Nuno Freitas


Between March 2018 and August 2019 I was a Marie-Curie Research Fellow at the Mathematics Institute, University of Warwick. The project website is here.

I am a Ramón y Cajal researcher at the Departament de Matemàtiques i Informàtica, Universitat de Barcelona.

Contact Information


Departament de Matemàtiques i Informàtica,
Universitat de Barcelona (UB),
Gran Via de les Corts Catalanes 585,
8007 Barcelona, Spain

Office : P1.23
Email : (firstname)barroso@ub.edu

Research Papers

Preprints

  1. N. Billerey, I. Chen, L. Dembélé, L. Dieulefait, N. Freitas: Some extensions of the modular method and Fermat equations of signature (13,13,n). on arXiv (pdf)
  2. L. Dembélé, N. Freitas, J. Voight: On Galois inertial types of elliptic curves over Ql. (pdf)

Publications

  1. N. Freitas, A. Kraus: On the symplectic type of isomorphisms of the p-torsion of elliptic curves, Memoirs of AMS (to appear). on arXiv (pdf)
  2. N. Freitas, A. Kraus, S. Siksek: On asymptotic Fermat over Zp-extensions of Q, Algebra & Number Theory (to appear). on arXiv
  3. J. Cremona, N. Freitas: Global methods for the symplectic type of congruences between elliptic curves, Revista Matemática Iberoamericana (to appear). on arXiv
  4. N. Freitas, A. Kraus, S. Siksek: Unit equations and the asymptotic Fermat's Last Theorem, Journal de Théorie des Nombres de Bordeaux (accepted, pending revisions). on arXiv
  5. N. Freitas, A. Kraus, S. Siksek: On asymptotic Fermat over the Z2-extension of Q, Annales Mathématiques Blaise Pascal (to appear). on arXiv
  6. N. Freitas, A. Kraus, S. Siksek: Class field theory, Diophantine analysis and the asymptotic Fermat's Last Theorem, Advances in Mathematics 363 (2020). on arXiv
  7. N. Freitas, B. Naskręcki, M. Stoll: The generalized Fermat equation with exponents 2, 3, n, Compositio Mathematica 156 (2020), no. 1, 77--113. on arXiv
  8. N. Freitas, A. Kraus: On the degree of the p-torsion field of elliptic curves over Ql for l ≠ p, Acta Arithmetica 195 (2020), no. 1, 13--55. on arXiv
  9. N. Billerey, I. Chen, L. Dieulefait, N. Freitas: A multi-Frey approach to Fermat equations of signature (r, r, p), Transactions of AMS 371 (2019), no. 4, 8651--8677. on arXiv
  10. M. A. Bennett, C. Bruni, N. Freitas: Sums of two cubes as twisted perfect powers, revisited, Algebra & Number Theory 12 (2018), no. 4, 959--999. on arXiv
  11. N. Billerey, I. Chen, L. Dieulefait, N. Freitas: A result on the equation xp + yp = zr using Frey abelian varieties, Proceedings of AMS 145 (2017), no. 10, 4111--4117. on arXiv
  12. N. Freitas: On the Fermat-type equation x3 + y3 = zp, Commentarii Mathematici Helvetici 91 (2016), 295--304. on arXiv
  13. N. Freitas, A. Kraus: An application of the symplectic argument to some Fermat-type equations, C. R. Math. Acad. Sci. Paris 354 (2016), no. 8, 751--755. on arXiv
  14. N. Freitas, S. Siksek: The Asymptotic Fermat's Last Theorem for Five-Sixths of Real Quadratic Fields, Compositio Mathematica 151 (2015), no. 8, 1395--1415. on arXiv
  15. N. Freitas, B. Le Hung, S. Siksek: Elliptic Curves over Real Quadratic Fields are Modular, Inventiones Mathematicae 201 (2015), no. 1, 159--206. on arXiv
  16. N. Freitas, S. Siksek: Criteria for irreducibility of mod p representations of Frey curves, Journal de Théorie des Nombres de Bordeaux 27 (2015), 67--76. on arXiv
  17. N. Freitas, S. Siksek: Fermat's Last Theorem over some small real quadratic fields, Algebra & Number Theory 9 (2015), no. 4, 875--895. on arXiv
  18. L. Dieulefait, N. Freitas: Base change for Elliptic Curves over Real Quadratic Fields, C. R. Math. Acad. Sci. Paris 353 (2015), no. 1, 1--4. on arXiv
  19. N. Freitas: Recipes for Fermat-type equations of the form xr + yr = Czp, Mathematische Zeitschrift 279 (2015), no. 3-4, 605--639. on arXiv
  20. N. Freitas, P. Tsaknias: Criteria for p-ordinarity of families of elliptic curves over infinitely many number fields, International Journal of Number Theory 11 (2015), no. 1, 81--87. on arXiv
  21. L. Dieulefait, N. Freitas: The Fermat-type equations x5 + y5 = 2zp or 3zp solved through Q-curves, Mathematics of Computation 83 (2014), no. 286, 917--933. on arXiv
  22. L. Dieulefait, N. Freitas: Fermat-type equations of signature (13, 13, p) via Hilbert cuspforms, Mathematische Annalen 357 (2013), no. 3, 987--1004. on arXiv