — 3).

1

0.004 r
0.8

0.003 r
0.6 r

0.002 r

0.001 ¢ \)

- . . . ,
-4 -2 0 2 4 -4 -2 0 2 4
Counting the HBA in blocks of 1000 consecutive BA, we obtain that the CDF is
N(p, o) with 41~279.118 and 0~ 9.604 in all cases. That is, for our system
and for a “typical” frequency v we expect that more than one fourth of the BA

are HBA. E.g. =7 — 3: 2785810 HBA from the first 10" quotients.

04 r

0.2

0




What remains?

1. To theoretically justify the first-order Melnikov approach, and explain the
very good agreement between the symbolical and numerical results.

2. To use the results on the splitting to derive a 4D (adapted) separatrix map
(requires the passage time close to the complex-saddle point). Analyze the
geometry of the phase space and the diffusive properties.

3. To carry out the study of the splitting for the 4D symplectic map case
(rational/irrational Krein collision of eigenvalues).

Thanks for your attention!!
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